Skip to main content

The Utility of SPECT-CT in Differentiated Thyroid Cancer

  • Chapter
  • First Online:
Thyroid Cancer

Abstract

Single-photon emission computerized tomography (SPECT) in combination with computerized tomography (CT) allows integration of functional and anatomic information, and SPECT-CT is playing an increasingly important role in imaging of differentiated thyroid cancer. This chapter reviews the relevant literature supporting the utility of radioiodine SPECT-CT and its impact on management of patients with differentiated thyroid cancer. Selected images demonstrating the utility of SPECT-CT are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spies WJ, Wojtowicz CH, Spies SM, et al. Value of post-therapy whole body 131I imaging in the evaluation of patients with thyroid carcinoma having undergone high-dose 131I therapy. Clin Nucl Med. 1989;14:892–00.

    Article  Google Scholar 

  2. Simpson WJ, Panzarella T, Carruthers JS, et al. Papillary and follicular thyroid cancer: impact of treatment in 1578 patients. Int J Radiat Oncol Biol Phys. 1998;14:1063–75.

    Article  Google Scholar 

  3. van Sorge-van Boxtel RA, van Eck-Smit BL, Goslings BM. Comparison of serum thyroglobulin, 131I and 201Tl scintigraphy in the prospective follow-up of differentiated thyroid cancer. Nucl Med Commun. 1993;14:365–72.

    Article  Google Scholar 

  4. Lubin E, Mechlis-Frisch S, Zatz S, et al. Serum thyroglobulin and iodine-131 whole body scan in the diagnosis and assessment of treatment for metastatic differentiated thyroid carcinoma. J Nucl Med. 1994;35:257–62.

    CAS  PubMed  Google Scholar 

  5. Sutter CW, Masilungan B, Stadalnik RC. False-positive results of 131I whole body scans in patients with thyroid cancer. Semin Nucl Med. 1995;25:279–82.

    Article  CAS  PubMed  Google Scholar 

  6. Franceschi M, Kusic Z, Franceschi D, et al. Thyroglobulin determination, neck ultrasonography and iodine-131 whole-body scintigraphy in differentiated thyroid carcinoma. J Nucl Med. 1996;37:446–51.

    CAS  PubMed  Google Scholar 

  7. Filesi M, Signore A, Ventroni G, et al. Role of initial iodine-131whole-body scan and serum thyroglobulin in differentiated thyroid carcinoma metastases. J Nucl Med. 1998;39:1542–6.

    CAS  PubMed  Google Scholar 

  8. Lind P, Kohlufurest S. Respective roles of thyroglobulin, radioiodine imaging, and positron emission tomography in assessment of thyroid cancer. Semin Nucl Med. 2006;36:194–205.

    Article  PubMed  Google Scholar 

  9. Lang T, Hasagawa B, Liew S, et al. Description of a prototype emission-transmission computed tomography imaging system. J Nucl Med. 1992;33:1881–7.

    CAS  PubMed  Google Scholar 

  10. The 2007 Recommendations of the International Commission on Radiological Protection, ICRP publication 103. Ann ICRP. 2007;37:1–332.

    Google Scholar 

  11. Mettler F, Huda W, Yoshizumi TT, et al. Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology. 2008;248:254–63.

    Article  PubMed  Google Scholar 

  12. MIRD Dose Estimate Report No. 5 (data gathered in human subjects). J Nucl Med 1975;16:857–60 (25% thyroid uptake).

    Google Scholar 

  13. Wong KK, Zarzhevsky N, Cahill JM, Frey KA, Avram AM. Incremental value of diagnostic 131I SPECT-CT fusion imaging in the evaluation of differentiated thyroid carcinoma. Nucl Med Mol Imaging. 2008;191:1785–94.

    Google Scholar 

  14. Chen L, Luo Q, Shen Y, et al. Incremental value of 131I SPECT-CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med. 2008;49:1952–7.

    Article  PubMed  Google Scholar 

  15. Wong KK, Sisson JC, Koral KF, et al. Staging of differentiated thyroid carcinoma using diagnostic 131I SPECT/CT. Nucl Med Mol Imaging. 2010;195:730–6.

    Google Scholar 

  16. Aide N, Heutte N, Rame JP, et al. Clinical relevance of SPECT-CT of the neck and thorax in postablation 131I scintigraphy for thyroid cancer. J Clin Endocrinol Metab. 2009;94:2075–84.

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt D, Szikszai A, Linke R, Bautz W, et al. Impact of 131I SPECT-spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J Nucl Med. 2009;50:18–23.

    Article  PubMed  Google Scholar 

  18. Ruf J, Lehmkuhl L, Bertram H, et al. Impact of SPECT and integrated low-dose CT after radioiodine therapy on the management of patients with thyroid carcinoma. Nucl Med Commun. 2004;25:1177–82.

    Article  PubMed  Google Scholar 

  19. Tharp K, Israel O, Hausmann J, et al. Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2004;31:1435–42.

    Article  CAS  PubMed  Google Scholar 

  20. Kohlfuerst S, Igerc I, Lobnig M, et al. Post-therapeutic 131I SPECT-CT offers high diagnostic accuracy when the findings on conventional planar imaging are inconclusive and allows a tailored patient treatment regimen. Eur J Nucl Med Mol Imaging. 2009;36:886–93.

    Article  CAS  PubMed  Google Scholar 

  21. Mustafa M, Kuwert T, Weber K, et al. Regional lymph node involvement in T1 papillary thyroid carcinoma: a bicentric prospective SPECT/CT study. Eur J Nucl Med Mol Imaging. 2010;37:1462–6.

    Article  CAS  PubMed  Google Scholar 

  22. Spanu A, Solinas ME, Chessa, et al. 131I SPECT/CT in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. J Nucl Med. 2009;50:184–90.

    Article  PubMed  Google Scholar 

  23. Sgouros G, Frey E, Wahl R, et al. Three dimensional imaging-based radiobiological dosimetry. Semin Nucl Med. 2008;38:321–34.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Prideaux AR, Song H, Hobbs RF, et al. Three-dimensional radiobiologic dosimetry: application of radiobiologic modeling to patient-specific-3dimensional imaging-based internal dosimetry. J Nucl Med. 2007;48:1008–16.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bennewitz C, Kuwert T, Han J, et al. Computer-aided evaluation of the anatomical accuracy of hybrid SPECT/spiral-CT imaging of lesions localized in the neck and upper abdomen. Nucl Med Commun. 2012;33:1153–9.

    Article  PubMed  Google Scholar 

  26. Yamamoto Y, Nishiyama Y, Monden T, et al. Clinical usefulness of fusion of 131I SPECT and CT images in patient with differentiated thyroid carcinoma. J Nucl Med. 2003;44:1905–10.

    PubMed  Google Scholar 

  27. Blum M, Tiu S, Chu M, Goel S, Friedman K. I-131 SPECT/CT elucidates cryptic findings on planar whole-body scans and can reduce needless therapy with iodine-131 in post-thyroidectomy thyroid cancer patients. Thyroid. 2011;21:1235–47.

    Article  PubMed  Google Scholar 

  28. Avram AM, Fig LM, Frey KA, Gross MD, Wong KK. Preablation 131-I scans with SPECT/CT in postoperative thyroid cancer patients: what is the impact on staging? J Clin Endocrinol Metab. 2013;98:1163–71.

    Article  CAS  PubMed  Google Scholar 

  29. Grewal RK, Tuttle RM, Fox J, et al. The effect of post-therapy 131I SPECT/CT on risk classification and management of patients with differentiated thyroid cancer. J Nucl Med. 2010;51:1361–7.

    Article  CAS  PubMed  Google Scholar 

  30. Ciappuccini R, Heutte N, Trzepla G, et al. Postablation 131I scintigraphy with neck and thorax SPECT/CT and stimulated serum thyroglobulin level predict the outcome of patients with differentiated thyroid cancer. Eur J Endocrinol. 2011;164:961–9.

    Article  CAS  PubMed  Google Scholar 

  31. Wang H, Fu HL, Li JN, et al. The role of single-photon emission computed tomography/computed tomography for precise localization of metastases in patients with differentiated thyroid cancer. Clin Imaging. 2009;33:49–54.

    Article  CAS  PubMed  Google Scholar 

  32. Qiu ZL, Xu YH, Song HJ, et al. Localization and identification of parapharyngeal metastases from differentiated thyroid carcinoma by 131I-SPECT/CT. Head Neck. 2011;33:171–7.

    Article  PubMed  Google Scholar 

  33. Maruoka Y, Abe K, Baba S, Isoda T, Sawamoto H, Tanabe Y, Sasaki M, Honda H. Incremental diagnostic value of SPECT/CT with 131I scintigraphy after radioiodine therapy in patients with well-differentiated thyroid carcinoma. Radiology. 2012;265:902–9.

    Article  PubMed  Google Scholar 

  34. Schmidt D, Linke R, Uder M. Five months follow-up of patients with and without iodine-positive lymph node metastases of thyroid carcinoma as disclosed by 131I-SPECT/CT at the first radioablation. Eur J Nucl Med Mol Imaging. 2010;37:699–705.

    Article  PubMed  Google Scholar 

  35. Barwick T, Murray I, Megadmi H, et al. SPECT/CT using 123I in patients with differentiated thyroid cancer: additional value over whole body planar imaging and SPECT. Eur J Endocrinol. 2010;162:1131–9.

    Article  CAS  PubMed  Google Scholar 

  36. Geerlings JAC, van Zuijlen A, Lohmann EM, et al. The value of 131I SPECT in the detection of recurrent differentiated thyroid cancer. Nucl Med Commun. 2010;31:417–22.

    PubMed  Google Scholar 

  37. Alnafisi NS, Driedger AA, Coates G, et al. FDG PET of recurrent or metastatic 131I-negative papillary thyroid carcinoma. J Nucl Med. 2000;41:1010–5.

    CAS  PubMed  Google Scholar 

  38. Fletcher JW, Djubegocuc, Soares HP, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.

    Article  PubMed  Google Scholar 

  39. Oh JR, Byun BH, Hong SP, et al. Comparison of 131I whole body imaging, 131I-SPECT/CT, and 18F-FDG PET/CT in the detection of metastatic thyroid cancer. Eur J Nucl Med Mol Imaging. 2011;38:1459–68.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Van Nostrand MD, FACP, FACNM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kulkarni, K., Atkins, F.B., Van Nostrand, D. (2016). The Utility of SPECT-CT in Differentiated Thyroid Cancer. In: Wartofsky, L., Van Nostrand, D. (eds) Thyroid Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3314-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3314-3_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3312-9

  • Online ISBN: 978-1-4939-3314-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics