Skip to main content

Nanomedicine and Infection

  • Protocol
Nanomaterials in Pharmacology

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

  • 1817 Accesses

Abstract

Nanomedicine is the medical application of nanotechnology and related study to the prevention and treatment of disease in the human body. In recent years, significant effort has been directed to develop nanotechnology for drug delivery devices since it offers a suitable means of delivering small-molecule drugs, as well as biomacromolecules such as proteins, peptides, or oligonucleotides by either localized or targeted delivery to cells and tissues of interest. Until now, lipid-, polymer-, or nano-/microparticle-based drug delivery systems (DDS) have been developed to improve the efficacy and reduce the systemic toxicity of a wide range of drugs. Several DDS formulations of anticancer drugs, antifungal drugs, and vaccines are approved for clinical use. In this chapter, we will mainly focus on the clinical use of DDS on therapy and prevention of infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19:311–330

    Article  CAS  PubMed  Google Scholar 

  2. Singh S (2010) Nanomedicine-nanoscale drugs and delivery systems. J Nanosci Nanotechnol 10:7906–7918

    Article  CAS  PubMed  Google Scholar 

  3. Duncan R, Gaspar R (2011) Nanomedicine(s) under the microscope. Mol Pharm 8:2101–2141

    Article  CAS  PubMed  Google Scholar 

  4. Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13:592–605

    Article  CAS  PubMed  Google Scholar 

  5. Sosnik A, Carcaboso AM (2014) Nanomedicines in the future of pediatric therapy. Adv Drug Deliv Rev 73C:140–161

    Article  Google Scholar 

  6. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58:1532–1555

    Article  CAS  PubMed  Google Scholar 

  7. Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9:615–627

    Article  CAS  PubMed  Google Scholar 

  8. Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G (2013) Nanotechnology in cancer therapy. J Drug Target 21:904–913

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Nishiyama N, Kataoka K (2006) Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function. Adv Polym Sci 193:67–101

    Article  CAS  Google Scholar 

  10. Doshi N, Mitragotri S (2009) Designer biomaterials for nanomedicine. Adv Funct Mater 19:3843–3854

    Article  CAS  Google Scholar 

  11. Musyanovych A, Landfester K (2014) Polymer micro- and nanocapsules as biological carriers with multifunctional properties. Macromol Biosci 14:458–477

    Article  CAS  PubMed  Google Scholar 

  12. Greenwald RB, Choe YH, McGuire J, Conover CD (2003) Effective drug delivery by PEGylated drug conjugates. Adv Drug Deliv Rev 55:217–250

    Article  CAS  PubMed  Google Scholar 

  13. Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–221

    Article  CAS  PubMed  Google Scholar 

  14. Parveen S, Sahoo SK (2006) Nanomedicine: clinical applications of polyethylene glycol conjugated proteins and drugs. Clin Pharmacokinet 45:965–988

    Article  CAS  PubMed  Google Scholar 

  15. van der Meel R, Vehmeijer LJ, Kok RJ, Storm G, van Gaal EV (2013) Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv Drug Deliv Rev 65:1284–1298

    Article  PubMed  Google Scholar 

  16. Desai N (2012) Challenges in development of nanoparticle-based therapeutics. AAPS J 14:282–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Slingerland M, Guchelaar HJ, Gelderblom H (2012) Liposomal drug formulations in cancer therapy: 15 years along the road. Drug Discov Today 17:160–166

    Article  CAS  PubMed  Google Scholar 

  18. Gibbs WJ, Drew RH, Perfect JR (2005) Liposomal amphotericin B: clinical experience and perspectives. Expert Rev Anti Infect Ther 3:167–181

    Article  CAS  PubMed  Google Scholar 

  19. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102

    Article  PubMed Central  PubMed  Google Scholar 

  20. Petersen AL, Hansen AE, Gabizon A, Andresen TL (2012) Liposome imaging agents in personalized medicine. Adv Drug Deliv Rev 64:1417–1435

    Article  CAS  PubMed  Google Scholar 

  21. Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev 65:36–48

    Article  PubMed  Google Scholar 

  22. Wong-Beringer A, Jacobs RA, Guglielmo BJ (1998) Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis 27:603–618

    Article  CAS  PubMed  Google Scholar 

  23. Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S (2008) Amphotericin B formulations and drug targeting. J Pharm Sci 97:2405–2425

    Article  CAS  PubMed  Google Scholar 

  24. Adler-moore JP, Proffitt RT (1993) Development, characterization, efficacy and mode of action of AmBisome, a unilamellar liposomal formulation of amphotericin B. J Liposome Res 3:429–450

    Article  CAS  Google Scholar 

  25. Boswell GW, Buell D, Bekersky I (1998) Am Bisome (liposomal amphotericin B): a comparative review. J Clin Pharmacol 38:583–592

    Article  CAS  PubMed  Google Scholar 

  26. Egger SS, Meier S, Leu C, Christen S, Gratwohl A, Krahenbuhl S, Haschke M (2010) Drug interactions and adverse events associated with antimycotic drugs used for invasive aspergillosis in hematopoietic SCT. Bone Marrow Transplant 45:1197–1203

    Article  CAS  PubMed  Google Scholar 

  27. Nucci ML, Shorr R, Abuchowski A (1991) The therapeutic value of poly(ethylene glycol)-modified proteins. Adv Drug Deliv Rev 6:133–151

    Article  CAS  Google Scholar 

  28. Abuchowski A, McCoy TJR, Palczuk NC, van Es T, Davis FF (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 252:3582–3586

    CAS  PubMed  Google Scholar 

  29. Fishburn CS (2008) The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J Pharm Sci 97:4167–4183

    Article  CAS  PubMed  Google Scholar 

  30. Joralemon MJ, McRae S, Emrick T (2010) PEGylated polymers for medicine: from conjugation to self-assembled systems. Chem Commun 46:1377–1393

    Article  CAS  Google Scholar 

  31. Vllasaliu D, Fowler R, Stolnik S (2014) PEGylated nanomedicines: recent progress and remaining concerns. Expert Opin Drug Deliv 11:139–154

    Article  CAS  PubMed  Google Scholar 

  32. Grace MJ, Cutler DL, Bordens RW (2005) Pegylated IFNs for chronic hepatitis C: an update. Expert Opin Drug Deliv 2:219–226

    Article  CAS  PubMed  Google Scholar 

  33. Kozlowski A, Harris JM (2001) Improvements in protein PEGylation: pegylated interferons for treatment of hepatitis C. J Control Release 72:217–224

    Article  CAS  PubMed  Google Scholar 

  34. Luxon BA, Grace M, Brassard D, Bordens R (2002) Pegylated interferons for the treatment of chronic hepatitis C infection. Clin Ther 24:1363–1383

    Article  CAS  PubMed  Google Scholar 

  35. Wang YS, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF (2002) Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv Drug Deliv Rev 54:547–570

    Article  CAS  PubMed  Google Scholar 

  36. Tsubota A, Fujise K, Namiki Y, Tada N (2011) Peginterferon and ribavirin treatment for hepatitis C virus infection. World J Gastroenterol 17(4):419–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Baumann A, Tuerck D, Prabhu S, Dickmann L, Sims J (2014) Pharmacokinetics, metabolism and distribution of PEGs and PEGylated proteins: quo vadis? Drug Discov Today 19:1623–1631

    Article  CAS  PubMed  Google Scholar 

  38. Singh M, O’Hagan DT (1999) Advances in vaccine adjuvants. Nat Biotechnol 17:1075–1081

    Article  CAS  PubMed  Google Scholar 

  39. Singh M, O’Hagan DT (2002) Recent advances in vaccine adjuvants. Pharm Res 19:715–728

    Article  CAS  PubMed  Google Scholar 

  40. Peek LJ, Middaugh CR, Berkland C (2008) Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 60:915–928

    Article  CAS  PubMed  Google Scholar 

  41. Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA (2010) Polymeric particles in vaccine delivery. Curr Opin Microbiol 13:106–112

    Article  CAS  PubMed  Google Scholar 

  42. De Koker S, Lambrecht BN, Willart MA, van Kooyk Y, Grooten J, Vervaet C, Remon JP, De Geest BG (2011) Designing polymeric particles for antigen delivery. Chem Soc Rev 40:320–339

    Article  PubMed  Google Scholar 

  43. O’Hagan DT, Valiante NM (2003) Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2:727–735

    Article  PubMed  Google Scholar 

  44. Reddy ST, Swartz MA, Hubbell JA (2006) Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol 27:573–579

    Article  CAS  PubMed  Google Scholar 

  45. Klippstein R, Pozo D (2010) Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies. Nanomedicine 6:523–529

    Article  CAS  PubMed  Google Scholar 

  46. Salvador A, Igartua M, Hernández RM, Pedraz JL (2011) An overview on the field of micro- and nanotechnologies for synthetic peptide-based vaccines. J Drug Deliv 2011:181646

    Article  PubMed Central  PubMed  Google Scholar 

  47. Ishii KJ, Akira S (2007) Toll or toll-free adjuvant path toward the optimal vaccine development. J Clin Immunol 27:363–371

    Article  CAS  PubMed  Google Scholar 

  48. Duthie MS, Windish HP, Fox CB, Reed SG (2011) Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 239:178–196

    Article  CAS  PubMed  Google Scholar 

  49. Steinhagen F, Kinjo T, Bode C, Klinman DM (2011) TLR-based immune adjuvants. Vaccine 29:3341–3355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9:287–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Gupta RK (1998) Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev 32:155–172

    Article  CAS  PubMed  Google Scholar 

  52. Brewer JM (2006) (How) do aluminium adjuvants work? Immunol Lett 102:10–15

    Article  CAS  PubMed  Google Scholar 

  53. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126

    Article  CAS  PubMed  Google Scholar 

  54. Franchi L, Núñez G (2008) The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur J Immunol 38:2085–2089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Reed SG, Orr MT, Fox CB (2013) Key roles of adjuvants in modern vaccines. Nat Med 19:1597–1608

    Article  CAS  PubMed  Google Scholar 

  56. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Marichal T, Ohata K, Bedoret D, Mesnil C, Sabatel C, Kobiyama K, Lekeux P, Coban C, Akira S, Ishii KJ, Bureau F, Desmet CJ (2011) DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med 17:996–1002

    Article  CAS  PubMed  Google Scholar 

  58. Didierlaurent AM, Morel S, Lockman L, Giannini SL, Bisteau M, Carlsen H, Kielland A, Vosters O, Vanderheyde N, Schiavetti F, Larocque D, Van Mechelen M, Garçon N (2009) AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. Immunology 183:6186–6197

    Article  CAS  Google Scholar 

  59. Mutwiri G, Gerdts V, van Drunen Littel-van den Hurk S, Auray G, Eng N, Garlapati S, Babiuk LA, Potter A (2011) Combination adjuvants: the next generation of adjuvants? Expert Rev Vaccines 10:95–107

    Article  CAS  PubMed  Google Scholar 

  60. Calabro S, Tritto E, Pezzotti A, Taccone M, Muzzi A, Bertholet S, De Gregorio E, O'Hagan DT, Baudner B, Seubert A (2013) The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine 31:3363–3369

    Article  CAS  PubMed  Google Scholar 

  61. Pellegrini M, Nicolay U, Lindert K, Groth N, Della Cioppa G (2009) MF59-adjuvanted versus non-adjuvanted influenza vaccines: integrated analysis from a large safety database. Vaccine 27:6959–6965

    Article  CAS  PubMed  Google Scholar 

  62. O’Hagan DT, Ott GS, De Gregorio E, Seubert A (2012) The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine 30:4341–4348

    Article  PubMed  Google Scholar 

  63. Dupuis M, McDonald DM, Ott G (2000) Distribution of adjuvant MF59 and antigen gD2 after intramuscular injection in mice. Vaccine 18:434–439

    Article  Google Scholar 

  64. Dupuis M, Murphy TJ, Higgins D, Ugozzoli M, van Nest G, Ott G, McDonald DM (1998) Dendritic cells internalize vaccine adjuvant after intramuscular injection. Cell Immunol 186:18–27

    Article  CAS  PubMed  Google Scholar 

  65. Seubert A, Monaci E, Pizza M, O’Hagan DT, Wack A (2008) The adjuvants aluminum hydroxide and MF59 induce monocyte and granulocyte chemoattractants and enhance monocyte differentiation toward dendritic cells. J Immunol 180:5402–5412

    Article  CAS  PubMed  Google Scholar 

  66. Tritto E, Mosca F, De Gregorio E (2009) Mechanism of action of licensed vaccine adjuvants. Vaccine 27:3331–3334

    Article  CAS  PubMed  Google Scholar 

  67. Lambrecht BN, Kool M, Willart MA, Hammad H (2009) Mechanism of action of clinically approved adjuvants. Curr Opin Immunol 21:23–29

    Article  CAS  PubMed  Google Scholar 

  68. El Sahly H (2010) MF59TM as a vaccine adjuvant: a review of safety and immunogenicity. Expert Rev Vaccines 9:1135–1141

    Article  PubMed  Google Scholar 

  69. Garçon N, Vaughn DW, Didierlaurent AM (2012) Development and evaluation of AS03, an adjuvant system containing α-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines 11:349–366

    Article  PubMed  Google Scholar 

  70. Baras B, Stittelaar KJ, Simon JH, Thoolen RJ, Mossman SP, Pistoor FH, van Amerongen G, Wettendorff MA, Hanon E, Osterhaus AD (2008) Cross-protection against lethal H5N1 challenge in ferrets with an adjuvanted pandemic influenza vaccine. PLoS One 3, e1401

    Article  PubMed Central  PubMed  Google Scholar 

  71. Vogel FR, Caillet C, Kusters IC, Haensler J (2009) Emulsion-based adjuvants for influenza vaccines. Expert Rev Vaccines 8:483–492

    Article  CAS  PubMed  Google Scholar 

  72. Dey AK, Srivastava IK (2011) Novel adjuvants and delivery systems for enhancing immune responses induced by immunogens. Expert Rev Vaccines 10:227–251

    Article  CAS  PubMed  Google Scholar 

  73. Mamo T, Poland GA (2012) Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine 30:6609–6611

    Article  CAS  PubMed  Google Scholar 

  74. Gregory AE, Titball R, Williamson D (2013) Vaccine delivery using nanoparticles. Front Cell Infect Microbiol 3:13

    Article  PubMed Central  PubMed  Google Scholar 

  75. Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J Control Release 125:193–209

    Article  CAS  PubMed  Google Scholar 

  76. Akagi T, Wang X, Uto T, Baba M, Akashi M (2007) Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Biomaterials 28:3427–3436

    Article  CAS  PubMed  Google Scholar 

  77. Akagi T, Baba M, Akashi M (2007) Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: potential applications. Polymer 48:6729–6747

    Article  CAS  Google Scholar 

  78. Akagi T, Baba M, Akashi M (2012) Biodegradable nanoparticles as vaccine adjuvants and delivery systems: regulation of immune responses by nanoparticle-based vaccine. Adv Polymer Sci 247:31–64

    Article  CAS  Google Scholar 

  79. Kim H, Akagi T, Akashi M (2009) Preparation of size tunable amphiphilic poly(amino acid) nanoparticles. Macromol Biosci 9:842–848

    Article  CAS  PubMed  Google Scholar 

  80. Kim H, Uto T, Akagi T, Baba M, Akashi M (2010) Amphiphilic poly(amino acid) nanoparticles induce size-dependent dendritic cell maturation. Adv Funct Mater 20:3925–3931

    Article  CAS  Google Scholar 

  81. Uto T, Wang X, Sato K, Haraguchi M, Akagi T, Akashi M, Baba M (2007) Targeting of antigen to dendritic cells with poly(γ-glutamic acid) nanoparticles induce antigen-specific humoral and cellular immunity. J Immunol 178:2979–2986

    Article  CAS  PubMed  Google Scholar 

  82. Broos S, Lundberg K, Akagi T, Kadowaki K, Akashi M, Greiff L, Borrebaeck CAK, Lindstedt M (2010) Immunomodulatory nanoparticles as adjuvants and allergen-delivery system to human dendritic cells: Implications for specific immunotherapy. Vaccine 28:5075–5085

    Article  CAS  PubMed  Google Scholar 

  83. Uto T, Akagi T, Yoshinaga K, Toyama M, Akashi M, Baba M (2011) The induction of innate and adaptive immunity by biodegradable poly(γ-glutamic acid) nanoparticles via a TLR4 and MyD88 signaling pathway. Biomaterials 32:5206–5212

    Article  CAS  PubMed  Google Scholar 

  84. Shima F, Uto T, Akagi T, Baba M, Akashi M (2013) Size effect of amphiphilic poly(γ-glutamic acid) nanoparticles on cellular uptake and maturation of dendritic cells in vivo. Acta Biomater 9:8910–8920

    Article  Google Scholar 

  85. Okamoto S, Matsuura M, Akagi T, Akashi M, Tanimoto T, Ishikawa T, Takahashi M, Yamanishi K, Mori Y (2009) Poly(γ-glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice. Vaccine 27:5896–5905

    Article  CAS  PubMed  Google Scholar 

  86. Okamoto S, Matsuoka S, Takenaka N, Haredy A, Tanimoto T, Gomi Y, Ishikawa T, Akagi T, Akashi M, Okuno Y, Mori Y, Yamanishi K (2012) Intranasal immunization with formalin-inactivated human influenza A whole-virion vaccine alone or split-virion vaccine with mucosal adjuvants show similar cross-protection. Clin Vaccine Immunol 19:979–990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Yan Y, Such GK, Johnston AP, Best JP, Caruso F (2012) Engineering particles for therapeutic delivery: prospects and challenges. ACS Nano 6:3663–3669

    Article  CAS  PubMed  Google Scholar 

  88. Kanchan V, Panda AK (2007) Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 28:5344–5357

    Article  CAS  PubMed  Google Scholar 

  89. Champion JA, Mitragotri S (2006) Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 103:4930–4934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Moyano DF, Goldsmith M, Solfiell DJ, Milo DL, Miranda OR, Peer D, Rotello VM (2012) Nanoparticle hydrophobicity dictates immune response. J Am Chem Soc 134:3965–3967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Akashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Akagi, T., Akashi, M. (2016). Nanomedicine and Infection. In: Lu, ZR., Sakuma, S. (eds) Nanomaterials in Pharmacology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3121-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3121-7_22

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3120-0

  • Online ISBN: 978-1-4939-3121-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics