Skip to main content

Microbiological Aspects of High-Pressure Processing of Food: Inactivation of Microbial Vegetative Cells and Spores

  • Chapter
  • First Online:
Book cover High Pressure Processing of Food

Part of the book series: Food Engineering Series ((FSES))

Abstract

High-pressure processing (HPP) of food utilizes elevated pressures with or without combination of heat to inactivate harmful pathogens and spoilage microorganisms in their vegetative or spore state. Since the treatment reduces thermal impact, pressure-treated products have better organoleptic attributes. The importance of identifying a relevant surrogate organism for high-pressure pasteurization and sterilization studies is highlighted. Process- and product-related factors influencing the antimicrobial efficacy of pressure treatment are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn J, Balasubramaniam VM (2007a) Effects of inoculum level and pressure pulse on the inactivation of Clostridium sporogenes spores by pressure-assisted thermal processing. J Microbiol Biotechnol 17(4):616–623

    Google Scholar 

  • Ahn J, Balasubramaniam VM (2007b) Physiological responses of Bacillus amyloliquefaciens spores to high pressure. J Microbiol Biotechnol 17(3):524–529

    CAS  Google Scholar 

  • Ahn J, Balasubramaniam VM, Yousef AE (2007) Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. Int J Food Microbiol 113:321–329

    Article  CAS  Google Scholar 

  • Alpas H, Kalchayanand N, Bozoglu F, Ray B (2000) Interactions of high hydrostatic pressure, pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensitive strains of foodborne pathogens. Int J Food Microbiol 60:33–42

    Article  Google Scholar 

  • Anon (2000) Kinetics of microbial inactivation for alternative food processing technologies. J Food Sci 65(8): Special Supplement

    Google Scholar 

  • Ananta E, Heinz V, Schlüter O, Knorr D (2001) Kinetic studies on high pressure inactivation of Bacillus stearothermophilus spores suspended in food matrices. Innov Food Sci Emerg Technol 2:261–272

    Article  Google Scholar 

  • Ardia A, Knorr D, Ferrari G, Heinz V (2003) Kinetic studies on combined high-pressure and temperature inactivation of Alicyclobacillus acidoterrestris spores in orange juice. Appl Biotechnol Food Sci Pol 1(3):169–173

    Google Scholar 

  • Balasubramaniam VM, Farkas D (2008) High pressure food processing. Food Sci Technol Int 14(5):413–418

    Article  Google Scholar 

  • Balasubramaniam VM, Ting EY, Stewart CM, Robbins JA (2004) Recommended laboratory practices for conducting high-pressure microbial inactivation experiments. Innov Food Sci Emerg Technol 5:299–306

    Article  CAS  Google Scholar 

  • Balasubramanian S, Balasubramaniam VM (2003) Compression heating influence of pressure transmitting fluids on bacteria inactivation during high pressure processing. Food Res Int 36:661–668

    Article  Google Scholar 

  • Balasubramaniam VM, Park S, Sastry SK (2012) High pressure ohmic thermal sterilization methods and apparatus. US Provisional Patent Application 61/733,608

    Google Scholar 

  • Balci AT, Wilbey RA (1999) High pressure processing of milk—the first 100 years in the development of a new technology. Int J Dairy Technol 52:149–155

    Article  Google Scholar 

  • Benito A, Ventoura G, Casadei M, Robinson T, Mackey B (1999) Variation in resistance of natural isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat and other stresses. Appl Environ Microbiol 65:1564–1569

    CAS  Google Scholar 

  • Black EP, Huppertz T, Fitzgerald GF, Kelly AL (2007a) Baroprotection of vegetative bacteria by milk constituents: a study of Listeria innocua. Int Dairy J 17(2):104–110

    Article  CAS  Google Scholar 

  • Black EP, Linton M, McCall RD, Curran W, Fitzgerald GF, Kelly AL, Patterson MF (2008) The combined effects of high pressure and nisin on germination and inactivation of Bacillus spores in milk. J Appl Microbiol 105:78–87

    Article  CAS  Google Scholar 

  • Black EP, Setlow P, Hocking AD, Stewart CM, Kelly AL, Hoover DG (2007b) Response of spores to high-pressure processing. Compr Rev Food Sci Food Saf 6(4):103–119

    Article  CAS  Google Scholar 

  • Black EP, Stewart CM, Hoover DG (2011) Microbiological aspects of high-pressure food processing. In: Zhang HQ, Barbosa-Cánovas GV, Balasubramaniam VM, Dunne CP, Farkas DF, Yuan JTC (eds) Nonthermal processing technologies for food. Blackwell Publishing Ltd., Chicago, IL, pp 51–71

    Chapter  Google Scholar 

  • Black EP, Wei J, Atluri S, Cortezzo DE, Koziol-Dube K, Hoover DG, Setlow P (2007c) Analysis of factors influencing the rate of germination of spores of Bacillus subtilis by very high pressure. J Appl Microbiol 102:65–76

    Article  CAS  Google Scholar 

  • Bozoglu F, Alpas H, Kaletunc G (2004) Injury recovery of foodborne pathogens in high hydrostatic pressure treated milk during storage. FEMS Immunol Med Microbiol 40:243–247

    Article  CAS  Google Scholar 

  • Buffa M, Guamis B, Royo C, Trujillo AJ (2001) Microbiological changes throughout ripening of goat cheese made from raw, pasteurized and high-pressure-treated milk. Food Microbiol 18:45–51

    Article  Google Scholar 

  • Bull MK, Olivier SA, van Diepenbeek RJ, Kormelink F, Chapman B (2009) Synergistic inactivation of spores of proteolytic Clostridium botulinum strains by high pressure and heat is strain and product dependent. Appl Environ Microbiol 75(2):434–445

    Article  CAS  Google Scholar 

  • Bull MK, Zerdin K, Howe E, Goicoeche G, Paramanandhan P, Stockman R, Sellahewa J, Szabo EA, Johnson RL, Stewart CM (2004) The effect of high pressure processing on the microbial, physical and chemical properties of Valencia and Navel orange juice. Innov Food Sci Emerg Technol 5:135–149

    Article  CAS  Google Scholar 

  • Butz P, Funtenberger S, Haberditzl T, Taischer B (1996) High pressure inactivation of Byssochlamys nivea ascospores and other heat resistant moulds. Lebens Wiss Technol 29:404–410

    Article  CAS  Google Scholar 

  • Carlez A, Rosec J, Richard N, Cheftel J (1993) High pressure inactivation of Citrobacter freundii, Pseudomonas fluorescens and Listeria innocua in inoculated minced beef muscle. Lebens Wiss Technol 26:357–363

    Article  Google Scholar 

  • Casadei MA, Mañas P, Niven G, Needs E, Mackey BM (2002) Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl Environ Microbiol 68(12):5965–5972

    Article  CAS  Google Scholar 

  • Casal V, Gómez R (1999) Effect of high pressure on the viability and enzymatic activity of mesophilic lactic acid bacteria isolated from caprine cheese. J Dairy Sci 82:1092–1098

    Google Scholar 

  • Cerf O, Condron R (2006) Coxiella burnetii and milk pasteurization: an early application of the precautionary principle? Epidemiol Infect 134:946–951

    Article  CAS  Google Scholar 

  • Cheftel J C (1992) Effects of high hydrostatic pressure on food constituents: an overview. High Press Biotechnol 224:195–209

    Google Scholar 

  • Cheftel JC (1995) Review: High-pressure, microbial inactivation and food preservation. Food Sci Technol Int 1(2–3):75–90

    Article  Google Scholar 

  • Chen H, Hoover DG (2003a) Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innov Food Sci Emerg Technol 4:25–34

    Article  Google Scholar 

  • Chen H, Hoover DG (2003b) Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. Innov Food Sci Emerg Technol 4:25–34

    Article  Google Scholar 

  • Chilton P, Isaacs NS, Mañas P, Mackey BM (2001) Biosynthetic requirements for the repair of membrane damage in pressure-treated Escherichia coli. Int J Food Microbiol 71:101–104

    Article  CAS  Google Scholar 

  • Cook D (2003) Sensitivity of Vibrio species in phosphate buffered saline and in oysters to high-pressure processing. J Food Prot 66:2276–2282

    CAS  Google Scholar 

  • Crawford YJ, Murano EA, Olsen DG, Shenoy K (1996) Use of high hydrostatic pressure and irradiation to eliminate Clostridium sporogenes in chicken breast. J Food Prot 59:711–715

    Google Scholar 

  • Daryaei H, Balasubramaniam VM (2012) Microbial decontamination of food by high pressure processing. In: Demirci A, Ngadi M (eds) Microbial decontamination in the food industry: novel methods and applications. Woodhead Publishing Ltd., Cambridge, UK, pp 370–406

    Chapter  Google Scholar 

  • Daryaei H, Balasubramaniam VM, Legan JD (2013) Kinetics of Bacillus cereus spore inactivation in cooked rice by combined pressure-heat treatment. J Food Prot 76(4):616–623

    Article  Google Scholar 

  • Daryaei H, Coventry J, Versteeg C, Sherkat F (2010) Combined pH and high hydrostatic pressure effects on Lactococcus starter cultures and Candida spoilage yeasts in a fermented milk test system during cold storage. Food Microbiol 27:1051–1056

    Article  CAS  Google Scholar 

  • Daryaei H, Coventry MJ, Versteeg C, Sherkat F (2006) Effects of high-pressure treatment on shelf life and quality of fresh lactic curd cheese. Aust J Dairy Technol 61(2):186–188

    CAS  Google Scholar 

  • Daryaei H, Coventry MJ, Versteeg C, Sherkat F (2008) Effect of high pressure treatment on starter bacteria and spoilage yeasts in fresh lactic curd cheese of bovine milk. Innov Food Sci Emerg Technol 9(2):201–205

    Article  CAS  Google Scholar 

  • Dogan C, Erkmen O (2004) High pressure inactivation kinetics of Listeria monocytogenes inactivation in broth, milk, and peach and orange juices. J Food Eng 62:47–52

    Article  Google Scholar 

  • Drake MA, Harrison SL, Asplund M, Barbosa-Cánovas GV, Swanson BG (1997) High pressure treatment of milk and effects on microbiological and sensory quality of cheddar cheese. J Food Sci 62(4):843–845

    Article  CAS  Google Scholar 

  • Earnshaw RG (1992) High pressure as a cell sensitiser: new opportunities to increase the efficacy of preservation processes. In: Balny C, Hayashi R, Heremans K, Masson P (eds) High pressure and biotechnology. Colloque INSERM/John Libbey Eurotext Ltd., London, pp 261–267

    Google Scholar 

  • Erkmen O, Karatas S (1997) Effect of high hydrostatic pressure on Staphylococcus aureus in milk. J Food Eng 33:257–262

    Article  Google Scholar 

  • Farkas DF, Hoover DG (2000) High pressure processing. J Food Sci 65(8):47–64, Special Supplement: Kinetics of microbial inactivation for alternative food processing technologies

    Article  Google Scholar 

  • Gänzle MG, Vogel RF (2001) On-line fluorescence determination of pressure mediated outer membrane damage in Escherichia coli. Syst Appl Microbiol 24:477–485

    Article  Google Scholar 

  • García-Graells C, Masschalck B, Michiels CW (1999) Inactivation of Escherichia coli in milk by high-hydrostatic-pressure treatment in combination with antimicrobial peptides. J Food Prot 62(11):1248–1254

    Google Scholar 

  • Gross M, Lehle K, Jaenicke R, Nierhaus KH (1993) Pressure-induced dissociation of ribosomes and elongation cycle intermediates: stabilizing conditions and identification of the most sensitive functional state. Eur J Biochem 218:463–468

    Article  CAS  Google Scholar 

  • Hayakawa I, Kanno T, Yoshiyama K, Fujio Y (1994) Oscillatory compared with continuous high pressure sterilization on Bacillus stearothermophilus spores. J Food Sci 59(1):164–167

    Article  CAS  Google Scholar 

  • Heldman DR, Newsome RL (2003) Kinetic models for microbial survival during processing. Food Technol 57(8):40–46

    Google Scholar 

  • Hoover DG, Metrick C, Papineau AM, Farkas DF, Knorr D (1989) Biological effects of high hydrostatic pressure on food microorganisms. Food Technol 43(3):99–107

    Google Scholar 

  • Hugas M, Garriga M, Monfort JM (2002) New mild technologies in meat processing: high pressure as a model technology. Meat Sci 62:359–371

    Article  CAS  Google Scholar 

  • Institute of Food Technologists (IFT) News (2009) Institute of Food Technologists announces 2009 Innovation Award winners. Available from: http://www.ift.org/Newsroom/News-Releases/2009/June/07/2009-Innovation-Award-Winners.aspx. Accessed 10 July 2013

  • Islam S, Inoue A, Igura N, Shimoda M, Hayakawa I (2006) Inactivation of Bacillus spores by the combination of moderate heat and low hydrostatic pressure in ketchup and potage. Int J Food Microbiol 107(2):124–130

    Article  Google Scholar 

  • Juneja VK (2000) Thermal inactivation of microorganisms. In: Juneja VK, Sofos JN (eds) Control of foodborne microorganisms. Marcel Dekker, New York, pp 13–52

    Google Scholar 

  • Juneja VK, Eblen BS, Ransom GM (2001) Thermal inactivation of Salmonella spp. in chicken broth, beef, pork, turkey, and chicken: determination of D- and z-values. J Food Sci 66:146–152

    Article  CAS  Google Scholar 

  • Knorr D (1993) Effects of high-hydrostatic-pressure processes on food safety and quality. Food Technol 47(6):156–161

    Google Scholar 

  • Knorr D (1994) Hydrostatic pressure treatment of food: microbiology. In: Gould GW (ed) New methods of food preservation. Blackie Academic and Professional, London, pp 159–175

    Google Scholar 

  • Kobori H, Sato M, Tameike A, Hamada K, Shimada S, Osumi M (1995) Ultrastructural effects of pressure stress to the nucleus in Saccharomyces cerevisiae: a study by immunoelectron microscopy using frozen thin sections. FEMS Microbiol Lett 132:253–258

    Article  CAS  Google Scholar 

  • Koutchma T, Guo B, Patazca E, Parisi B (2005) High pressure-high temperature sterilization: from kinetic analysis to process verification. J Food Process Eng 28(6):610–629

    Article  Google Scholar 

  • Landau J (1967) Induction, transcription and translation in Escherichia coli: a hydrostatic pressure study. Biochim Biophys Acta 149:506–512

    Article  CAS  Google Scholar 

  • Linton M, McClements JMJ, Patterson MF (2001) Inactivation of pathogenic Escherichia coli in skimmed milk using high hydrostatic pressure. Innov Food Sci Emerg Technol 2:99–104

    Article  Google Scholar 

  • Linton M, Patterson MF (2000) High pressure processing of foods for microbiological safety and quality: a short review. Acta Microbiol Immunol Hung 47(2/3):175–182

    Article  CAS  Google Scholar 

  • Ludwig H, Schreck C (1997) The inactivation of vegetative bacteria by pressure. In: Heremans K (ed) High pressure research in the biosciences and biotechnology. Leuven University Press, Leuven, pp 221–224

    Google Scholar 

  • Mackey BM (2000) Injured bacteria. In: Lund BM, Baird-Parker TC, Gould GW (eds) The microbiological safety and quality of foods, vol I. Aspen Publishers, Inc., Gaithersburg, pp 315–341

    Google Scholar 

  • Mackey BM, Forestière K, Isaacs N (1995) Factors affecting the resistance of Listeria monocytogenes to high hydrostatic pressure. Food Biotechnol 9:1–11

    Article  CAS  Google Scholar 

  • Mañas P, Mackey BM (2004) Morphological and physiological changes induced by high hydrostatic pressure in exponential- and stationary-phase cells of Escherichia coli: relationship with cell death. Appl Environ Microbiol 70(3):1545–1554

    Article  CAS  Google Scholar 

  • Mañas P, Pagán R (2005) Microbial inactivation by new technologies of food preservation. J Appl Microbiol 98:1387–1399

    Article  Google Scholar 

  • Margosch D, Ehrmann MA, Gänzle MG, Vogel RF (2004a) Comparison of pressure and heat resistance of Clostridium botulinum and other endospores in mashed carrots. J Food Prot 67(11):2530–2537

    Google Scholar 

  • Margosch D, Gänzle MG, Ehrmann MA, Vogel RF (2004b) Pressure inactivation of Bacillus endospores. Appl Environ Microbiol 70(12):7321–7328

    Article  CAS  Google Scholar 

  • Margosch D, Ehrmann, MA, Buckow, R, Heinz V, Vogel, RF, Gänzle, MG (2006) High-pressure mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature. Appl Environ Microbiol 72(5):3476–3481

    Google Scholar 

  • McClements JMJ, Patterson MF, Linton M (2001) The effect of growth stage and growth temperature on high hydrostatic pressure inactivation of some psychrotrophic bacteria in milk. J Food Prot 64(4):514–522

    Google Scholar 

  • Metrick C, Hoover DG, Farkas DF (1989) Effects of high hydrostatic pressure on heat-resistant and heat-sensitive strains of Salmonella. J Food Sci 54(6):1547–1549

    Article  Google Scholar 

  • Mills G, Earnshaw R, Patterson MF (1998) Effects of high hydrostatic pressure on Clostridium sporogenes spores. Lett Appl Microbiol 26(3):227–230

    Article  CAS  Google Scholar 

  • Molina-Höppner A, Doster W, Vogel RF, Gänzle MG (2004) Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high pressure treatments. Appl Environ Microbiol 70(4):2013–2020

    Article  CAS  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  Google Scholar 

  • Mussa DM, Ramaswamy HS (1997) Ultra high pressure pasteurization of milk: kinetics of microbial destruction and changes in physico-chemical characteristics. Lebensm Wiss Technol 30:551–557

    Article  CAS  Google Scholar 

  • National Advisory Committee on Microbiological Criteria for Foods (NACMCF) (2010) Parameters for determining inoculated pack/challenge study protocols. J Food Prot 73(1):140–202

    Google Scholar 

  • National Advisory Committee on Microbiological Criteria for Foods (NACMCF) (2006) Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. J Food Prot 69(5):1190–1216

    Google Scholar 

  • Nguyen LT, Balasubramaniam VM, Ratphitagsanti W. (2013). Estimation of accumulated lethality under pressure-assisted thermal processing. Food Bioprocess Technol 7:633–44

    Google Scholar 

  • Ogawa H, Fukuhisa K, Kubo Y, Fukumoto H (1990) Pressure inactivation of yeasts, molds, and pectinesterase in Satsuma mandarin juice: effects of juice concentration, pH, and organic acids, and comparison with heat sanitation. Agric Biol Chem 54(5):1219–1225

    Article  CAS  Google Scholar 

  • Olivier SA, Bull MK, Stone G, van Diepenbeek RJ, Kormelink F, Jacops L, Chapman B (2011) Strong and consistently synergistic inactivation of spores of spoilage-associated Bacillus and Geobacillus spp. by high pressure and heat compared with inactivation by heat alone. Appl Environ Microbiol 77(7):2317–2324

    Article  CAS  Google Scholar 

  • Osumi M, Yamada N, Sato M, Kobori H, Shimada S, Hayashi R (1992) Pressure effects on yeast cells ultrastructure: change in the ultrastructure and cytoskeleton of the dimorphic yeast Candida tropicalis. In: Balny C, Hayashi R, Heremans K, Masson P (eds) High pressure and biotechnology. Colloque INSERM/John Libbey Eurotext Ltd., London, pp 9–18

    Google Scholar 

  • Oxen P, Knorr D (1993) Baroprotective effects of high solute concentrations against inactivation of Rhodotorula rubra. Lebensm Wiss Technol 26:220–223

    Article  Google Scholar 

  • Paidhungat M, Setlow B, Daniels WB, Hoover D, Papafragkou E, Setlow P (2002) Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Appl Environ Microbiol 68:3172–3175

    Article  CAS  Google Scholar 

  • Palou E, López Malo A, Barbosa-Cánovas GV, Welti Chanes J, Swanson BG (1997) Combined effect of high hydrostatic pressure and water activity on Zygosaccharomyces bailii inhibition. Lett Appl Microbiol 24:417–420

    Google Scholar 

  • Park SW, Sohn KH, Shin JH, Lee HJ (2001) High hydrostatic pressure inactivation of Lactobacillus viridescens and its effects on ultrastructure of cells. Int J Food Sci Technol 36:775–781

    Article  CAS  Google Scholar 

  • Park SH, Balasubramaniam VM, Sastry SK, Lee J (2013) Pressure–ohmic–thermal sterilization: A feasible approach for the inactivation of Bacillus amyloliquefaciens and Geobacillus stearothermophilus spores. Innov Food Sci Emerg 19:115–23

    Google Scholar 

  • Park SH, Balasubramaniam VM, Sastry SK (2014) Quality of shelf-stable low-acid vegetables processed using pressure-ohmic-thermal sterilization. LWT-Food Sci Technol 57:243–252

    Article  CAS  Google Scholar 

  • Patterson M (1999) High-pressure treatment of foods. In: Robertson RK, Batt A, Patel PD (eds) The encyclopedia of food microbiology. Academic, London, UK, pp 1059–1065

    Chapter  Google Scholar 

  • Patterson MF (2005) Microbiology of pressure-treated foods. J Appl Microbiol 98:1400–1409

    Article  CAS  Google Scholar 

  • Patterson MF, Kilpatrick DJ (1998) The combined effect of high hydrostatic pressure and mild heat on inactivation of pathogens in milk and poultry. J Food Prot 61(4):432–436

    CAS  Google Scholar 

  • Patterson MF, Quinn M, Simpson R, Gilmour A (1995) Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods. J Food Prot 58(5):524–529

    Google Scholar 

  • Peleg M, Cole MB (1998) Reinterpretation of microbial survival curves. Crit Rev Food Sci 38(5):353–380

    Article  CAS  Google Scholar 

  • Rajan S, Ahn J, Balasubramaniam VM, Yousef AE (2006a) Combined pressure-thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince. J Food Prot 69(4):853–860

    CAS  Google Scholar 

  • Rajan S, Pandrangi S, Balasubramaniam VM, Yousef AE (2006b) Inactivation of Bacillus stearothermophilus spores in egg patties by pressure-assisted thermal processing. LWT-Food Sci Technol 39(8):844–851

    Article  CAS  Google Scholar 

  • Rasanayagam V, Balasubramaniam VM, Ting E, Sizer CE, Bush C, Anderson C (2003) Compression heating of selected fatty food materials during high-pressure processing. J Food Sci 68(1):254–259

    Article  CAS  Google Scholar 

  • Raso J, Calderón ML, Góngora M, Barbosa-Cánovas GV, Swanson BG (1998a) Inactivation of Zygosaccharomyces bailii in fruit juices by heat, high hydrostatic pressure and pulsed electric fields. J Food Sci 63:1042–1044

    Article  CAS  Google Scholar 

  • Raso J, Góngora-Nieto MM, Barbosa-Cánovas GV, Swanson BG (1998b) Influence of several environmental factors on the initiation of germination and inactivation of Bacillus cereus by high hydrostatic pressure. Int J Food Microbiol 44(1–2):125–132

    Article  CAS  Google Scholar 

  • Rastogi NK, Raghavarao KSMS, Balasubramaniam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci Nutr 47(1):69–112

