Skip to main content

The “Clickable” Method for Oligonucleotide Immobilization Onto Azide-Functionalized Microarrays

  • Protocol
Microarray Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1368))

Abstract

The DNA microarray technique was supposed to help identifying and analyzing the expression level of tens of thousands of genes in the whole genome. But there is a serious problem concerning fabrication of the microarrays by chemical synthesis, such as specific and efficient linking of probes to a solid support. Therefore, we reckon that applying “click” chemistry to covalently anchor oligonucleotides on chemically modified supports may help construct microarrays in applications such as gene identification. Silanization of the glass support with organofunctional silane makes it possible to link azide groups on glass surface and the nucleic acid probe that is equipped with a pentynyl group. This is followed by direct spotting of the nucleic acid on the azide-modified glass support in the presence of copper ions, and this is a frequently applied method of “click” chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang W (2004) 2nd ed. Wiley-Liss, New York, p 106

    Google Scholar 

  2. Simon R (2003) 2nd ed. New York, p 37–40

    Google Scholar 

  3. Blalock EMA (2003) Kluwer Academic, New York, p 15

    Google Scholar 

  4. Baldi P (2002) 2nd ed. Cambridge University Press, p 117

    Google Scholar 

  5. Hardiman G (2003) The Nuts and Bolts Series. Independent Publishers Group

    Google Scholar 

  6. Angenendt P, Glokler J, Sobek J, Lehrach H, Cahill DJ (2003) Next generation of protein microarray support materials: evaluation for protein and antibody microarray applications. J Chromatogr A 1009:97–104

    Article  CAS  PubMed  Google Scholar 

  7. Beaucage SL (2001) Strategies in the preparation of DNA oligonucleotide arrays for diagnostic applications. Curr Med Chem 8:1213–1244

    Article  CAS  PubMed  Google Scholar 

  8. Grajkowski A, Cieslak J, Chmielewski MK, Marchan V, Phillips LR, Wilk A, Beaucage SL (2003) Conceptual “heat-driven” approach to the synthesis of DNA oligonucleotides on microarrays therapeutic oligonucleotides. Ann N Y Acad Sci 1002:1–11

    Article  CAS  PubMed  Google Scholar 

  9. Schaeferling M, Schiller S, Paul H, Kruschina M (2002) Application of self-assembly techniques in the design of biocompatible protein microarray surfaces. Electrophoresis 23:3097–3105

    Article  CAS  PubMed  Google Scholar 

  10. Venkatasubbarao S (2004) Microarrays: status and prospects. Trends Biotechnol 22:630–637

    Article  CAS  PubMed  Google Scholar 

  11. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) “Dip-pen” nanolithography. Science 283:661–663

    Article  CAS  PubMed  Google Scholar 

  12. Kocalka P, El-Sagheer AH, Brown T (2008) Rapid and efficient DNA strand cross-linking by click chemistry. Chem Bio Chem 9:1280–1285

    Article  CAS  PubMed  Google Scholar 

  13. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021

    Article  CAS  Google Scholar 

  14. Lutz JF (2007) 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew Chem Int Ed 46:1018–1025

    Article  CAS  Google Scholar 

  15. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8:1128–1137

    Article  CAS  PubMed  Google Scholar 

  16. Rozkiewicz DI, Janczewski D, Verboom W, Ravoo BJ, Reinhoudt DN (2006) “Click” chemistry by microcontact printing. Angew Chem Int Ed 45:5292–5296

    Article  CAS  Google Scholar 

  17. El-Sagheer AH, Brown T (2010) Click chemistry with DNA. Chem Soc Rev 39:1388–1405

    Article  CAS  PubMed  Google Scholar 

  18. Chen L, Rengifo HR, Grigoras C, Li X, Li Z, Ju J, Koberstein JT (2008) Spin-on end-functional diblock copolymers for quantitative DNA immobilization. Biomacromolecules 9:2345–2352

    Article  CAS  PubMed  Google Scholar 

  19. Tornes CW, Christensen C, Meldal M (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem 67:3057–3064

    Article  Google Scholar 

  20. Brase S, Gil C, Knepper K, Zimmermann V (2005) Organic azides: an exploding diversity of a unique class of compounds. Angew Chem Int Ed 44:5518–5240

    Google Scholar 

  21. Jewetta JC, Bertozzi CR (2010) Cu-free click cycloaddition reactions in chemical biology. Chem Soc Rev 39:1272–1279

    Article  Google Scholar 

  22. Rozkiewicz DI, Gierlich J, Burley G, Gutsmiedl K, Carell TR, Bart J (2007) Transfer printing of DNA by “click” chemistry. ChemBioChem 16:1997–2002

    Article  Google Scholar 

  23. Jawalekar AM, Meeuwenoord N, Cremers JGO, Overkleeft HS, van der Marel GA, Rutjes FPJT, van Delft FL (2008) Conjugation of nucleosides and oligonucleotides by [3 + 2] cycloaddition. J Org Chem 73:287–290

    Article  CAS  PubMed  Google Scholar 

  24. Seela F, Sirivolu VR (2007) Nucleosides and oligonucleotides with diynyl alkyne-azide ‘click’ cycloaddition. Helv Chim Acta 90:535–552

    Article  CAS  Google Scholar 

  25. Gramlich PME, Warncke S, Gierlich J, Carell T (2008) Click-click-click: single to triple modification of DNA. Angew Chem Int Ed 47:3442–3444

    Article  CAS  Google Scholar 

  26. Nakane M, Ichikawa S, Matsuda A (2008) Triazole-linked dumbbell oligodeoxynucleotides with NF-κB binding ability as potential decoy molecules. J Org Chem 73:1842–1851

    Article  CAS  PubMed  Google Scholar 

  27. Qing G, Xiong H, Seela F, Sun T (2010) Spatially controlled DNA nanopatterns by “click” chemistry using oligonucleotides with different anchoring sites. J Am Chem Soc 43:15228–32

    Article  Google Scholar 

  28. Lietard J, Meyer A, Vasseur JJ, Morvan F (2008) New strategies for cyclization and bicyclization of oligonucleotides by click chemistry assisted by microwaves. J Org Chem 73:191–200

    Article  CAS  PubMed  Google Scholar 

  29. Seo TS, Bai X, Ruparel H, Li Z, Turro NJ, Ju J (2004) Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry. PNAS 15:5488–93

    Article  Google Scholar 

  30. Fujino T, Yamazaki N, Guillot-Nieckowski M (2009) Convergent synthesis of oligomers of triazole-linked DNA analogue (TLDNA) in solution phase. Tetrahedron Lett 50:4101–4103

    Article  CAS  Google Scholar 

  31. Geci I, Filichev VV, Pedersen EB (2007) Stabilization of parallel triplexes by twisted intercalating nucleic acids (TINAs) incorporating 1,2,3-triazole units and prepared by microwave-accelerated click chemistry. Chem Eur J 13:6379–6386

    Article  CAS  PubMed  Google Scholar 

  32. Uszczyńska B, Ratajczak T, Frydrych E, Maciejewski H, Figlarowicz M, Markiewicz WT, Chmielewski MK (2012) Application of click chemistry to the production of DNA microarrays. Lab Chip 12:1151–1156

    Article  PubMed  Google Scholar 

  33. Buder W, Karl A (1983) US Patent No. 3,705,911

    Google Scholar 

  34. Keogh MJ (1985) US Patent No. 3,697,551

    Google Scholar 

  35. Dow Corning (1971) GB Patent No. 1,377,214

    Google Scholar 

  36. Haensch C, Hoeppener S, Schubert SU (2008) Self-assembled nanoscale architecture of TiO2 and application for dye-sensitized solar cells. Nanotechnology 19:1–7

    Article  Google Scholar 

  37. Mader HS, Link M, Achatz DE, Uhlmann K, Li X, Wolfbeis OS (2010) Surface-modified upconverting microparticles and nanoparticles for use in click chemistries. Chem Eur J 16:5416–5424

    Article  CAS  PubMed  Google Scholar 

  38. Caruthers MH, Barone AD, Beaucage SL, Dodds DR, Fisher EF, McBride LJ, Matteucci M, Stabinsky Z, Tang JY (1987) Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method. Methods Enzymol 154:287–313

    Article  CAS  PubMed  Google Scholar 

  39. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  40. Pourceau G, Meyer A, Vasseur JJ, Morvan F (2009) Azide solid support for 3′-conjugation of oligonucleotides and their circularization by click chemistry. J Org Chem 74:6837–6842

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the European Regional Development Fund within the Innovative Economy Programme [Grant No. POIG.01.03.01-30-045].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin K. Chmielewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ratajczak, T., Uszczyńska, B., Frydrych-Tomczak, E., Chmielewski, M.K. (2016). The “Clickable” Method for Oligonucleotide Immobilization Onto Azide-Functionalized Microarrays. In: Li, P., Sedighi, A., Wang, L. (eds) Microarray Technology. Methods in Molecular Biology, vol 1368. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3136-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3136-1_3

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3135-4

  • Online ISBN: 978-1-4939-3136-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics