Skip to main content

Synthesis, Structure, and Properties of Graphene and Graphene Oxide

  • Chapter
  • First Online:
Graphene for Transparent Conductors

Abstract

To develop large-area graphene-based TCFs, one of the foremost challenges is to produce sufficient amounts of high-quality graphene sheets. The techniques developed for synthesizing graphene including mechanical cleavage, epitaxial growth, chemical vapor deposition (CVD), total organic synthesis, and chemical method are compared. The electrical, thermal, optical, mechanical properties of graphene and graphene oxide, as well as the common tools for characterization of graphene and its derivatives are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Konatham, D., & Striolo, A. (2008). Molecular design of stable graphene nanosheets dispersions. Nano Letters, 8, 4630–4641.

    Google Scholar 

  2. Fernandez-Moran, H. (1960). Single crystals of graphite and mica as specimen support for electron microscopy. Journal of Applied Physics, 31, 1840.

    Google Scholar 

  3. Boehm, H. P., Clauss., A., Hofmann, U, & Fischer, G. O. (1962). Dunnste, Kohlenstoff-Folien. Zeitschrift Fur Naturforschung Part B—Chemie Biochemie Biophysik Biologie Und Verwandten Gebiete, B17, 150.

    Google Scholar 

  4. Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene. Carbon, 48, 2127–2150.

    Google Scholar 

  5. Ebbesen, T. W., & Hiura, H. (1995). Graphene in 3-dimensions—towards graphite origami. Advanced Materials, 7, 582–586.

    Google Scholar 

  6. Lu, X. K., Huang, H., Nemchuk, N., & Ruoff, R. S. (1999). Patterning of highly oriented pyrolytic graphite by oxygen plasma etching. Applied Physics Letters, 75, 193–195.

    Google Scholar 

  7. Lu, X. K., Yu, M. F., Huang, H., & Ruoff, R. S. (1999). Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 10, 269–272.

    Google Scholar 

  8. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666–669.

    Google Scholar 

  9. Berger, C., Song, Z. M., Li, T. B., Li, X. B., Ogbazghi, A. Y., Feng, R., Dai, Z. T., Marchenkov, A. N., Conrad, E. H., First, P. N., & de Heer, W. A. (2004). Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. Journal of Physical Chemistry B, 108, 19912–19916.

    Google Scholar 

  10. Li, X. S., Cai, W. W., An, J. H., Kim, S., Nah, J., Yang, D. X., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S. K., Colombo, L., & Ruoff, R. S. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324, 1312–1314.

    Google Scholar 

  11. Meitl, M. A., Zhu, Z. T., Kumar, V., Lee, K. J., Feng, X., Huang, Y. Y., Adesida, I., Nuzzo, R. G., Rogers, J. A. (2006). Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Materials, 5, 33–38.

    Google Scholar 

  12. Reina, A., Jia, X. T., Ho, J., Nezich, D., Son, H. B., Bulovic, V., Dresselhaus, M. S., Kong, J. (2009). Layer area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9, 30–35.

    Google Scholar 

  13. Ruoff, R. (2008). Graphene: Calling all chemists. Nature Nanotechnology, 3, 10–11.

    Google Scholar 

  14. Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., & Seal, S. (2011). Graphene based materials: Past, present and future. Progress in Materials Science, 56, 1178–1271.

    Google Scholar 

  15. Zheng, Q., Li, Z., Yang, J., & Kim, J.-K. (2014). Graphene oxide based transparent conductive films. Progress in Materials Science, 64, 200–247.

    Google Scholar 

  16. Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102, 10451–10453.

    Google Scholar 

  17. Sutter, P. W., Flege, J. I., Sutter, E. A. (2008). Epitaxial graphene on ruthenium. Nature Materials, 7, 406–411.

    Google Scholar 

  18. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706–710.

    Google Scholar 

  19. Yang, X. Y., Dou, X., Rouhanipour, A., Zhi, L. J., Rader, H. J., & Mullen, K. (2008). Two-dimensional graphene nanoribbons. Journal of the American Chemical Society, 130, 4216–4217.

    Google Scholar 

  20. Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., & Ruoff, R. S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558–1565.

    Google Scholar 

  21. Zhang, Y. B., Small, J. P., Pontius, W. V., & Kim, P. (2005). Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Applied Physics Letters, 86, 073104.

    Google Scholar 

  22. Blake, P., Hill, E. W., Neto, A. H. C., Novoselov, K. S., Jiang, D., Yang, R., Booth, T. J., & Geim, A. K. (2007). Making graphene visible. Applied Physics Letters, 91, 063124.

    Google Scholar 

  23. Gao, L. B., Ren, W. C., Li, F., & Cheng, H. M. (2008). Total color difference for rapid and accurate identification of graphene. ACS Nano, 2, 1625–1633.

    Google Scholar 

  24. Jung, I., Pelton, M., Piner, R., Dikin, D. A., Stankovich, S., Watcharotone, S., Hausner, M., & Ruoff, R. S. (2007). Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Letters, 7, 3569–3575.

    Google Scholar 

  25. Chen, J. H., Jang, C., Xiao, S. D., Ishigami, M., & Fuhrer, M. S. (2008). Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 3, 206–209.

    Google Scholar 

  26. Berger, C., Song, Z. M., Li, X. B., Wu, X. S., Brown, N., Naud, C., Mayou, D., Li, T. B., Hass, J., Marchenkov, A. N., Conrad, E. H., First, P. N., de Heer, W. A. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191–1196.

    Google Scholar 

  27. de Heer, W. A., Berger, C., Wu, X. S., First, P. N., Conrad, E. H., Li, X. B., Li, T. B., Sprinkle, M., Hass, J., Sadowski, M. L., Potemski, M., & Martinez, G. (2007). Epitaxial graphene. Solid State Communications, 143, 92–100.

    Google Scholar 

  28. Hass, J., de Heer, W. A., & Conrad, E. H. (2008). The growth and morphology of epitaxial multilayer graphene. Journal of Physics-Condensed Matter, 20, 323202.

    Google Scholar 

  29. Kedzierski, J., Hsu, P. L., Healey, P., Wyatt, P. W., Keast, C. L., Sprinkle, M., Berger, C., & de Heer, W. A. (2008). Epitaxial graphene transistors on SIC substrates. IEEE Transactions on Electron Devices, 55, 2078–2085.

    Google Scholar 

  30. Tedesco, J. L., Jernigan, G. G., Culbertson, J. C., Hite, J. K., Yang, Y., Daniels, K. M., Myers-Ward, R. L., Eddy, C. R., Robinson, J. A., Trumbull, K. A., Wetherington, M. T., Campbell, P. M., & Gaskill, D. K. (2010). Morphology characterization of argon-mediated epitaxial graphene on C-face SiC. Applied Physics Letters, 96, 222103.

    Google Scholar 

  31. Emtsev, K. V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G. L., Ley, L., McChesney, J. L., Ohta, T., Reshanov, S. A., Rohrl, J., Rotenberg, E., Schmid, A. K., Waldmann, D., Weber, H. B., & Seyller, T. (2009). Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials, 8, 203–207.

    Google Scholar 

  32. de Parga, A. L. V., Calleja, F., Borca, B., Passeggi, M. C. G., Hinarejos, J. J., Guinea, F., & Miranda, R. (2008). Periodically rippled graphene: Growth and spatially resolved electronic structure. Physical Review Letters, 100, 056807.

    Google Scholar 

  33. Sprinkle, M., Siegel, D., Hu, Y., Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Le Fevre, P., Bertran, F., Vizzini, S., Enriquez, H., Chiang, S., Soukiassian, P., Berger, C., de Heer, W. A., Lanzara, A., & Conrad, E. H. (2009). First direct observation of a nearly ideal graphene band structure. Physical Review Letters, 103, 226803.

    Google Scholar 

  34. Wang, L., Tian, L. H., Wei, G. D., Gao, F. M., Zheng, J. J., & Yang, W. Y. (2011). Epitaxial growth of graphene and their applications in devices. Journal of Inorganic Materials, 26, 1009–1019.

    Google Scholar 

  35. VanMil, B. L., Myers-Ward, R. L., Tedesco, J. L., Eddy, C. R., Jernigan, G. G., Culbertson, J. C., Campbell, P. M., McCrate, J. M., Kitt, S. A., & Gaskill, D. K. (2009). Graphene formation on SiC substrates. Silicon Carbide and Related Materials 2008, 615–617, 211–214.

    Google Scholar 

  36. Camara, N., Huntzinger, J. R., Rius, G., Tiberj, A., Mestres, N., Perez-Murano, F., Godignon, P., & Camassel, J. (2009). Anisotropic growth of long isolated graphene ribbons on the C face of graphite-capped 6 H-SiC. Physical Review B, 80, 125410.

    Google Scholar 

  37. Camara, N., Rius, G., Huntzinger, J. R., Tiberj, A., Mestres, N., Godignon, P., & Camassel, J. (2008). Selective epitaxial growth of graphene on SiC. Applied Physics Letters, 93, 123503.

    Google Scholar 

  38. Virojanadara, C., Syvajarvi, M., Yakimova, R., Johansson, L. I., Zakharov, A. A., & Balasubramanian, T. (2008). Homogeneous large-area graphene layer growth on 6 H-SiC(0001). Physical Review B, 78, 245403

    Google Scholar 

  39. Unarunotai, S., Murata, Y., Chialvo, C. E., Kim, H. S., MacLaren, S., Mason, N., Petrov, I., & Rogers, J. A. (2009). Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors. Applied Physics Letters, 95, 202101.

    Google Scholar 

  40. Moreau, E., Godey, S., Ferrer, F. J., Vignaud, D., Wallart, X., Avila, J., Asensio, M. C., Bournel, F., & Gallet, J. J. (2010). Graphene growth by molecular beam epitaxy on the carbon-face of SiC. Applied Physics Letters, 97, 241907

    Google Scholar 

  41. Hibino, H., Mizuno, S., Kageshima, H., Nagase, M., & Yamaguchi, H. (2009). Stacking domains of epitaxial few-layer graphene on SiC(0001). Physical Review B, 80, 085406.

    Google Scholar 

  42. Prakash, G., Capano, M. A., Bolen, M. L., Zemlyanou, D., & Reifenberger, R. G. (2010). AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4 H-SiC(000(1)over-bar). Carbon, 48, 2383–2393.

    Google Scholar 

  43. Jernigan, G. G., VanMil, B. L., Tedesco, J. L., Tischler, J. G., Glaser, E. R., Davidson, A., Campbell, P. M., & Gaskill, D. K. (2009). Comparison of epitaxial graphene on Si-face and C-face 4 H SiC formed by ultrahigh vacuum and RF furnace production. Nano Letters, 9, 2605–2609.

    Google Scholar 

  44. Ouerghi, A., Belkhou, R., Marangolo, M., Silly, M. G., El Moussaoui, S., Eddrief, M., Largeau, L., Portail, M., & Sirotti, F. (2010). Structural coherency of epitaxial graphene on 3 C-SiC(111) epilayers on Si(111). Applied Physics Letters, 97, 161905.

    Google Scholar 

  45. Bae, S., Kim, H., Lee, Y., Xu, X. F., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., & Iijima, S. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, 574–578.

    Google Scholar 

  46. Cai, W. W., Moore, A. L., Zhu, Y. W., Li, X. S., Chen, S. S., Shi, L., & Ruoff, R. S. (2010). Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Letters, 10, 1645–1651.

    Google Scholar 

  47. Cai, W. W., Piner, R. D., Zhu, Y. W., Li, X. S., Tan, Z. B., Floresca, H. C., Yang, C. L., Lu, L., Kim, M. J., & Ruoff, R. S. (2009). Synthesis of isotopically-labeled graphite films by cold-wall chemical vapor deposition and electronic properties of graphene obtained from such films. Nano Research, 2, 851–856.

    Google Scholar 

  48. Fallahazad, B., Hao, Y. F., Lee, K., Kim, S., Ruoff, R. S., & Tutuc, E. (2012). Quantum hall effect in bernal stacked and twisted bilayer graphene grown on Cu by chemical vapor deposition. Physical Review B, 85, 201408.

    Google Scholar 

  49. Li, X. S., Magnuson, C. W., Venugopal, A., Tromp, R. M., Hannon, J. B., Vogel, E. M., Colombo, L., & Ruoff, R. S. (2011). Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. Journal of the American Chemical Society, 133, 2816–2819.

    Google Scholar 

  50. Suk, J. W., Kitt, A., Magnuson, C. W., Hao, Y. F., Ahmed, S., An, J. H., Swan, A. K., Goldberg, B. B., & Ruoff, R. S. (2011). Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano, 5, 6916–6924.

    Google Scholar 

  51. Allen, M. J., Tung, V. C., & Kaner, R. B. (2010). Honeycomb carbon: A review of graphene. Chemical Reviews, 110, 132–145.

    Google Scholar 

  52. Chen, Z. P., Ren, W. C., Gao, L. B., Liu, B. L., Pei, S. F., & Cheng, H. M. (2011). Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 10, 424–428.

    Google Scholar 

  53. Banerjee B. C., Hirt, T. J., & Walker, P. L. (1961). Pyrolytic carbon formation from carbon suboxide. Nature, 192, 450–451.

    Google Scholar 

  54. Mattevi, C., Kim, H., & Chhowalla, M. (2011). A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 21, 3324–3334.

    Google Scholar 

  55. De Arco, L. G., Zhang, Y., Kumar, A., & Zhou, C. W. (2009). Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE T Nanotechnol, 8, 135–138.

    Google Scholar 

  56. Reina, A., Thiele, S., Jia, X. T., Bhaviripudi, S., Dresselhaus, M. S., Schaefer, J. A., & Kong, J. (2009). Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Research, 2, 509–516.

    Google Scholar 

  57. Kwon, S. Y., Ciobanu, C. V., Petrova, V., Shenoy, V. B., Bareno, J., Gambin, V., Petrov, I., & Kodambaka, S. (2009). Growth of semiconducting graphene on palladium. Nano Letters, 9, 3985–3990.

    Google Scholar 

  58. Zhang, Y., Zhang, L. Y., & Zhou, C. W. (2013). Review of chemical vapor deposition of graphene and related applications. Accounts of Chemical Research, 46, 2329–2339.

    Google Scholar 

  59. Cai, J. M., Ruffieux, P., Jaafar, R., Bieri, M., Braun, T., Blankenburg, S., Muoth, M., Seitsonen, A. P., Saleh, M., Feng, X. L., Mullen, K., & Fasel, R. (2010). Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466, 470–473.

    Google Scholar 

  60. Wissler, M. (2006). Graphite and carbon powders for electrochemical applications. Journal of Power Sources, 156, 142–150.

    Google Scholar 

  61. Chung, D. D. L. (2002). Review graphite. Journal of Materials Science, 37, 1475–1489.

    Google Scholar 

  62. Sasa, T., Takahash, Y., Mukaibo, T. (1971). Crystal structure of graphite bromine lamellar compounds. Carbon, 9, 407–416.

    Google Scholar 

  63. Shih, C. J., Vijayaraghavan, A., Krishnan, R., Sharma, R., Han, J. H., Ham, M. H., Jin, Z., Lin, S. C., Paulus, G. L. C., Reuel, N. F., Wang, Q. H., Blankschtein, D., & Strano, M. S. (2011). Bi- and trilayer graphene solutions. Nature Nanotechnology, 6, 439–445.

    Google Scholar 

  64. Eda, G., & Chhowalla, M. (2010). Chemically derived graphene oxide: Towards large-area thin-film electronics and optoelectronics. Advanced Materials, 22, 2392–2415.

    Google Scholar 

  65. Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228–240.

    Google Scholar 

  66. Niyogi, S., Bekyarova, E., Itkis, M. E., McWilliams, J. L., Hamon, M. A., & Haddon, R. C. (2006). Solution properties of graphite and graphene. Journal of the American Chemical Society, 128, 7720–7721.

    Google Scholar 

  67. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442, 282–286.

    Google Scholar 

  68. Stankovich, S., Piner, R. D., Nguyen, S. T., & Ruoff, R. S. (2006). Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 44, 3342–3347.

    Google Scholar 

  69. Schniepp, H. C., Li, J. L., McAllister, M. J., Sai, H., Herrera-Alonso, M., Adamson, D. H., Prud’homme, R. K., Car, R., Saville, D. A., & Aksay, I. A. (2006). Functionalized single graphene sheets derived from splitting graphite oxide. Journal of Physical Chemistry B, 110, 8535–8539.

    Google Scholar 

  70. Geng, Y., Wang, S. J., & Kim, J. K. (2009). Preparation of graphite nanoplatelets and graphene sheets. Journal of Colloid and Interface Science, 336, 592–598.

    Google Scholar 

  71. Stankovich, S., Piner, R. D., Chen, X. Q., Wu, N. Q., Nguyen, S. T., & Ruoff, R. S. (2006). Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry, 16, 155–158.

    Google Scholar 

  72. Eda, G., & Chhowalla, M. (2009). Graphene-based composite thin films for electronics. Nano Letters, 9, 814–818.

    Google Scholar 

  73. Sun, X. M., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., & Dai, H. J. (2008). Nano-graphene oxide for cellular imaging and drug delivery. Nano Research, 1, 203–212.

    Google Scholar 

  74. Lerf, A., He, H. Y., Forster, M., & Klinowski, J. (1998). Structure of graphite oxide revisited. Journal of Physical Chemistry B, 102, 4477–4482.

    Google Scholar 

  75. Paredes, J. I., Villar-Rodil, S., Martinez-Alonso, A., & Tascon, J. M. D. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24, 10560–10564.

    Google Scholar 

  76. Zheng, Q. B., Ip, W. H., Lin, X. Y., Yousefi, N., Yeung, K. K., Li, Z. G., & Kim, J. K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett assembly. ACS Nano, 5, 6039–6051.

    Google Scholar 

  77. Jung, I., Dikin, D., Park, S., Cai, W., Mielke, S. L., & Ruoff, R. S. (2008). Effect of water vapor on electrical properties of individual reduced graphene oxide sheets. Journal of Physical Chemistry C, 112, 20264–20268.

    Google Scholar 

  78. Jung, I., Dikin, D. A., Piner, R. D., & Ruoff, R. S. (2008). Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Letters, 8, 4283–4287.

    Google Scholar 

  79. Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R. D., Stankovich, S., Jung, I., Field, D. A., Ventrice, C. A., & Ruoff, R. S. (2009). Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon, 47, 145–152.

    Google Scholar 

  80. Tung, V. C., Allen, M. J., Yang, Y., & Kaner, R. B. (2009). High-throughput solution processing of large-scale graphene. Nature Nanotechnology, 4, 25–29.

    Google Scholar 

  81. Tung, V. C., Chen, L. M., Allen, M. J., Wassei, J. K., Nelson, K., Kaner, R. B., & Yang, Y. (2009). Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Letters, 9, 1949–1955.

    Google Scholar 

  82. Wang, G. X., Yang, J., Park, J., Gou, X. L., Wang, B., Liu, H., & Yao, J. (2008). Facile synthesis and characterization of graphene nanosheets. Journal of Physical Chemistry C, 112, 8192–8195.

    Google Scholar 

  83. Pei, S. F., Zhao, J. P., Du, J. H., Ren, W. C., & Cheng, H. M. (2010). Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon, 48, 4466–4474.

    Google Scholar 

  84. Moon, I. K., Lee, J., Ruoff, R. S., & Lee, H. (2010). Reduced graphene oxide by chemical graphitization. Nature Communications, 1, 73.

    Google Scholar 

  85. Muszynski, R., Seger, B., & Kamat, P. V. (2008). Decorating graphene sheets with gold nanoparticles. Journal of Physical Chemistry C, 112, 5263–5266.

    Google Scholar 

  86. Si, Y., & Samulski, E. T. (2008). Synthesis of water soluble graphene. Nano Letters, 8, 1679–1682.

    Google Scholar 

  87. Li, D., Muller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature Nanotechnology, 3, 101–105.

    Google Scholar 

  88. Fowler, J. D., Allen, M. J., Tung, V. C., Yang, Y., Kaner, R. B., & Weiller, B. H. (2009). Practical chemical sensors from chemically derived graphene. ACS Nano, 3, 301–306.

    Google Scholar 

  89. Erickson, K., Erni, R., Lee, Z., Alem, N., Gannett, W., & Zettl, A. (2010). Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Advanced Materials, 22, 4467–4472.

    Google Scholar 

  90. Wang, Y., Shi, Z. X., Fang, J. H., Xu, H. J., Ma, X. D., & Yin, J. (2011). Direct exfoliation of graphene in methanesulfonic acid and facile synthesis of graphene/polybenzimidazole nanocomposites. Journal of Materials Chemistry, 21, 505–512.

    Google Scholar 

  91. Wang, X. Q., Fulvio, P. F., Baker, G. A., Veith, G. M., Unocic, R. R., Mahurin, S. M., Chi, M. F., & Dai, S. (2010). Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chemical Communications, 46, 4487–4489.

    Google Scholar 

  92. Liu, W. W., & Wang, J. N. (2011). Direct exfoliation of graphene in organic solvents with addition of NaOH. Chemical Communications, 47, 6888–6890.

    Google Scholar 

  93. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z. Y., De, S., McGovern, I. T., Holland, B., Byrne, M., Gun'ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C., & Coleman, J. N. (2008). High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology, 3, 563–568.

    Google Scholar 

  94. Li, X. L., Zhang, G. Y., Bai, X. D., Sun, X. M., Wang, X. R., Wang, E., & Dai, H. J. (2008). Highly conducting graphene sheets and Langmuir-Blodgett films. Nature Nanotechnology, 3, 538–542.

    Google Scholar 

  95. Green, A. A., & Hersam, M. C. (2009). Solution phase production of graphene with controlled thickness via density differentiation. Nano Letters, 9, 4031–4036.

    Google Scholar 

  96. Lee, J. H., Shin, D. W., Makotchenko, V. G., Nazarov, A. S., Fedorov, V. E., Kim, Y. H., Choi, J. Y., Kim, J. M., & Yoo, J. B. (2009). One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Advanced Materials, 21, 4383–4387.

    Google Scholar 

  97. Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S., Blighe, F. M., De, S., Wang, Z. M., McGovern, I. T., Duesberg, G. S., & Coleman, J. N. (2009). Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. Journal of the American Chemical Society, 131, 3611–3620.

    Google Scholar 

  98. Coleman, J. N. (2009). Liquid-phase exfoliation of nanotubes and graphene. Advanced Functional Materials, 19, 3680–3695.

    Google Scholar 

  99. Khan, U., O’Neill, A., Lotya, M., De, S., & Coleman, J. N. (2010). High-concentration solvent exfoliation of graphene. Small, 6, 864–871.

    Google Scholar 

  100. Valles, C., Drummond, C., Saadaoui, H., Furtado, C. A., He, M., Roubeau, O., Ortolani, L., Monthioux, M., & Penicaud, A. (2008). Solutions of negatively charged graphene sheets and ribbons. Journal of the American Chemical Society, 130, 15802–15804.

    Google Scholar 

  101. Eda, G., Lin, Y. Y., Mattevi, C., Yamaguchi, H., Chen, H. A., Chen, I. S., Chen, C. W., & Chhowalla, M. (2010). Blue photoluminescence from chemically derived graphene oxide. Advanced Materials, 22, 505–509.

    Google Scholar 

  102. Zhou, X. F., & Liu, Z. P. (2010). A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. Chemical Communications, 46, 2611–2613.

    Google Scholar 

  103. Zhao, J. P., Pei, S. F., Ren, W. C., Gao, L. B., & Cheng, H. M. (2010). Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano, 4, 5245–5252.

    Google Scholar 

  104. Su, C. Y., Xu, Y. P., Zhang, W. J., Zhao, J. W., Tang, X. H., Tsai, C. H., & Li, L. J. (2009). Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chemistry of Materials, 21, 5674–5680.

    Google Scholar 

  105. Dong, X. C., Su, C. Y., Zhang, W. J., Zhao, J. W., Ling, Q. D., Huang, W., Chen, P., & Li, L. J. (2010). Ultra-large single-layer graphene obtained from solution chemical reduction and its electrical properties. Physical Chemistry Chemical Physics, 12, 2164–2169.

    Google Scholar 

  106. Bae, S. Y., Jeon, I. Y., Yang, J., Park, N., Shin, H. S., Park, S., Ruoff, R. S., Dai, L. M., & Baek, J. B. (2011). Large-area graphene films by simple solution casting of edge-selectively functionalized graphite. ACS Nano, 5, 4974–4980.

    Google Scholar 

  107. Zheng, Q., Ip, W. H., Lin, X., Yousefi, N., Yeung, K. K., Li, Z., & Kim, J.-K. (2011). Transparent conductive films consisting of ultra large graphene sheets produced by Langmuir-Blodgett Assembly. ACS Nano, 5, 6039–6051.

    Google Scholar 

  108. Aboutalebi, S. H., Gudarzi, M. M., Zheng, Q. B., & Kim, J.-K. (2011). Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Advanced Functional Materials, 21, 2978–2988.

    Google Scholar 

  109. Jia, J. J., Kan, C., Lin, X. M., Shen, X., & Kim, J. K. (2014). Effects of processing and material parameters on synthesis of monolayer ultralarge graphene oxide sheets. Carbon, 77, 244–254.

    Google Scholar 

  110. Zheng, Q., Zhang, B., Lin, X., Shen, X., Yousefi, N., Huang, Z.-D., Li, Z., & Kim, J.-K. (2012). Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly. Journal of Materials Chemistry, 22, 25072–25082.

    Google Scholar 

  111. Sun, X. M., Luo, D. C., Liu, J. F., & Evans, D. G. (2010). Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano, 4, 3381–3389.

    Google Scholar 

  112. Wang, X. L., Bai, H., & Shi, G. Q. (2011). Size fractionation of graphene oxide sheets by ph-assisted selective sedimentation. Journal of the American Chemical Society, 133, 6338–6342.

    Google Scholar 

  113. Green, A. A., & Hersam, M. C. (2010). Emerging methods for producing monodisperse graphene dispersions. Journal of Physical Chemistry Letters, 1, 544–549.

    Google Scholar 

  114. Arnold, M. S., Stupp, S. I., & Hersam, M. C. (2005). Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Letters, 5, 713–718.

    Google Scholar 

  115. Haroz, E. H., Rice, W. D., Lu, B. Y., Ghosh, S., Hauge, R. H., Weisman, R. B., Doorn, S. K., & Kono, J. (2010). Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: Raman spectroscopy evidence. ACS Nano, 4, 1955–1962.

    Google Scholar 

  116. Zhu, Y. W., Murali, S., Cai, W. W., Li, X. S., Suk, J. W., Potts, J. R., & Ruoff, R. S. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22, 3906–3924.

    Google Scholar 

  117. You, Y. M., Ni, Z. H., Yu, T., & Shen, Z. X. (2008). Edge chirality determination of graphene by Raman spectroscopy. Applied Physics Letters, 93, 163112.

    Google Scholar 

  118. Girit, C. O., Meyer, J. C., Erni, R., Rossell, M. D., Kisielowski, C., Yang, L., Park, C. H., Crommie, M. F., Cohen, M. L., Louie, S. G., & Zettl, A. (2009). Graphene at the edge: Stability and dynamics. Science, 323, 1705–1708.

    Google Scholar 

  119. Los, J. H., Ghiringhelli, L. M., Meijer, E. J., & Fasolino, A. (2005). Improved long-range reactive bond-order potential for carbon. I. Construction. Physical Review B, 72, 214102.

    Google Scholar 

  120. Fasolino, A., Los, J. H., & Katsnelson, M. I. (2007). Intrinsic ripples in graphene. Nature Materials, 6, 858–861.

    Google Scholar 

  121. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.

    Google Scholar 

  122. He, H. Y., Klinowski, J., Forster, M., & Lerf, A. (1998). A new structural model for graphite oxide. Chemical Physics Letters, 287, 53–56.

    Google Scholar 

  123. Boukhvalov, D. W., & Katsnelson, M. I. (2008). Modeling of graphite oxide. Journal of the American Chemical Society, 130, 10697–10701.

    Google Scholar 

  124. Lin, X., Shen, X., Zheng, Q., Yousefi, N., Ye, L., Mai, Y.-W., & Kim, J.-K. (2012). Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano, 6, 10708–10719.

    Google Scholar 

  125. Kopidakis, G., Remediakis, I. N., Fyta, M. G., & Kelires, P. C. (2007). Atomic and electronic structure of crystalline-amorphous carbon interfaces. Diamond and Related Materials, 16, 1875–1881.

    Google Scholar 

  126. Zheng, Q. B., Gudarzi, M. M., Wang, S. J., Geng, Y., Li, Z. G., & Kim, J. K. (2011). Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments. Carbon, 49, 2905–2916.

    Google Scholar 

  127. Jung, I., Vaupel, M., Pelton, M., Piner, R., Dikin, D. A., Stankovich, S., An, J., & Ruoff, R. S. (2008). Characterization of thermally reduced graphene oxide by imaging ellipsometry. Journal of Physical Chemistry C, 112, 8499–8506.

    Google Scholar 

  128. Cote, L. J., Kim, F., & Huang, J. X. (2009). Langmuir-Blodgett assembly of graphite oxide single layers. Journal of the American Chemical Society, 131, 1043–1049.

    Google Scholar 

  129. Gomez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M., Mews, A., Burghard, M., & Kern, K. (2007). Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Letters, 7, 3499–3503.

    Google Scholar 

  130. Chang, H. X., & Wu, H. K. (2013). Graphene-based nanomaterials: Synthesis, properties, and optical and optoelectronic applications. Advanced Functional Materials, 23, 1984–1997.

    Google Scholar 

  131. Katsnelson, M. I. (2007). Graphene: Carbon in two dimensions. Materials Today, 10, 20–27.

    Google Scholar 

  132. Du, X., Skachko, I., Barker, A., & Andrei, E. Y. (2008). Approaching ballistic transport in suspended graphene. Nature Nanotechnology, 3, 491–495.

    Google Scholar 

  133. Geim, A. K. (2009). Graphene: Status and prospects. Science, 324, 1530–1534.

    Google Scholar 

  134. Li, X. L., Wang, X. R., Zhang, L., Lee, S. W., & Dai, H. J. (2008). Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319, 1229–1232.

    Google Scholar 

  135. Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., & Tour, J. M. (2009). Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458, 872–876.

    Google Scholar 

  136. Bai, J. W., Zhong, X., Jiang, S., Huang, Y., & Duan, X. F. (2010). Graphene nanomesh. Nature Nanotechnology, 5, 190–194.

    Google Scholar 

  137. Balog, R., Jorgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Laegsgaard, E., Baraldi, A., Lizzit, S., Sljivancanin, Z., Besenbacher, F., Hammer, B., Pedersen, T. G., Hofmann, P., & Hornekaer, L. (2010). Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature Materials, 9, 315–319.

    Google Scholar 

  138. Wang, X. R., & Dai, H. J. (2010). Etching and narrowing of graphene from the edges. Nature Chemistry, 2, 661–665.

    Google Scholar 

  139. Novoselov, K. S., Jiang, Z., Zhang, Y., Morozov, S. V., Stormer, H. L., Zeitler, U., Maan, J. C., Boebinger, G. S., Kim, P., & Geim, A. K. (2007). Room-temperature quantum hall effect in graphene. Science, 315, 1379–1379.

    Google Scholar 

  140. Kopelevich, Y., & Esquinazi, P. (2007). Graphene physics in graphite. Advanced Materials, 19, 4559–4563.

    Google Scholar 

  141. Becerril, H. A., Mao, J., Liu, Z., Stoltenberg, R. M., Bao, Z., & Chen, Y. (2008). Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano, 2, 463–470.

    Google Scholar 

  142. Pei, S. F., & Cheng, H. M. (2012). The reduction of graphene oxide. Carbon, 50, 3210–3228.

    Google Scholar 

  143. Li, X. S., Zhu, Y. W., Cai, W. W., Borysiak, M., Han, B. Y., Chen, D., Piner, R. D., Colombo, L., & Ruoff, R. S. (2009). Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Letters, 9, 4359–4363.

    Google Scholar 

  144. Wang, S. J., Geng, Y., Zheng, Q., & Kim, J.-K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815–1823.

    Google Scholar 

  145. Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3, 270–274.

    Google Scholar 

  146. Feng, H. B., Cheng, R., Zhao, X., Duan, X. F., & Li, J. H. (2013). A low-temperature method to produce highly reduced graphene oxide Nature Communications, 4, 1539.

    Google Scholar 

  147. Viet, H. P., Tran, V. C., Nguyen-Phan, T. D., Hai, D. P., Kim, E. J., Hur, S. H., Shin, E. W., Kim, S., & Chung, J. S. (2010). One-step synthesis of superior dispersion of chemically converted graphene in organic solvents. Chemical Communications, 46, 4375–4377.

    Google Scholar 

  148. Gao, W., Alemany, L. B., Ci, L. J., & Ajayan, P. M. (2009). New insights into the structure and reduction of graphite oxide. Nature Chemistry, 1, 403–408.

    Google Scholar 

  149. Shin, H. J., Kim, K. K., Benayad, A., Yoon, S. M., Park, H. K., Jung, I. S., Jin, M. H., Jeong, H. K., Kim, J. M., Choi, J. Y., & Lee, Y. H. (2009). Efficient reduction of graphite oxide by sodium borohydrilde and its effect on electrical conductance. Advanced Functional Materials, 19, 1987–1992.

    Google Scholar 

  150. Park, S., An, J. H., Jung, I. W., Piner, R. D., An, S. J., Li, X. S., Velamakanni, A., & Ruoff, R. S. (2009). Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Letters, 9, 1593–1597.

    Google Scholar 

  151. Fan, Z. J., Wang, K., Wei, T., Yan, J., Song, L. P., & Shao, B. (2010). An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon, 48, 1686–1689.

    Google Scholar 

  152. Fan, Z. J., Kai, W., Yan, J., Wei, T., Zhi, L. J., Feng, J., Ren, Y. M., Song, L. P., & Wei, F. (2011). Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano, 5, 191–198.

    Google Scholar 

  153. Mei, X. G., & Ouyang, J. Y. (2011). Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature. Carbon, 49, 5389–5397.

    Google Scholar 

  154. Dey, R. S., Hajra, S., Sahu, R. K., Raj, C. R., & Panigrahi, M. K. (2012). A rapid room temperature chemical route for the synthesis of graphene: Metal-mediated reduction of graphene oxide. Chemical Communications, 48, 1787–1789.

    Google Scholar 

  155. Kumar, N. A., Gambarelli, S., Duclairoir, F., Bidan, G., & Dubois, L. (2013). Synthesis of high quality reduced graphene oxide nanosheets free of paramagnetic metallic impurities. Journal of Materials Chemistry A, 1, 2789–2794.

    Google Scholar 

  156. Pham, V. H., Pham, H. D., Dang, T. T., Hur, S. H., Kim, E. J., Kong, B. S., Kim, S., & Chung, J. S. (2012). Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen. Journal of Materials Chemistry, 22, 10530–10536.

    Google Scholar 

  157. Barman, B. K., Mahanandia, P., & Nanda, K. K. (2013). Instantaneous reduction of graphene oxide at room temperature. RSC Advances, 3, 12621–12624.

    Google Scholar 

  158. Liu, Y. Z., Li, Y. F., Zhong, M., Yang, Y. G., Wen, Y. F., & Wang, M. Z. (2011). A green and ultrafast approach to the synthesis of scalable graphene nanosheets with Zn powder for electrochemical energy storage. Journal of Materials Chemistry, 21, 15449–15455.

    Google Scholar 

  159. Chua, C. K., & Pumera, M. (2014). Chemical reduction of graphene oxide: A synthetic chemistry viewpoint. Chemical Society Reviews, 43, 291–312.

    Google Scholar 

  160. Williams, G., Seger, B., & Kamat, P. V. (2008). TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano, 2, 1487–1491.