    Article  CAS  Google Scholar 

  • Ratphitagsanti W, Ahn J, Balasubramaniam VM, Yousef AE (2009) Influence of pressurization rate and pressure pulsing on the inactivation of bacterial spores during pressure-assisted thermal processing. J Food Prot 72(4):775–782

    Google Scholar 

  • Ratphitagsanti W, De Lamo-Castellvi S, Balasubramaniam VM, Yousef AE (2010) Efficacy of pressure-assisted thermal processing, in combination with organic acids, against Bacillus amyloliquefaciens spores suspended in deionized water and carrot puree. J Food Sci 75(1):M46–M52

    Article  CAS  Google Scholar 

  • Reddy NR, Solomon HM, Tezloff RC, Rhodehamel EJ (2003) Inactivation of Clostridium botulinum type A spores by high pressure processing at elevated temperatures. J Food Prot 66:1402–1407

    CAS  Google Scholar 

  • Reddy NR, Tetzloff RC, Solomon HM, Larkin JW (2006) Inactivation of Clostridium botulinum nonproteolytic type B spores by high pressure processing at moderate to elevated high temperatures. Innov Food Sci Emerg Technol 7:169–175

    Article  CAS  Google Scholar 

  • Reddy NR, Marshall KM, Morrissey TR, Loeza V, Patazca E, Skinner GE, Krishnamurthy K, Larkin JW (2013) Combined high pressure and thermal processing on inactivation of type A and proteolytic type B spores of Clostridium botulinum. J Food Prot 76(8):1384–1392

    Article  CAS  Google Scholar 

  • Roberts CM, Hoover DG (1996) Sensitivity of Bacillus coagulans spores to combinations of high hydrostatic pressure, heat, acidity and nisin. J Appl Bacteriol 81:363–368

    CAS  Google Scholar 

  • Scurrah KJ, Robertson RE, Craven HM, Pearce LE, Szabo EA (2006) Inactivation of Bacillus spores in reconstituted skim milk by combined high pressure and heat treatment. J Appl Microbiol 101(1):172–180

    Article  CAS  Google Scholar 

  • Shearer AEH, Dunne CP, Sikes A, Hoover DG (2000) Bacterial spore inhibition and inactivation in foods by pressure, chemical preservatives and mild heat. J Food Prot 63:1503–1510

    CAS  Google Scholar 

  • Shigehisa T, Ohmori T, Saito A, Taji S, Hayashi R (1991) Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products. Int J Food Microbiol 12:207–216

    Article  CAS  Google Scholar 

  • Simpson RK, Gilmour A (1997) The effect of high hydrostatic pressure on Listeria monocytogenes in phosphate-buffered saline and model food systems. J Appl Microbiol 83:181–188

    Article  CAS  Google Scholar 

  • Smelt JPPM (1998) Recent advances in the microbiology of high pressure processing. Trends Food Sci Technol 9:152–158

    Article  CAS  Google Scholar 

  • Smelt JPPM, Hellemons JC, Wouters PC, van Gerwen SJC (2002) Physiological and mathematical aspects in setting criteria for decontamination of foods by physical means. Int J Food Microbiol 78:57–77

    Article  Google Scholar 

  • Sonoike K, Setoyama T, Kuma Y, Kobayashi S (1992) Effect of pressure and temperature on the death rate of Lactobacillus casei and Escherichia coli. In: Balny C, Hayashi R, Heremans K, Masson P (eds) High pressure and biotechnology. Colloque INSERM/John Libbey Eurotext Ltd., London, pp 297–301

    Google Scholar 

  • Solomon EB, Hoover DG (2004) Inactivation of Campylobacter jejuni by high hydrostatic pressure. Lett Appl Microbiol 38:505–509

    Article  CAS  Google Scholar 

  • Stewart CM, Dunne CP, Sikes A, Hoover DG (2000) Sensitivity of spores of Bacillus subtilis and Clostridium sporogenes PA 3679 to combinations of high hydrostatic pressure and other processing parameters. Innov Food Sci Emerg Technol 1(1):49–56

    Article  CAS  Google Scholar 

  • Stewart CM, Jewett FF, Dunne CP, Hoover DG (1997) Effect of concurrent high hydrostatic pressure, acidity and heat on the injury and destruction of Listeria monocytogenes. J Food Saf 17:23–26

    Article  Google Scholar 

  • Styles MF, Hoover DG, Farkas DF (1991) Response of Listeria monocytogenes and Vibrio parahaemolyticus to high hydrostatic pressure. J Food Sci 56(5):1404–1407

    Article  Google Scholar 

  • Takahashi K, Ishii H, Ishikawa H (1993) Sterilization of bacteria and yeast by hydrostatic pressurization at low temperature: effect of temperature, pH and the concentration of proteins, carbohydrates and lipids. In: Hayashi R (ed) High pressure bioscience and food science. San-ei Publishing Co., Kyoto, Japan, pp 244–249

    Google Scholar 

  • Tay A, Shellhammer TH, Yousef AE, Chism GW (2003) Pressure death and tailing behavior of Listeria monocytogenes strains having different barotolerances. J Food Prot 66(11):2057–2061

    Google Scholar 

  • Ting E, Balasubramaniam VM, Raghubeer E (2002) Determining thermal effects in high-pressure processing. Food Technol 56(2):31–35

    Google Scholar 

  • Torres JA, Velazquez G (2005) Commercial opportunities and research challenges in the high pressure processing of foods. J Food Eng 67:95–112

    Article  Google Scholar 

  • Trujillo AJ, Royo B, Guamis B, Ferragut V (1999) Influence of pressurization on goat milk and cheese composition and yield. Milchwissenschaft 54:197–199

    CAS  Google Scholar 

  • Ulmer HM, Gänzle MG, Vogel RF (2000) Effects of high pressure on survival and metabolic activity of Lactobacillus plantarum TMW1.460. Appl Environ Microbiol 66(9):3966–3973

    Article  CAS  Google Scholar 

  • Van Opstal I, Bagamboula CF, Vanmuysen SCM, Wuytack EY, Michiels CW (2004) Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments. Int J Food Microbiol 92(2):227–234

    Article  Google Scholar 

  • Wan J (2014) High pressure processing for inactivation of Clostridium botulinum spores for low-acid foods. Presented at 2014 International Nonthermal Processing Workshop and Short Course. The Ohio State University, Columbus, OH, Oct 21–24

    Google Scholar 

  • Wesche AM, Gurtler JB, Marks BP, Ryser ET (2009) Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J Food Prot 72(5):1121–1138

    CAS  Google Scholar 

  • Wouters PC, Glaasker E, Smelt JPPM (1998) Effects of high pressure on inactivation kinetics and events related to proton efflux in Lactobacillus plantarum. Appl Environ Microbiol 64(2):509–514

    CAS  Google Scholar 

  • Wuytack EY, Michiels CW (2001) A study on the effects of high pressure and heat on Bacillus subtilis spores at low pH. Int J Food Microbiol 64(3):333–341

    Article  CAS  Google Scholar 

  • Wuytack EY, Soons J, Poschet E, Michiels CW (2000) Comparative study of pressure- and nutrient-induced germination of Bacillus subtilis spores. Appl Environ Microbiol 66(1):257–261

    Article  CAS  Google Scholar 

Download references

Acknowledgments

References to commercial products or trade names are made with the understanding that no endorsement or discrimination by the Ohio State University is implied. Financial support from the USDA National Institute for Food and Agriculture HATCH project OHO01323, Ohio Agricultural Development Corporation (OARDC), Center for Advanced Processing and Packaging Studies, and the food industry is gratefully acknowledged. References to commercial products or trade names are made with the understanding that no endorsement or discrimination by the Ohio State University is implied.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Balasubramaniam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Daryaei, H., Yousef, A.E., Balasubramaniam, V.M. (2016). Microbiological Aspects of High-Pressure Processing of Food: Inactivation of Microbial Vegetative Cells and Spores. In: Balasubramaniam, V., Barbosa-Cánovas, G., Lelieveld, H. (eds) High Pressure Processing of Food. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3234-4_14

Download citation

Publish with us

Policies and ethics