Skip to main content

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 3214 Accesses

Abstract

The extraction of nucleic acids from soil and environmental samples allows scientists the opportunity to discern the microbial community irrespective of viability and cultivability. General nucleic acid extraction and purification approaches are discussed as well as their limitations. Soil type and humic acid content are among many factors that can affect the processing approach. The environmental sample collection, extraction, and purification protocol developed for a low-population density cleanroom environment is discussed as a specific example of environmental sample processing. This practical application of DNA purification techniques were used to assess microbial diversity and abundance in spacecraft assembly cleanrooms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olsen RA, Bakken LR (1987) Microbial. Ecology 13(1):59–74

    CAS  Google Scholar 

  2. Janssen PH et al (2002) Appl Environ Microbiol 68(5):2391–2396

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bloem J et al (1995) Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl Environ Microbiol 61(3):926–936

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Mou X et al (2005) Flow-cytometric cell sorting and subsequent molecular analyses for culture-independent identification of bacterioplankton involved in dimethylsulfoniopropionate transformations. Appl Environ Microbiol 71(3):1405–1416

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Winding A et al (1994) Viability of indigenous soil bacteria assayed by respiratory activity and growth. Appl Environ Microbiol 60(8):2869–2875

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Eloe EA et al (2011) Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ Microbiol Rep 3(4):449–458

    Article  PubMed  Google Scholar 

  7. Ozawa T, Yamaguchi M (1986) Fractionation and estimation of particle-attached and unattached Bradyrhizobium japonicum strains in soils. Appl Environ Microbiol 52(4):911–914

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Matheson CD et al (2010) Assessing PCR inhibition from humic substances. Open Enzym Inhib J 3. p. 38–45

    Google Scholar 

  9. Opel KL, Chung D, McCord BR (2010) A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci 55(1):25–33

    Article  CAS  PubMed  Google Scholar 

  10. Sutlovic D et al (2008) Interaction of humic acids with human DNA: proposed mechanisms and kinetics. Electrophoresis 29(7):1467–1472

    Article  CAS  PubMed  Google Scholar 

  11. Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 59:2657–2665

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol 58(8):2657–2665

    Google Scholar 

  13. von Wintzingerode F et al (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21(3):213

    Article  Google Scholar 

  14. LaMontagne MG et al (2002) Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microial community analysis. J Microbiol Methods 49:255–264

    Article  CAS  PubMed  Google Scholar 

  15. Leff LG et al (1995) Comparison of methods of DNA extraction from stream sediments. Appl Environ Microbiol 61:1141–1143

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Robe P et al (2003) Eur J Soil Biol 39:183–190

    Article  CAS  Google Scholar 

  17. Lindahl V, Bakken LR (1995) FEMS Microbiol Ecol 16:135

    Article  CAS  Google Scholar 

  18. Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63(10):3741–3751

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Bakken LR, Olsen RA (1989) DNA-content of soil bacteria of different cell size. Soil Biol Biochem 21:789

    Article  Google Scholar 

  20. Christiansen H, Bakken LR, Olsen RA (1993) FEMS Microbiol Ecol 102:129

    Article  Google Scholar 

  21. Schneegurt MA (2003) Direct extraction of DNA from soils for studies in microbial ecology. Curr Issues Mol Biol 5:1–8

    CAS  PubMed  Google Scholar 

  22. Zhou J et al (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Kwan K et al (2011) Evaluation of procedures for the collection, processing, and analysis of biomolecules from low-biomass surface. Appl Environ Microbiol 77(9):2943–2953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bargoma E et al (2013) Differential recovery of phylogenetically disparate microbes from spacecraft-qualified metal surfaces. Astrobiology 13(2):189–202

    Article  CAS  PubMed  Google Scholar 

  25. La Duc MT et al (2009) Comparative analysis of methods for the purification of DNA from low-biomass samples based on total yield and conserved microbial diversity. J Rapid Meth Autom Microbiol 17(3):350–368

    Article  Google Scholar 

  26. Ogram A et al (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7:57–66

    Article  CAS  Google Scholar 

  27. Tien CC et al (1999) Methods for DNA extraction from various soils: a comparison. J Appl Microbiol 86:937–943

    Article  CAS  Google Scholar 

  28. Bakken LR, Lindahl V (1995) Recovery of bacterial cells from soil. In: Van Elsas JD, Trevors JT (eds) Nucleic acids in the environment: methods and applications. Springer, Heidelberg, Germany, pp 9–27

    Chapter  Google Scholar 

  29. Tsai YL, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57:1070–1074

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Jacobsen CS, Rasmussen OF (1992) Development and application of a new method to extract bacterial DNA from soil based on separation of bacteria from soil with cation-exchange resin. Appl Environ Microbiol 58:2458–2462

    PubMed Central  CAS  PubMed  Google Scholar 

  31. More MI et al (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60:1572–1580

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Alvarez AJ et al (1994) Use of solidphase PCR for enhanced detection of airborne microorganisms. Appl Environ Microbiol 60:374–376

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Alvarez AJ et al (1995) PCR for bioaerosol monitoring: sensitivity and environmental interference. Appl Environ Microbiol 61:3639–3644

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Bej AK et al (1991) Polymerase chain reaction-gene probe detection of microorganisms by using filter-concentrated samples. Appl Environ Microbiol 57:3529–3534

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Herrick JB et al (1993) Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria. Appl Environ Microbiol 59:687–694

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Johnson DW et al (1995) Development of a PCR protocol for sensitive detection of Cryptosporidium oocysts in water samples. Appl Environ Microbiol 61:3849–3855

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Mayer CL, Palmer CJ (1996) Evaluation of PCR, nested PCR, and fluorescent antibodies for detection of Giardia and Cryptosporidium species in wastewater. Appl Environ Microbiol 62:2081

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Moran MA et al (1993) Direct extraction and purification of rRNA for ecological studies. Appl Environ Microbiol 59:915–918

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research reported in this manuscript was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moogega Cooper Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cooper, M., Stam, C. (2016). Nucleic Acid Purification from Soil and Environmental Sources. In: Micic, M. (eds) Sample Preparation Techniques for Soil, Plant, and Animal Samples. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3185-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3185-9_21

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3184-2

  • Online ISBN: 978-1-4939-3185-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics