Skip to main content

Neural Regulation of Limb Mechanics: Insights from the Organization of Proprioceptive Circuits

  • Chapter
  • First Online:
Neuromechanical Modeling of Posture and Locomotion

Abstract

Sensory feedback arising from muscle spindle receptors and Golgi tendon organs are known to influence limb mechanics during postural and locomotor tasks. The purpose of this chapter is to synthesize data concerning the organization and actions of these proprioceptive pathways, and then to propose how current models can be used to promote understanding of their functional role in regulating whole limb stiffness. Following a historical introduction, the role of length feedback in transforming the mechanical properties of muscles into more spring-like actuators is reviewed. Next, we describe the organization of intermuscular length and force feedback circuits in the context of the mechanical interrelationships of the muscles involved. Finally, we provide a conceptual framework for understanding the role of proprioceptive feedback in the regulation of limb mechanics across a continuum of behaviors, and show how a developing computational model can be used to understand how these pathways are integrated to regulate limb stiffness. We conclude from a qualitative appraisal of the data that intermuscular length feedback reinforces the mechanical relationships between antagonists and between synergistic muscles that cross the same or different joints. Furthermore, inhibitory force feedback is organized to manage the distribution of stiffness across joints as well as intersegmental dynamics due to the inertial properties of the limb segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The musculoskeletal system can be represented as a mechanical network with signals corresponding to the mechanical variables of length and force and their derivatives. These signals become represented in the associated neural circuits of the central nervous system through sensory transduction.

  2. 2.

    In the analysis of proprioceptive feedback for muscles crossing the hip and the knee (Eccles and Lundberg 1958a), actions out of the sagittal plane were acknowledged, but functions of specific muscles were still expressed in terms of flexion and extension. Later work underscored the necessity of incorporating muscular actions in three dimensions (Macpherson 1988b).

References

  • Abelew TA, Miller MD, Cope TC, Nichols TR (2000) Local loss of proprioception results in disruption of interjoint coordination during locomotion in the cat. J Neurophysiol 84:2709–2714

    CAS  PubMed  Google Scholar 

  • Abraham LD, Loeb GE (1985) The distal hindlimb musculature of the cat. Patterns of normal use. Exp Brain Res 58:583–593

    Article  CAS  PubMed  Google Scholar 

  • Bonasera SJ, Nichols TR (1994) Mechanical actions of heterogenic reflexes linking long toe flexors with ankle and knee extensors of the cat hindlimb. J Neurophysiol 71:1096–1110

    CAS  PubMed  Google Scholar 

  • Bonasera SJ, Nichols TR (1996) Mechanical actions of heterogenic reflexes among ankle stabilizers and their interactions with plantarflexors of the cat hindlimb. J Neurophysiol 75:2050–2070

    CAS  PubMed  Google Scholar 

  • Boskov D, Heckman CJ (1996) Motor unit recruitment patterns during reflex compensation of muscle yield investigated by computer simulations. Biol Cybern 75:211–217

    Article  CAS  PubMed  Google Scholar 

  • Brink EE, Suzuki I, Timerick SJ, Wilson VJ (1985) Tonic neck reflex of the decerebrate cat: a role for propriospinal neurons. J Neurophysiol 54:978–987

    CAS  PubMed  Google Scholar 

  • Bullinger KL, Nardelli P, Pinter MJ, Alvarez FJ, Cope TC (2011) Permanent central synaptic disconnection of proprioceptors after nerve injury and regeneration. II. Loss of functional connectivity with motoneurons. J Neurophysiol 106:2471–2485

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunderson N, Bingham J (2015) Better science through predictive modeling: numerical tools for understanding neuromechanical interactions. In: Prilutsky BI, Edwards DH Jr (eds) Neuromechanical modeling of posture and locomotion. Springer, New York (in press)

    Google Scholar 

  • Bunderson NE, Burkholder TJ, Ting LH (2008) Reduction of neuromuscular redundancy for postural force generation using an intrinsic stability criterion. J Biomech 41:1537–1544

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunderson NE, McKay JL, Ting LH, Burkholder TJ (2010) Directional constraint of endpoint force emerges from hindlimb anatomy. J Exp Biol 213:2131–2141

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunderson NE, Bingham JT, Sohn MH, Ting LH, Burkholder TJ (2012) Neuromechanic: a computational platform for simulation and analysis of the neural control of movement. Int J Numer Methods Biomed Eng 28:1015–1027

    Article  Google Scholar 

  • Burkholder TJ, Nichols TR (2000) The mechanical action of proprioceptive length feedback in a model of cat hindlimb. Motor Control 4:201–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burkholder TJ, Nichols TR (2004) Three-dimensional model of the feline hindlimb. J Morphol 261:118–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Caicoya AG, Illert M, Janike R (1999) Monosynaptic Ia pathways at the cat shoulder. J Physiol 518(Pt 3):825–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell KS, Moss RL (2000) A thixotropic effect in contracting rabbit psoas muscle: prior movement reduces the initial tension response to stretch. J Physiol 525(Pt 2):531–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrasco DI, English AW (1999) Mechanical actions of compartments of the cat hamstring muscle, biceps femoris. Prog Brain Res 123:397–403

    Article  CAS  PubMed  Google Scholar 

  • Carrasco DI, Lawrence J 3rd, English AW (1999) Neuromuscular compartments of cat lateral gastrocnemius produce different torques about the ankle joint. Motor Control 3:436–446

    Article  CAS  PubMed  Google Scholar 

  • Chang YH, Auyang AG, Scholz JP, Nichols TR (2009) Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury. J Exp Biol 212:3511–3521

    Article  PubMed  PubMed Central  Google Scholar 

  • Cope TC, Bonasera SJ, Nichols TR (1994) Reinnervated muscles fail to produce stretch reflexes. J Neurophysiol 71:817–820

    CAS  PubMed  Google Scholar 

  • Cui L, Perreault EJ, Maas H, Sandercock TG (2008) Modeling short-range stiffness of feline lower hindlimb muscles. J Biomech 41:1945–1952

    Article  PubMed  PubMed Central  Google Scholar 

  • Daley MA, Usherwood JR, Felix G, Biewener AA (2006) Running over rough terrain: guinea fowl maintain dynamic stability despite a large unexpected change in substrate height. J Exp Biol 209:171–187

    Article  PubMed  Google Scholar 

  • Daley MA, Voloshina A, Biewener AA (2009) The role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guinea fowl. J Physiol 587:2693–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickinson MH, Farley CT, Full RJ, Koehl MA, Kram R, Lehman S (2000) How animals move: an integrative view. Science 288:100–106

    Article  CAS  PubMed  Google Scholar 

  • Donelan JM, Pearson KG (2004) Contribution of force feedback to ankle extensor activity in decerebrate walking cats. J Neurophysiol 92:2093–2104

    Article  CAS  PubMed  Google Scholar 

  • Eccles JC, Eccles RM, Lundberg A (1957a) The convergence of monosynaptic excitatory afferents on to many different species of alpha motoneurones. J Physiol 137:22–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eccles JC, Eccles RM, Lundberg A (1957b) Synaptic actions on motoneurones caused by impulses in Golgi tendon organ afferents. J Physiol 138:227–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eccles RM, Lundberg A (1958a) Integrative pattern of Ia synaptic actions on motoneurones of hip and knee muscles. J Physiol 144:271–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eccles RM, Lundberg A (1958b) Integrative pattern of Ia synaptic actions on motoneurones of hip and knee muscles. J Physiol 144:271–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engberg I, Lundberg A (1969) An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion. Acta Physiol Scand 75:614–630

    Article  CAS  PubMed  Google Scholar 

  • English AW, Weeks OI (1987) An anatomical and functional analysis of cat biceps femoris and semitendinosus muscles. J Morphol 191:161–175

    Article  CAS  PubMed  Google Scholar 

  • Farley CT, Houdijk HH, Van Strien C, Louie M (1998) Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. J Appl Physiol 85:1044–1055

    CAS  PubMed  Google Scholar 

  • Feldman AG, Levin MF (1995) The origin and use of positional frames of reference in motor control. Behav Brain Sci 18:723–806

    Article  Google Scholar 

  • Feldman AG, Orlovsky GN (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Exp Neurol 37:481–494

