Skip to main content

Guided Cellular Responses by Surface Cues for Nanomedicine Applications

  • Chapter
  • First Online:
Nanomedicine

Abstract

Using surface cues to guide and ultimately control cellular responses is of paramount importance in numerous biomedical applications. Since cells react on feature sizes both on the micro and nanometer scale, these length scales are crucial parameters when designing new materials for applications in medicine e.g. for tissue engineering and drug delivery. Thus, variation of the features at the nanometer length scale is an integral part of nanomedicine research and development. In this chapter the interaction between biological systems and artificial materials will be addressed in general with focus on simplified model systems where only one or a few parameters are varied at two-dimensional (2D) surfaces. At first biomolecular adsorption/immobilization on surfaces will be addressed followed by a discussion of approaches to synthesize functionalized surfaces and the influence of such surfaces on cellular response. Some of the key parameters, which will be discussed in more detail, are topography, chemistry, and elastic modulus of the substrate. Even though there is a vast amount of published data it will become clear that there is still not a detailed understanding of the influence of these parameters on biosystems at the cellular level. Obviously, the degree of complexity increases when several of the surface cues are combined. The challenges in understanding the cellular responses in detail in real systems with the simultaneous variation of multiple parameters leads to the introduction of the field of high throughput screening of biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott A (2003) Cell culture: biology’s new dimension. Nature 424:870–872

    Google Scholar 

  2. Keung AJ, Kumar S, Schaffer DV (2010) Presentation counts: microenvironmental regulation of stem cells by biophysical and material cues. Annu Rev Cell Dev Biol 26:533–556

    Article  CAS  PubMed  Google Scholar 

  3. Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nature 462:433–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saha K, Pollock JF, Schaffer DV, Healy KE (2007) Designing synthetic materials to control stem cell phenotype. Curr Opin Chem Biol 11:381–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tibbitt MW, Anseth KS (2009) Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 103:655–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vazin T, Schaffer DV (2010) Engineering strategies to emulate the stem cell niche. Trends Biotechnol 28:117–124

    Article  CAS  PubMed  Google Scholar 

  7. Watt FM, Huck WTS (2013) Role of the extracellular matrix in regulating stem cell fate. Nat Rev Mol Cell Biol 14:467–473

    Article  CAS  PubMed  Google Scholar 

  8. Kasemo B (2002) Biological surface science. Surf Sci 500:656–677

    Article  CAS  Google Scholar 

  9. Haynes CA, Norde W (1994) Globular proteins at solid/liquid interfaces. Colloids Surf B: Biointerfaces 2:517–566

    Article  CAS  Google Scholar 

  10. Hlady V, Buijs J (1996) Protein adsorption on solid surfaces. Curr Opin Biotechnol 7:72–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakanishi K, Sakiyama T, Imamura K (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 91:233–244

    Article  CAS  PubMed  Google Scholar 

  12. Rabe M, Verdes D, Seeger S (2011) Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interf Sci 162:87–106

    Article  CAS  Google Scholar 

  13. Gray JJ (2004) The interaction of proteins with solid surfaces. Curr Opin Struct Biol 14:110–115

    Article  CAS  PubMed  Google Scholar 

  14. Castner DG, Ratner BD (2002) Biomedical surface science: foundations to frontiers. Surf Sci 500:28–60

    Article  CAS  Google Scholar 

  15. Malmsten M (1998) Formation of adsorbed protein layers. J Colloid Interface Sci 207:186–199

    Article  CAS  PubMed  Google Scholar 

  16. Cooper GM (2000) The cell: a molecular approach, 2nd edn. ASM Press, Sunderland, USA

    Google Scholar 

  17. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1994) Molecular biology of the cell. Garland Publishing, New York, USA

    Google Scholar 

  18. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat Rev Mol Cell Biol 2:793–805

    Article  CAS  PubMed  Google Scholar 

  19. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33

    Article  CAS  PubMed  Google Scholar 

  20. Zamir E, Geiger B (2001) Molecular complexity and dynamics of cell-matrix adhesions. J Cell Sci 114:3583–3590

    CAS  PubMed  Google Scholar 

  21. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11:633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kingshott P, Griesser HJ (1999) Surfaces that resist bioadhesion. Curr Opinion Solid State Mater Sci 4:403–412

    Article  CAS  Google Scholar 

  23. Otsuka H, Nagasaki Y, Kataoka K (2001) Self-assembly of poly(ethylene glycol)-based block copolymers for biomedical applications. Curr Opin Colloid Interface Sci 6:3–10

    Article  CAS  Google Scholar 

  24. Li L, Chen S, Zheng J, Ratner BD, Jiang S (2005) Protein adsorption on oligo(ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. J Phys Chem B 109:2934–2941

    Article  CAS  PubMed  Google Scholar 

  25. Harder P, Grunze M, Dahint R, Whitesides GM, Laibinis PE (1998) Molecular conformation in oligo(ethylene glycol)-terminated self-assembled monolayers on gold and silver surfaces determines their ability to resist protein adsorption. J Phys Chem B 102:426–436

    Article  CAS  Google Scholar 

  26. Morra M, Cassineli C (1999) Non-fouling properties of polysaccharide-coated surfaces. J Biomater Sci Polym Ed 10:1107–1124

    Article  CAS  PubMed  Google Scholar 

  27. Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers†. Chem Rev 102:4177–4190

    Article  CAS  PubMed  Google Scholar 

  28. Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932

    Article  CAS  PubMed  Google Scholar 

  29. Ito T, Okazaki S (2000) Pushing the limits of lithography. Nature 406:1027–1031

    Article  CAS  PubMed  Google Scholar 

  30. Romankiw LT (1997) A path: from electroplating through lithographic masks in electronics to LIGA in MEMS. Electrochim Acta 42:2985–3005

    Article  Google Scholar 

  31. Craighead HG (2000) Nanoelectromechanical Systems. Science 290:1532–1535

    Article  CAS  PubMed  Google Scholar 

  32. Broers AN, Molzen WW, Cuomo JJ, Wittels ND (1976) Electron‐beam fabrication of 80‐Å metal structures. Appl Phys Lett 29:596–598

    Article  CAS  Google Scholar 

  33. Wu B, Kumar A (2007) Extreme ultraviolet lithography: a review. J Vac Sci Technol B 25:1743–1761

    Article  CAS  Google Scholar 

  34. Yang S-M, Jang SG, Choi D-G, Kim S, Yu HK (2006) Nanomachining by colloidal lithography. Small 2:458–475

    Article  CAS  PubMed  Google Scholar 

  35. Park M, Harrison C, Chaikin PM, Register RA, Adamson DH (1997) Block copolymer lithography: periodic arrays of ~1011 holes in 1 square centimeter. Science 276:1401–1404

    Article  CAS  Google Scholar 

  36. Roman G, Martin M, Joachim PS (2003) Block copolymer micelle nanolithography. Nanotechnology 14:1153

    Article  Google Scholar 

  37. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533–1554

    Article  CAS  PubMed  Google Scholar 

  38. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1170

    Article  CAS  PubMed  Google Scholar 

  39. Haensch C, Hoeppener S, Schubert US (2010) Chemical modification of self-assembled silane based monolayers by surface reactions. Chem Soc Rev 39:2323–2334

    Article  CAS  PubMed  Google Scholar 

  40. Hofer R, Textor M, Spencer ND (2001) Alkyl phosphate monolayers, self-assembled from aqueous solution onto metal oxide surfaces. Langmuir 17:4014–4020

    Article  CAS  Google Scholar 

  41. Falconnet D, Koenig A, Assi F, Textor M (2004) A combined photolithographic and molecular-assembly approach to produce functional micropatterns for applications in the biosciences. Adv Funct Mater 14:749–756

    Article  CAS  Google Scholar 

  42. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  CAS  Google Scholar 

  43. Li H-W, Muir BVO, Fichet G, Huck WTS (2003) Nanocontact printing: a route to sub-50-nm-scale chemical and biological patterning. Langmuir 19:1963–1965

    Article  CAS  Google Scholar 

  44. Salaita K, Wang Y, Mirkin CA (2007) Applications of dip-pen nanolithography. Nat Nano 2:145–155

    Article  CAS  Google Scholar 

  45. Salaita K, Wang Y, Fragala J, Vega RA, Liu C, Mirkin CA (2006) Massively parallel dip–pen nanolithography with 55 000-pen two-dimensional arrays. Angew Chem 118:7378–7381

    Article  Google Scholar 

  46. Huo F, Zheng Z, Zheng G, Giam LR, Zhang H, Mirkin CA (2008) Polymer pen lithography. Science 321:1658–1660

    Article  CAS  PubMed  Google Scholar 

  47. Pardo L, Wilson WC, Boland T (2002) Characterization of patterned self-assembled monolayers and protein arrays generated by the ink-jet method†. Langmuir 19:1462–1466

    Article  CAS  Google Scholar 

  48. Ryan D, Parviz BA, Linder V, Semetey V, Sia SK, Su J et al (2004) Patterning multiple aligned self-assembled monolayers using light. Langmuir 20:9080–9088

    Article  CAS  PubMed  Google Scholar 

  49. Zhang G-J, Tanii T, Zako T, Hosaka T, Miyake T, Kanari Y et al (2005) Nanoscale patterning of protein using electron beam lithography of organosilane self-assembled monolayers. Small 1:833–837

    Article  CAS  PubMed  Google Scholar 

  50. Hoff JD, Cheng L-J, Meyhöfer E, Guo LJ, Hunt AJ (2004) Nanoscale protein patterning by imprint lithography. Nano Lett 4:853–857

    Article  CAS  Google Scholar 

  51. Michel R, Lussi JW, Csucs G, Reviakine I, Danuser G, Ketterer B et al (2002) Selective molecular assembly patterning: a new approach to micro- and nanochemical patterning of surfaces for biological applications. Langmuir 18:3281–3287

    Article  CAS  Google Scholar 

  52. Ogaki R, Cole MA, Sutherland DS, Kingshott P (2011) Microcup arrays featuring multiple chemical regions patterned with nanoscale precision. Adv Mater 23:1876–1881

    Article  CAS  PubMed  Google Scholar 

  53. Christman KL, Schopf E, Broyer RM, Li RC, Chen Y, Maynard HD (2008) Positioning multiple proteins at the nanoscale with electron beam cross-linked functional polymers. J Am Chem Soc 131:521–527

    Article  CAS  Google Scholar 

  54. Dubey M, Emoto K, Takahashi H, Castner DG, Grainger DW (2009) Affinity-based protein surface pattern formation by ligand self-selection from mixed protein solutions. Adv Funct Mater 19:3046–3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ganesan R, Kratz K, Lendlein A (2010) Multicomponent protein patterning of material surfaces. J Mater Chem 20:7322–7331

    Article  CAS  Google Scholar 

  56. Cretich M, Damin F, Pirri G, Chiari M (2006) Protein and peptide arrays: recent trends and new directions. Biomol Eng 23:77–88

    Article  CAS  PubMed  Google Scholar 

  57. Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8:1775–1789

    Article  CAS  PubMed  Google Scholar 

  58. Ogaki R, Alexander M, Kingshott P (2010) Chemical patterning in biointerface science. Mater Today 13:22–35

    Article  CAS  Google Scholar 

  59. Blawas AS, Reichert WM (1998) Protein patterning. Biomaterials 19:595–609

    Article  CAS  PubMed  Google Scholar 

  60. Ekblad T, Liedberg B (2010) Protein adsorption and surface patterning. Curr Opin Colloid Interface Sci 15:499–509

    Article  CAS  Google Scholar 

  61. Wennerberg A, Albrektsson T (2010) On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 25:63–74

    PubMed  Google Scholar 

  62. Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6:997–1003

    Article  CAS  PubMed  Google Scholar 

  63. Kolind K, Dolatshahi-Pirouz A, Lovmand J, Pedersen FS, Foss M, Besenbacher F (2010) A combinatorial screening of human fibroblast responses on micro-structured surfaces. Biomaterials 31:9182–9191

    Article  CAS  PubMed  Google Scholar 

  64. Pimpin A, Srituravanich W (2012) Review on micro- and nanolithography techniques and their applications. Eng J 16:37–55

    Article  Google Scholar 

  65. Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196

    Article  CAS  PubMed  Google Scholar 

  66. Gates BD, Whitesides GM (2003) Replication of vertical features smaller than 2 nm by soft lithography. J Am Chem Soc 125:14986–14987

    Article  CAS  PubMed  Google Scholar 

  67. Odom TW, Love JC, Wolfe DB, Paul KE, Whitesides GM (2002) Improved pattern transfer in soft lithography using composite stamps. Langmuir 18:5314–5320

    Article  CAS  Google Scholar 

  68. Dasgupta BR, Weitz DA (2005) Microrheology of cross-linked polyacrylamide networks. Phys Rev E 71:021504

    Article  CAS  Google Scholar 

  69. Robert J, Pelham J, Wang Y-L (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94:13661–13665

    Article  Google Scholar 

  70. Cameron AR, Frith JE, Cooper-White JJ (2011) The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32:5979–5993

    Article  CAS  PubMed  Google Scholar 

  71. Fuard D, Tzvetkova-Chevolleau T, Decossas S, Tracqui P, Schiavone P (2008) Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron Eng 85:1289–1293

    Article  CAS  Google Scholar 

  72. Fu J, Wang Y-K, Yang MT, Desai RA, Yu X, Liu Z et al (2011) Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods 7:733–739

    Article  CAS  Google Scholar 

  73. van Wachem PB, Beugeling T, Feijen J, Bantjes A, Detmers JP, van Aken WG (1985) Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities. Biomaterials 6:403–408

    Article  PubMed  Google Scholar 

  74. van Wachem PB, Hogt AH, Beugeling T, Feijen J, Bantjes A, Detmers JP et al (1987) Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials 8:323–328

    Article  PubMed  Google Scholar 

  75. Lee JH, Jung HW, Kang I-K, Lee HB (1994) Cell behaviour on polymer surfaces with different functional groups. Biomaterials 15:705–711

    Article  CAS  PubMed  Google Scholar 

  76. Tidwell CD, Ertel SI, Ratner BD, Tarasevich BJ, Atre S, Allara DL (1997) Endothelial cell growth and protein adsorption on terminally functionalized, self-assembled monolayers of alkanethiolates on gold. Langmuir 13:3404–3413

    Article  CAS  Google Scholar 

  77. Xu S-J, Cui F-Z, Yu X-L, Kong X-D (2013) Glioma cell line proliferation controlled by different chemical functional groups in vitro. Front Mater Sci 7:69–75

    Article  Google Scholar 

  78. Hongji Y, Song Z, Jin H, Yanbin Y, Xiumei W, Xiongbiao C et al (2013) Self-assembled monolayers with different chemical group substrates for the study of MCF-7 breast cancer cell line behavior. Biomed Mater 8:035008

    Article  CAS  Google Scholar 

  79. Barrias CC, Martins MCL, Almeida-Porada G, Barbosa MA, Granja PL (2009) The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials 30:307–316

    Article  CAS  PubMed  Google Scholar 

  80. Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28:3074–3082

    Article  CAS  PubMed  Google Scholar 

  81. Faucheux N, Schweiss R, Lützow K, Werner C, Groth T (2004) Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials 25:2721–2730

    Article  CAS  PubMed  Google Scholar 

  82. Webb K, Hlady V, Tresco PA (1998) Relative importance of surface wettability and charged functional groups on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization. J Biomed Mater Res 41:422–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Faucheux N, Tzoneva R, Nagel M-D, Groth T (2006) The dependence of fibrillar adhesions in human fibroblasts on substratum chemistry. Biomaterials 27:234–245

    Article  CAS  PubMed  Google Scholar 

  84. Curran JM, Chen R, Hunt JA (2005) Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces. Biomaterials 26:7057–7067

    Article  CAS  PubMed  Google Scholar 

  85. Ren Y-J, Zhang H, Huang H, Wang X-M, Zhou Z-Y, Cui F-Z et al (2009) In vitro behavior of neural stem cells in response to different chemical functional groups. Biomaterials 30:1036–1044

    Article  CAS  PubMed  Google Scholar 

  86. Britland S, Clark P, Connolly P, Moores G (1992) Micropatterned substratum adhesiveness: a model for morphogenetic cues controlling cell behavior. Exp Cell Res 198:124–129

    Article  CAS  PubMed  Google Scholar 

  87. Scotchford CA, Gilmore CP, Cooper E, Leggett GJ, Downes S (2002) Protein adsorption and human osteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. J Biomed Mater Res 59:84–99

    Article  CAS  PubMed  Google Scholar 

  88. Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33

    Article  CAS  PubMed  Google Scholar 

  89. Arnold M, Cavalcanti-Adam EA, Glass R, Blümmel J, Eck W, Kantlehner M et al (2004) Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 5:383–388

    Article  CAS  PubMed  Google Scholar 

  90. Arnold M, Hirschfeld-Warneken VC, Lohmüller T, Heil P, Blümmel J, Cavalcanti-Adam EA et al (2008) Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett 8:2063–2069

    Article  CAS  PubMed  Google Scholar 

  91. Cavalcanti-Adam EA, Volberg T, Micoulet A, Kessler H, Geiger B, Spatz JP (2007) Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J 92:2964–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang J, Gräter SV, Corbellini F, Rinck S, Bock E, Kemkemer R et al (2009) Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett 9:1111–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Curran JM, Stokes R, Irvine E, Graham D, Amro NA, Sanedrin RG et al (2010) Introducing dip pen nanolithography as a tool for controlling stem cell behaviour: unlocking the potential of the next generation of smart materials in regenerative medicine. Lab Chip 10:1662–1670

    Article  CAS  PubMed  Google Scholar 

  94. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428

    Article  CAS  PubMed  Google Scholar 

  95. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1998) Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog 14:356–363

    Article  CAS  PubMed  Google Scholar 

  96. Lehnert D, Wehrle-Haller B, David C, Weiland U, Ballestrem C, Imhof BA et al (2004) Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J Cell Sci 117:41–52

    Article  CAS  PubMed  Google Scholar 

  97. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  CAS  PubMed  Google Scholar 

  98. Tseng Q, Duchemin-Pelletier E, Deshiere A, Balland M, Guillou H, Filhol O et al (2012) Spatial organization of the extracellular matrix regulates cell–cell junction positioning. Proc Natl Acad Sci 109:1506–1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bailly M, Yan L, Whitesides GM, Condeelis JS, Segall JE (1998) Regulation of protrusion shape and adhesion to the substratum during chemotactic responses of mammalian carcinoma cells. Exp Cell Res 241:285–299

    Article  CAS  PubMed  Google Scholar 

  100. Kumar G, Ho CC, Co CC (2007) Guiding cell migration using one-way micropattern arrays. Adv Mater 19:1084–1090

    Article  CAS  Google Scholar 

  101. Kushiro K, Chang S, Asthagiri AR (2010) Reprogramming directional cell motility by tuning micropattern features and cellular signals. Adv Mater 22:4516–4519

    Article  CAS  PubMed  Google Scholar 

  102. Borghi N, Lowndes M, Maruthamuthu V, Gardel ML, Nelson WJ (2010) Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc Natl Acad Sci 107:13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thery M, Racine V, Pepin A, Piel M, Chen Y, Sibarita J-B et al (2005) The extracellular matrix guides the orientation of the cell division axis. Nat Cell Biol 7:947–953

    Article  CAS  PubMed  Google Scholar 

  104. Kristensen SH, Pedersen GA, Nejsum LN, Sutherland DS (2012) Nanoscale E-cadherin ligand patterns show threshold size for cellular adhesion and adherence junction formation. Nano Lett 12:2129–2133

    Article  CAS  PubMed  Google Scholar 

  105. Malmström J, Christensen B, Jakobsen HP, Lovmand J, Foldbjerg R, Sørensen ES et al (2010) Large area protein patterning reveals nanoscale control of focal adhesion development. Nano Lett 10:686–694

    Article  PubMed  CAS  Google Scholar 

  106. Malmström J, Lovmand J, Kristensen S, Sundh M, Duch M, Sutherland DS (2011) Focal complex maturation and bridging on 200 nm vitronectin but not fibronectin patches reveal different mechanisms of focal adhesion formation. Nano Lett 11:2264–2271

    Article  PubMed  CAS  Google Scholar 

  107. Gautrot JE, Malmström J, Sundh M, Margadant C, Sonnenberg A, Sutherland DS (2014) The nanoscale geometrical maturation of focal adhesions controls stem cell differentiation and mechanotransduction. Nano Lett 14:3945–3952

    Article  CAS  PubMed  Google Scholar 

  108. Giam LR, Massich MD, Hao L, Shin Wong L, Mader CC, Mirkin CA (2012) Scanning probe-enabled nanocombinatorics define the relationship between fibronectin feature size and stem cell fate. Proc Natl Acad Sci 109:4377–4382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Delcassian D, Depoil D, Rudnicka D, Liu M, Davis DM, Dustin ML et al (2013) Nanoscale ligand spacing influences receptor triggering in T cells and NK cells. Nano Lett 13:5608–5614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sekula S, Fuchs J, Weg-Remers S, Nagel P, Schuppler S, Fragala J et al (2008) Multiplexed lipid dip-pen nanolithography on subcellular scales for the templating of functional proteins and cell culture. Small 4:1785–1793

    Article  CAS  PubMed  Google Scholar 

  111. Weiss P (1945) Experiments on cell and axon orientation in vitro: the role of colloidal exudates in tissue organization. J Exp Zool 100:353–386

    Article  CAS  PubMed  Google Scholar 

  112. Curtis AS (2004) Small is beautiful but smaller is the aim: review of a life of research. Eur Cell Mater 8:27–36

    CAS  PubMed  Google Scholar 

  113. Curtis ASG, Varde M (1964) Control of cell behavior: topological factors. J Natl Cancer Inst 33:15–26

    CAS  PubMed  Google Scholar 

  114. Dalby MJ, Gadegaard N, Oreffo ROC (2014) Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat Mater 13:558–569

    Article  CAS  PubMed  Google Scholar 

  115. Lord MS, Foss M, Besenbacher F (2010) Influence of nanoscale surface topography on protein adsorption and cellular response. Nano Today 5:66–78

    Article  CAS  Google Scholar 

  116. Rechendorff K, Hovgaard MB, Foss M, Zhdanov VP, Besenbacher F (2006) Enhancement of protein adsorption induced by surface roughness. Langmuir 22:10885–10888

    Article  CAS  PubMed  Google Scholar 

  117. Lord MS, Cousins BG, Doherty PJ, Whitelock JM, Simmons A, Williams RL et al (2006) The effect of silica nanoparticulate coatings on serum protein adsorption and cellular response. Biomaterials 27:4856–4862

    Article  CAS  PubMed  Google Scholar 

  118. Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128:3939–3945

    Article  CAS  PubMed  Google Scholar 

  119. Sutherland DS, Broberg M, Nygren H, Kasemo B (2001) Influence of nanoscale surface topography and chemistry on the functional behaviour of an adsorbed model macromolecule. Macromol Biosci 1:270–273

    Article  CAS  Google Scholar 

  120. Rechendorff K, Hovgaard MB, Chevallier J, Foss M, Besenbacher F (2005) Tantalum films with well-controlled roughness grown by oblique incidence deposition. Appl Phys Lett 87:073105

    Article  CAS  Google Scholar 

  121. Turner S, Kam L, Isaacson M, Craighead HG, Shain W, Turner J (1997) Cell attachment on silicon nanostructures. J Vac Sci Tech B 15:2848–2854

    Article  CAS  Google Scholar 

  122. Park J, Bauer S, von der Mark K, Schmuki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7:1686–1691

    Article  CAS  PubMed  Google Scholar 

  123. Oh S, Brammer KS, Li YSJ, Teng D, Engler AJ, Chien S et al (2009) Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci 106:2130–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Oh S, Brammer KS, Li YSJ, Teng D, Engler AJ, Chien S et al (2009) Reply to von der Mark et al.: looking further into the effects of nanotube dimension on stem cell fate. Proc Natl Acad Sci 106:E61

    Article  PubMed Central  CAS  Google Scholar 

  125. von der Mark K, Bauer S, Park J, Schmuki P (2009) Another look at “Stem cell fate dictated solely by altered nanotube dimension”. Proc Natl Acad Sci 106:E60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Kulangara K, Leong KW (2009) Substrate topography shapes cell function. Soft Matter 5:4072–4076

    Article  CAS  Google Scholar 

  127. Yang Y, Leong KW (2010) Nanoscale surfacing for regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:478–495

    Article  CAS  PubMed  Google Scholar 

  128. Kolind K, Kraft D, Bøggild T, Duch M, Lovmand J, Pedersen FS et al (2014) Control of proliferation and osteogenic differentiation of human dental-pulp-derived stem cells by distinct surface structures. Acta Biomater 10:641–650

    Article  CAS  PubMed  Google Scholar 

  129. Teo BKK, Wong ST, Lim CK, Kung TYS, Yap CH, Ramagopal Y et al (2013) Nanotopography modulates mechanotransduction of stem cells and induces differentiation through focal adhesion kinase. ACS Nano 7:4785–4798

    Article  CAS  PubMed  Google Scholar 

  130. Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF (2003) Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 116:1881–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R et al (2011) Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater 10:637–644

    Article  CAS  PubMed  Google Scholar 

  132. Cousins BG, Doherty PJ, Williams RL, Fink J, Garvey MJ (2004) The effect of silica nanoparticulate coatings on cellular response. J Mater Sci Mater Med 15:355–359

    Article  CAS  PubMed  Google Scholar 

  133. Liu K, Jiang L (2011) Bio-inspired design of multiscale structures for function integration. Nano Today 6:155–175

    Article  CAS  Google Scholar 

  134. Niu Y, Yu M, Hartono SB, Yang J, Xu H, Zhang H et al (2013) Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Adv Mater 25:6233–6237

    Article  CAS  PubMed  Google Scholar 

  135. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  136. Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32:1005–1012

    Article  CAS  PubMed  Google Scholar 

  137. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of the substrate. Biophys J 79:144–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295:1037–1044

    Article  CAS  Google Scholar 

  139. Lee J, Abdeen AA, Zhang D, Kilian KA (2013) Directing stem cell fate on hydrogel substrates by controlling cell geometry, matrix mechanics and adhesion ligand composition. Biomaterials 34:8140–8148

    Article  CAS  PubMed  Google Scholar 

  140. Hale NA, Yang Y, Rajagopalan P (2010) Cell migration at the interface of a dual chemical-mechanical gradient. ACS Appl Mater Interfaces 2:2317–2324

    Article  CAS  PubMed  Google Scholar 

  141. Kilian KA, Bugarija B, Lahn BT, Mrksich M (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc Natl Acad Sci 107:4872–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hwang Y-S, Chung BG, Ortmann D, Hattori N, Moeller H-C, Khademhosseini A (2009) Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc Natl Acad Sci 106:16978–16983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cranford SW, de Boer J, van Blitterswijk C, Buehler MJ (2013) Materiomics: an -omics approach to biomaterials research. Adv Mater 25:802–824

    Article  CAS  PubMed  Google Scholar 

  144. Anderson DG, Levenberg S, Langer R (2004) Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotech 22:863–866

    Article  CAS  Google Scholar 

  145. Anderson DG, Putnam D, Lavik EB, Mahmood TA, Langer R (2005) Biomaterial microarrays: rapid, microscale screening of polymer–cell interaction. Biomaterials 26:4892–4897

    Article  CAS  PubMed  Google Scholar 

  146. Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI et al (2010) Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 9:768–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lovmand J, Justesen J, Foss M, Lauridsen RH, Lovmand M, Modin C et al (2009) The use of combinatorial topographical libraries for the screening of enhanced osteogenic expression and mineralization. Biomaterials 30:2015–2022

    Article  CAS  PubMed  Google Scholar 

  148. Adler AF, Speidel AT, Christoforou N, Kolind K, Foss M, Leong KW (2011) High-throughput screening of microscale pitted substrate topographies for enhanced nonviral transfection efficiency in primary human fibroblasts. Biomaterials 32:3611–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Baker M (2011) Trying out topographies. Nat Meth 8:900

    Article  Google Scholar 

  150. Unadkat HV, Hulsman M, Cornelissen K, Papenburg BJ, Truckenmüller RK, Carpenter AE et al (2011) An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci 108:16565–16570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Flaim CJ, Chien S, Bhatia SN (2005) An extracellular matrix microarray for probing cellular differentiation. Nat Meth 2:119–125

    Article  CAS  Google Scholar 

  152. Flaim CJ, Teng D, Chien S, Bhatia SN (2008) Combinatorial signaling microenvironments for studying stem cell fate. Stem Cells Dev 17:29–40

    Article  CAS  PubMed  Google Scholar 

  153. Dolatshahi-Pirouz A, Nikkhah M, Gaharwar AK, Hashmi B, Guermani E, Aliabadi H et al (2014) A combinatorial cell-laden gel microarray for inducing osteogenic differentiation of human mesenchymal stem cells. Sci Rep 4:3896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Ranga A, Gobaa S, Okawa Y, Mosiewicz K, Negro A, Lutolf MP (2014) 3D niche microarrays for systems-level analyses of cell fate. Nat Commun 5:4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morten Foss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Ogaki, R., Andersen, O.Z., Foss, M. (2016). Guided Cellular Responses by Surface Cues for Nanomedicine Applications. In: Howard, K., Vorup-Jensen, T., Peer, D. (eds) Nanomedicine. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3634-2_14

Download citation

Publish with us

Policies and ethics