    Article  CAS  PubMed  Google Scholar 

  • Ferris DP, Farley CT (1997) Interaction of leg stiffness and surfaces stiffness during human hopping. J Appl Physiol (1985) 82:15–22; discussion 13–14

    CAS  Google Scholar 

  • Ferris DP, Louie M, Farley CT (1998) Running in the real world: adjusting leg stiffness for different surfaces. Proc Biol Sci 265:989–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galindo A, Barthelemy J, Ishikawa M, Chavet P, Martin V, Avela J et al (2009) Neuromuscular control in landing from supra-maximal dropping height. J Appl Physiol (1985) 106:539–547

    Article  CAS  Google Scholar 

  • Gordon J, Ghilardi MF, Ghez C (1995) Impairments of reaching movements in patients without proprioception. I. Spatial errors. J Neurophysiol 73:347–360

    CAS  PubMed  Google Scholar 

  • Gottschall JS, Nichols TR (2007) Head pitch affects muscle activity in the decerebrate cat hindlimb during walking. Exp Brain Res 182:131–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Gottschall JS, Nichols TR (2011) Neuromuscular strategies for the transitions between level and hill surfaces during walking. Philos Trans R Soc Lond B Biol Sci 366:1565–1579

    Article  PubMed  PubMed Central  Google Scholar 

  • Granit R (1950) Reflex self-regulation of muscle contraction and autogenetic inhibition. J Neurophysiol 13:351–372

    CAS  PubMed  Google Scholar 

  • Griffiths RI (1991) Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J Physiol 436:219–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grillner S, Udo M (1971) Motor unit activity and stiffness of the contracting muscle fibres in the tonic stretch reflex. Acta Physiol Scand 81:422–424

    Article  CAS  PubMed  Google Scholar 

  • Haftel VK, Bichler EK, Nichols TR, Pinter MJ, Cope TC (2004) Movement reduces the dynamic response of muscle spindle afferents and motoneuron synaptic potentials in rat. J Neurophysiol 91:2164–2171

    Article  PubMed  Google Scholar 

  • Hayes HB, Chang YH, Hochman S (2012) Stance-phase force on the opposite limb dictates swing-phase afferent presynaptic inhibition during locomotion. J Neurophysiol 107:3168–3180

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoffer JA, Loeb GE, Sugano N, Marks WB, O’Donovan MJ, Pratt CA (1987) Cat hindlimb motoneurons during locomotion. III. Functional segregation in sartorius. J Neurophysiol 57:554–562

    CAS  PubMed  Google Scholar 

  • Hoffer JA, Caputi AA, Pose IE, Griffiths RI (1989) Roles of muscle activity and load on the relationship between muscle spindle length and whole muscle length in the freely walking cat. Prog Brain Res 80:75–85; discussion 57–60

    Article  CAS  PubMed  Google Scholar 

  • Honeycutt CF, Nichols TR (2010) The decerebrate cat generates the essential features of the force constraint strategy. J Neurophysiol 103:3266–3273

    Article  PubMed  PubMed Central  Google Scholar 

  • Honeycutt CF, Nichols TR (2014) The mechanical actions of muscles predict the direction of muscle activation during postural perturbations in the cat hindlimb. J Neurophysiol 111(5):900–907

    Article  PubMed  Google Scholar 

  • Honeycutt CF, Gottschall JS, Nichols TR (2009) Electromyographic responses from the hindlimb muscles of the decerebrate cat to horizontal support surface perturbations. J Neurophysiol 101:2751–2761

    Article  PubMed  PubMed Central  Google Scholar 

  • Honeycutt CF, Nardelli P, Cope TC, Nichols TR (2012) Muscle spindle responses to horizontal support surface perturbation in the anesthetized cat: insights into the role of autogenic feedback in whole body postural control. J Neurophysiol 108:1253–1261

    Article  PubMed  PubMed Central  Google Scholar 

  • Houk J (1972a) The phylogeny of muscular control configurations. In: Drischel P, Dettmar P (eds) Biocybernetics, vol 4. Fisher, Jena, pp 125–44

    Google Scholar 

  • Houk JC (1972b) On the significance of various command signals during voluntary control. Brain Res 40:49–58

    Article  CAS  PubMed  Google Scholar 

  • Houk JC (1979) Regulation of stiffness by skeletomotor reflexes. Annu Rev Physiol 41:99–114

    Article  CAS  PubMed  Google Scholar 

  • Houk JC, Rymer WZ, Crago PE (1981) Dependence of dynamic response of spindle receptors on muscle length and velocity. J Neurophysiol 46:143–166

    CAS  PubMed  Google Scholar 

  • Houk JC, Fagg AH, Barto AG (2002) Fractional power damping model of joint motion. In: Latash ML (ed) Structure-function relations in voluntary movements, vol 2. Human Kinetics, Champaign

    Google Scholar 

  • Huyghues-Despointes CM, Cope TC, Nichols TR (2003a) Intrinsic properties and reflex compensation in reinnervated triceps surae muscles of the cat: effect of activation level. J Neurophysiol 90:1537–1546

    Article  PubMed  Google Scholar 

  • Huyghues-Despointes CM, Cope TC, Nichols TR (2003b) Intrinsic properties and reflex compensation in reinnervated triceps surae muscles of the cat: effect of movement history. J Neurophysiol 90:1547–1555

    Article  PubMed  Google Scholar 

  • Hyde LA, Burkholder TJ, Nichols TR (1999) Reflex action of the hamstrings muscles at the feline ankle mediated by the crural fascia. Soc Neurosci Abstr 25:1151

    Google Scholar 

  • Jankowska E, Edgley SA (2010) Functional subdivision of feline spinal interneurons in reflex pathways from group Ib and II muscle afferents; an update. Eur J Neurosci 32:881–893

    Article  PubMed  PubMed Central  Google Scholar 

  • Joyce GC, Rack PM, Westbury DR (1969) The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements. J Physiol 204:461–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirsch RF, Boskov D, Rymer WZ (1994) Muscle stiffness during transient and continuous movements of cat muscle: perturbation characteristics and physiological relevance. IEEE Trans Biomed Eng 41:758–770

    Article  CAS  PubMed  Google Scholar 

  • Konow N, Azizi E, Roberts TJ (2012) Muscle power attenuation by tendon during energy dissipation. Proc Biol Sci 279:1108–1113

    Article  PubMed  Google Scholar 

  • Krouchev N, Kalaska JF, Drew T (2006) Sequential activation of muscle synergies during locomotion in the intact cat as revealed by cluster analysis and direct decomposition. J Neurophysiol 96:1991–2010

    Article  PubMed  Google Scholar 

  • Krutky MA, Trumbower RD, Perreault EJ (2013) Influence of environmental stability on the regulation of end-point impedance during the maintenance of arm posture. J Neurophysiol 109:1045–1054

    Article  PubMed  Google Scholar 

  • LaBella LA, McCrea DA (1990) Evidence for restricted central convergence of cutaneous afferents on an excitatory reflex pathway to medial gastrocnemius motoneurons. J Neurophysiol 64:403–412

    CAS  PubMed  Google Scholar 

  • LaBella LA, Kehler JP, McCrea DA (1989) A differential synaptic input to the motor nuclei of triceps surae from the caudal and lateral cutaneous sural nerves. J Neurophysiol 61:291–301

    CAS  PubMed  Google Scholar 

  • Lafreniere-Roula M, McCrea DA (2005) Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J Neurophysiol 94:1120–1132

    Article  PubMed  Google Scholar 

  • Lan N, Crago PE (1992) A noninvasive technique for in vivo measurement of joint torques of biarticular muscles. J Biomech 25:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Laporte Y, Lloyd DP (1952) Nature and significance of the reflex connections established by large afferent fibers of muscular origin. Am J Physiol 169:609–621

    CAS  PubMed  Google Scholar 

  • Latash ML, Zatsiorsky VM (1993) Joint stiffness: myth or reality? Human Mov Sci 12:653–692

    Article  Google Scholar 

  • Lawrence JH 3rd, Nichols TR (1999a) A three-dimensional biomechanical analysis of the cat ankle joint complex: I. Active and passive postural muscles. J Appl Biomech 15:95–105

    Article  Google Scholar 

  • Lawrence JH 3rd, Nichols TR (1999b) A three-dimensional biomechanical analysis of the cat ankle joint complex: II. Effects of ankle joint orientation on evoked isometric joint torque. J Appl Biomech 15:106–119

    Article  Google Scholar 

  • Lawrence JH 3rd, Nichols TR, English AW (1993) Cat hindlimb muscles exert substantial torques outside the sagittal plane. J Neurophysiol 69:282–285

    PubMed  Google Scholar 

  • Liddell EGT, Sherrington C (1924) Reflexes in response to stretch (Myotatic Reflexes). Proce Roy Soc Lond B, Contain Pap Biol Character 96:212–242

    Article  Google Scholar 

  • Lin CC, Crago PE (2002a) Neural and mechanical contributions to the stretch reflex: a model synthesis. Ann Biomed Eng 30:54–67

    Article  PubMed  Google Scholar 

  • Lin CC, Crago PE (2002b) Structural model of the muscle spindle. Ann Biomed Eng 30:68–83

    Article  CAS  PubMed  Google Scholar 

  • Lloyd DP (1946) Integrative pattern of excitation and inhibition in two-neuron reflex arcs. J Neurophysiol 9:439–444

    CAS  PubMed  Google Scholar 

  • Lyle MA, Valero-Cuevas FJ, Gregor RJ, Powers CM (2013) Control of dynamic foot-ground interactions in male and female soccer athletes: females exhibit reduced dexterity and higher limb stiffness during landing. J Biomech 47(2):512–517

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyle MA, Nichols TR (2014) Variable gradient of intermuscular inhibition as preliminary evidence for spinal mediated modulation of task dependent limb behavior. In: Society for Neuroscience Meeting. Program No. 827.19. Neuroscience Meeting Planner. Washington, DC

    Google Scholar 

  • Maas H, Meijer HJ, Huijing PA (2005) Intermuscular interaction between synergists in rat originates from both intermuscular and extramuscular myofascial force transmission. Cells Tissues Organs 181:38–50

    Article  PubMed  Google Scholar 

  • Maas H, Prilutsky BI, Nichols TR, Gregor RJ (2007) The effects of self-reinnervation of cat medial and lateral gastrocnemius muscles on hindlimb kinematics in slope walking. Exp Brain Res 181:377–393

    Article  PubMed  PubMed Central  Google Scholar 

  • Maas H, Gregor RJ, Hodson-Tole EF, Farrell BJ, Prilutsky BI (2009) Distinct muscle fascicle length changes in feline medial gastrocnemius and soleus muscles during slope walking. J Appl Physiol (1985) 106:1169–1180

    Article  Google Scholar 

  • Macpherson JM (1988a) Strategies that simplify the control of quadrupedal stance. I. Forces at the ground. J Neurophysiol 60:204–217

    CAS  PubMed  Google Scholar 

  • Macpherson JM (1988b) Strategies that simplify the control of quadrupedal stance. II. Electromyographic activity. J Neurophysiol 60:218–231

    CAS  PubMed  Google Scholar 

  • Macpherson JM (1994) Changes in a postural strategy with inter-paw distance. J Neurophysiol 71:931–940

    CAS  PubMed  Google Scholar 

  • Malamud JG, Godt RE, Nichols TR (1996) Relationship between short-range stiffness and yielding in type-identified, chemically skinned muscle fibers from the cat triceps surae muscles. J Neurophysiol 76:2280–2289

    CAS  PubMed  Google Scholar 

  • Marchand AR, Manzoni D, Pompeiano O, Stampacchia G (1987) Effects of stimulation of vestibular and neck receptors on Deiters neurons projecting to the lumbosacral cord. Pflugers Arch 409:13–23

    Article  CAS  PubMed  Google Scholar 

  • Markin SN, Lemay MA, Prilutsky BI, Rybak IA (2012) Motoneuronal and muscle synergies involved in cat hindlimb control during fictive and real locomotion: a comparison study. J Neurophysiol 107:2057–2071

    Article  PubMed  Google Scholar 

  • McDonagh MJ, Duncan A (2002) Interaction of pre-programmed control and natural stretch reflexes in human landing movements. J Physiol 544:985–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinley PA, Smith JL, Gregor RJ (1983) Responses of elbow extensors to landing forces during jump downs in cats. Exp Brain Res 49:218–228

    Article  CAS  PubMed  Google Scholar 

  • Merton PA (1953) Speculations on the servo-control of movement. In: Wolstenhome GEW (ed) The spinal cord. Churchill, London, pp 247–255

    Google Scholar 

  • Monster AW, Chan H (1977) Isometric force production by motor units of extensor digitorum communis muscle in man. J Neurophysiol 40:1432–1443

    CAS  PubMed  Google Scholar 

  • Munson JB, Sypert GW, Zengel JE, Lofton SA, Fleshman JW (1982) Monosynaptic projections of individual spindle group II afferents to type-identified medial gastrocnemius motoneurons in the cat. J Neurophysiol 48:1164–1174

    CAS  PubMed  Google Scholar 

  • Niazi IF, Nichols TR, Rising A, Little L, Mondello S, Howland D (2012) Reorganization of heterogenic inhibitory force feedback between hindlimb extensors after both acute and chronic time points post spinal cord injury. In: Society for Neuroscience Meeting. Program No. 885.16. Neuroscience Meeting Planner. New Orlean, LA

    Google Scholar 

  • Nichols TR (1974) Soleus muscle stiffness and its reflex control[Thesis]. Type, Harvard University.

    Google Scholar 

  • Nichols TR (1989) The organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate cat. J Physiol 410:463–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols TR (1994) A biomechanical perspective on spinal mechanisms of coordinated muscular action: an architecture principle. Acta Anat (Basel) 151:1–13

    Article  CAS  Google Scholar 

  • Nichols TR (1999) Receptor mechanisms underlying heterogenic reflexes among the triceps surae muscles of the cat. J Neurophysiol 81:467–478

    CAS  PubMed  Google Scholar 

  • Nichols TR, Cope TC (2004) Cross-bridge mechanisms underlying the history-dependent properties of muscle spindles and stretch reflexes. Can J Physiol Pharmacol 82:569–576

    Article  CAS  PubMed  Google Scholar 

  • Nichols TR, Houk JC (1976) Improvement in linearity and regulation of stiffness that results from actions of stretch reflex. J Neurophysiol 39:119–142

    CAS  PubMed  Google Scholar 

  • Nichols TR, Koffler-Smulevitz D (1991) Mechanical analysis of heterogenic inhibition between soleus muscle and the pretibial flexors in the cat. J Neurophysiol 66:1139–1155

    CAS  PubMed  Google Scholar 

  • Nichols TR, Ross KT (2009) The implications of force feedback for the lambda model. Adv Exp Med Biol 629:663–679

    Article  PubMed  Google Scholar 

  • Nichols TR, Steeves JD (1986) Resetting of resultant stiffness in ankle flexor and extensor muscles in the decerebrate cat. Exp Brain Res 62:401–410

    Article  CAS  PubMed  Google Scholar 

  • Nichols TR, Lawrence JH 3rd, Bonasera SJ (1993) Control of torque direction by spinal pathways at the cat ankle joint. Exp Brain Res 97:366–371

    Article  CAS  PubMed  Google Scholar 

  • Nichols TR, Cope TC, Abelew TA (1999a) Rapid spinal mechanisms of motor coordination. Exerc Sport Sci Rev 27:255–284

    Article  CAS  PubMed  Google Scholar 

  • Nichols TR, Lin DC, Huyghues-Despointes CM (1999b) The role of musculoskeletal mechanics in motor coordination. Prog Brain Res 123:369–378

    Article  CAS  PubMed  Google Scholar 

  • Nichols TR, Wilmink RJH, Burkholder TJ (2002) The multidimensional and temporal regulation of limb mechanics by spinal circuits. In: Latash ML (ed) Progress in motor control, vol 2. Human Kinetics, Champaign, pp 179–94

    Google Scholar 

  • Nichols TR, Gottschall JS, Tuthill C (2014) The regulation of limb stiffness in the context of locomotor task. In: Levin MF (ed) Progress in motor control IX. Springer, New York, pp. 41–54

    Google Scholar 

  • Nishikawa K, Biewener AA, Aerts P, Ahn AN, Chiel HJ, Daley MA et al (2007) Neuromechanics: an integrative approach for understanding motor control. Integr Comp Biol 47:16–54

    Article  PubMed  Google Scholar 

  • O’Donovan MJ, Pinter MJ, Dum RP, Burke RE (1982) Actions of FDL and FHL muscles in intact cats: functional dissociation between anatomical synergists. J Neurophysiol 47:1126–1143

    CAS  Google Scholar 

  • Pearson KG (1995) Proprioceptive regulation of locomotion. Curr Opin Neurobiol 5:786–791

    Article  CAS  PubMed  Google Scholar 

  • Perreault EJ, Kirsch RF, Crago PE (2004) Multijoint dynamics and postural stability of the human arm. Exp Brain Res 157:507–517

    Article  PubMed  Google Scholar 

  • Perreault EJ, Chen K, Trumbower RD, Lewis G (2008) Interactions with compliant loads alter stretch reflex gains but not intermuscular coordination. J Neurophysiol 99:2101–2113

    Article  PubMed  PubMed Central  Google Scholar 

  • Prilutsky BI, Zatsiorsky VM (1994) Tendon action of two-joint muscles: transfer of mechanical energy between joints during jumping, landing, and running. J Biomech 27:25–34

    Article  CAS  PubMed  Google Scholar 

  • Prilutsky BI, Herzog W, Leonard TR, Allinger TL (1996) Role of the muscle belly and tendon of soleus, gastrocnemius, and plantaris in mechanical energy absorption and generation during cat locomotion. J Biomech 29:417–434

    Article  CAS  PubMed  Google Scholar 

  • Prochazka A, Schofield P, Westerman RA, Ziccone SP (1977) Reflexes in cat ankle muscles after landing from falls. J Physiol 272:705–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Proske U, Morgan DL (1999) Do cross-bridges contribute to the tension during stretch of passive muscle? J Muscle Res Cell Motil 20:433–442

    Article  CAS  PubMed  Google Scholar 

  • Rack PM, Westbury DR (1969) The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J Physiol 204:443–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rack PM, Westbury DR (1974) The short range stiffness of active mammalian muscle and its effect on mechanical properties. J Physiol 240:331–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts TJ, Konow N (2013) How tendons buffer energy dissipation by muscle. Exerc Sport Sci Rev 41:186–193

    Article  PubMed  Google Scholar 

  • Ross KT (2006) Quantitative analysis of feedback during locomotion[Thesis]. Type, Georgia Institute of Technology, Atlanta

    Google Scholar 

  • Ross KT, Nichols TR (2009) Heterogenic feedback between hindlimb extensors in the spontaneously locomoting premammillary cat. J Neurophysiol 101:184–197

    Article  PubMed  Google Scholar 

  • Rossignol S (1996) Neural control of stereotypic limb movements. In: Rowell LB, Shepherd JT (eds) Handbook of physiology, section 12: Exercise: Regulation and integration of multiple systems, vol 12. Oxford, New York

    Google Scholar 

  • Rymer WZ, Hasan Z (1980) Absence of force-feedback regulation in soleus muscle of the decerebrate cat. Brain Res 184:203–209

    Article  CAS  PubMed  Google Scholar 

  • Sainburg RL, Poizner H, Ghez C (1993) Loss of proprioception produces deficits in interjoint coordination. J Neurophysiol 70:2136–2147

    CAS  PubMed  Google Scholar 

  • Sainburg RL, Ghilardi MF, Poizner H, Ghez C (1995) Control of limb dynamics in normal subjects and patients without proprioception. J Neurophysiol 73:820–835

    CAS  PubMed  Google Scholar 

  • Santello M (2005) Review of motor control mechanisms underlying impact absorption from falls. Gait Posture 21:85–94

    Article  PubMed  Google Scholar 

  • Silva PL, Fonseca ST, Turvey MT (2010) Is tensegrity the functional architecture of the equilibrium point hypothesis? Motor Control 14:e35–e40

    Article  Google Scholar 

  • Smith JL, Carlson-Kuhta P (1995) Unexpected motor patterns for hindlimb muscles during slope walking in the cat. J Neurophysiol 74:2211–2215

    CAS  PubMed  Google Scholar 

  • Smith JL, Chung SH, Zernicke RF (1993) Gait-related motor patterns and hindlimb kinetics for the cat trot and gallop. Exp Brain Res 94:308–322

    Article  CAS  PubMed  Google Scholar 

  • Sponberg S, Spence AJ, Mullens CH, Full RJ (2011) A single muscle’s multifunctional control potential of body dynamics for postural control and running. Philos Trans R Soc Lond B Biol Sci 366:1592–1605

    Article  PubMed  PubMed Central  Google Scholar 

  • Stahl VA (2010) Contributions of fascia to force transmission in the cat hindlimb [Thesis]. Type, Georgia Institute of Technology, Atlanta

    Google Scholar 

  • Stauffer EK, Watt DG, Taylor A, Reinking RM, Stuart DG (1976) Analysis of muscle receptor connections by spike-triggered averaging. 2. Spindle group II afferents. J Neurophysiol 39:1393–1402

    CAS  PubMed  Google Scholar 

  • Stein R (1982) What muscle variable (s) does the nervous system control in limb movements. Behav Brain Sci 5:535–577

    Article  Google Scholar 

  • Stevenson AJ, Geertsen SS, Andersen JB, Sinkjaer T, Nielsen JB, Mrachacz-Kersting N (2013) Interlimb communication to the knee flexors during walking in humans. J Physiol 591:4921–4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart DG, Mosher CG, Gerlach RL, Reinking RM (1970) Selective activation of Ia afferents by transient muscle stretch. Exp Brain Res 10:477–487

    CAS  PubMed  Google Scholar 

  • Sypert GW, Fleshman JW, Munson JB (1980) Comparison of monosynaptic actions of medial gastrocnemius group Ia and group II muscle spindle afferents on triceps surae motoneurons. J Neurophysiol 44:726–738

    CAS  PubMed  Google Scholar 

  • Ting LH, Raasch CC, Brown DA, Kautz SA, Zajac FE (1998) Sensorimotor state of the contralateral leg affects ipsilateral muscle coordination of pedaling. J Neurophysiol 80:1341–1351

    CAS  PubMed  Google Scholar 

  • Torres-Oviedo G, Macpherson JM, Ting LH (2006) Muscle synergy organization is robust across a variety of postural perturbations. J Neurophysiol 96:1530–1546

    Article  PubMed  Google Scholar 

  • Tuthill C, Nichols TR (2009) The asymmetric organization of force feedback in the decerebrate cat during varied motor tasks. Soc Neurosci. In: Society for Neuroscience Meeting. program No.658.10. Neuroscience Meeting Planner. Chicago, IL

    Google Scholar 

  • van Ingen Schenau GJ (1994) Proposed action of bi-articular muscles and the design of hindlimbs of bi- and quadrupeds. Human Mov Sci 13:665–681

    Article  Google Scholar 

  • Wilmink RJ, Nichols TR (2003) Distribution of heterogenic reflexes among the quadriceps and triceps surae muscles of the cat hind limb. J Neurophysiol 90:2310–2324

    Article  PubMed  Google Scholar 

  • Young RP, Scott SH, Loeb GE (1993) The distal hindlimb musculature of the cat: multiaxis moment arms at the ankle joint. Exp Brain Res 96:141–151

    Article  CAS  PubMed  Google Scholar 

  • Zajac FE (1993) Muscle coordination of movement: a perspective. J Biomech 26(Suppl 1):109–124

    Article  PubMed  Google Scholar 

  • Zehr EP, Hundza SR, Vasudevan EV (2009) The quadrupedal nature of human bipedal locomotion. Exerc Sport Sci Rev 37:102–108

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants NS20855 and HD 32571 to TRN and 1F32NS080393-01A1 to MAL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Richard Nichols PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nichols, T., Bunderson, N., Lyle, M. (2016). Neural Regulation of Limb Mechanics: Insights from the Organization of Proprioceptive Circuits. In: Prilutsky, B., Edwards, D. (eds) Neuromechanical Modeling of Posture and Locomotion. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3267-2_3

Download citation

Publish with us

Policies and ethics