    Google Scholar 

  161. Liu, X. J., Pan, L. K., Zhao, Q. F., Lv, T., Zhu, G., Chen, T. Q., Lu, T., Sun, Z., & Sun, C. Q. (2012). UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem Eng J, 183, 238–243.

    Google Scholar 

  162. Kamat, P. V. (1993). Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews, 93, 267–300.

    Google Scholar 

  163. Zhou, M., Wang, Y. L., Zhai, Y. M., Zhai, J. F., Ren, W., Wang, F. A., & Dong, S. J. (2009). Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chemistry-a European Journal, 15, 6116–6120.

    Google Scholar 

  164. An, S. J., Zhu, Y. W., Lee, S. H., Stoller, M. D., Emilsson, T., Park, S., Velamakanni, A., An, J. H., Ruoff, R. S. (2010). Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. Journal of Physical Chemistry Letters, 1, 1259–1263.

    Google Scholar 

  165. Zhou, Y., Bao, Q. L., Tang, L. A. L., Zhong, Y. L., & Loh, K. P. (2009). Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chemistry of Materials, 21, 2950–2956.

    Google Scholar 

  166. Dubin, S., Gilje, S., Wang, K., Tung, V. C., Cha, K., Hall, A. S., Farrar, J., Varshneya, R., Yang, Y., & Kaner, R. B. (2010). A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano, 4, 3845–3852.

    Google Scholar 

  167. Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K. A., Celik, O., Mostrogiovanni, D., Granozzi, G., Garfunkel, E., & Chhowalla, M. (2009). Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Advanced Functional Materials, 19, 2577–2583.

    Google Scholar 

  168. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197–200.

    Google Scholar 

  169. Pike, G. E., & Seager, C. H. (1974). Percolation and conductivity: A computer study. I. Phys Rev B, 10, 1421–1434.

    Google Scholar 

  170. Kang, H., Kulkarni, A., Stankovich, S., Ruoff, R. S., & Baik, S. (2009). Restoring electrical conductivity of dielectrophoretically assembled graphite oxide sheets by thermal and chemical reduction techniques. Carbon, 47, 1520–1525.

    Google Scholar 

  171. Wang, S. J., Geng, Y., Zheng, Q. B., & Kim, J. K. (2010). Fabrication of highly conducting and transparent graphene films. Carbon, 48, 1815–1823.

    Google Scholar 

  172. Wang, X., Zhi, L. J., & Mullen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8, 323–327.

    Google Scholar 

  173. Wu, Z. S., Ren, W. C., Gao, L. B., Liu, B. L., Jiang, C. B., & Cheng, H. M. (2009). Synthesis of high-quality graphene with a pre-determined number of layers. Carbon, 47, 493–499.

    Google Scholar 

  174. Lu, Y., Pich, A., & Adler, H. J. P. (2004). Synthesis and characterization of polypyrrole dispersions prepared with different dopants. Macromolecular Symposia, 210, 411–417.

    Google Scholar 

  175. Li, X. L., Wang, H. L., Robinson, J. T., Sanchez, H., Diankov, G., & Dai, H. J. (2009). Simultaneous nitrogen doping and reduction of graphene oxide. Journal of the American Chemical Society, 131, 15939–15944.

    Google Scholar 

  176. Zheng, Q. B., Zhang, B., Lin, X. Y., Shen, X., Yousefi, N., Huang, Z. D., Li, Z. G., & Kim, J. K. (2012). Highly transparent and conducting ultralarge graphene oxide/single-walled carbon nanotube hybrid films produced by Langmuir-Blodgett assembly. Journal of Materials Chemistry, 22, 25072–25082.

    Google Scholar 

  177. Wu, Z. S., Ren, W. C., Gao, L. B., Zhao, J. P., Chen, Z. P., Liu, B. L., Tang, D. M., Yu, B., Jiang, C. B., & Cheng, H. M. (2009). Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano, 3, 411–417.

    Google Scholar 

  178. Lopez, V., Sundaram, R. S., Gomez-Navarro, C., Olea, D., Burghard, M., Gomez-Herrero, J., Zamora, F., & Kern, K. (2009). Chemical capor deposition repair of graphene oxide: a route to highly conductive graphene monolayers. Advanced Materials, 21, 4683–4686.

    Google Scholar 

  179. Su, Q., Pang, S. P., Alijani, V., Li, C., Feng, X. L., & Mullen, K. (2009). Composites of graphene with large aromatic molecules. Advanced Materials, 21, 3191–3195.

    Google Scholar 

  180. Chen, H., Muller, M. B., Gilmore, K. J., Wallace, G. G., & Li, D. (2008). Mechanically strong, electrically conductive, and biocompatible graphene paper. Advanced Materials, 20, 3557–3561.

    Google Scholar 

  181. Vlassiouk, I., Smirnov, S., Ivanov, I., Fulvio, P. F., Dai, S., Meyer, H., Chi, M. F., Hensley, D., Datskos, P., & Lavrik, N. V. (2011). Electrical and thermal conductivity of low temperature CVD graphene: The effect of disorder. Nanotechnology, 22, 275716.

    Google Scholar 

  182. Yu, C. H., Shi, L., Yao, Z., Li, D. Y., & Majumdar, A. (2005). Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Letters, 5, 1842–1846.

    Google Scholar 

  183. Nika, D. L., & Balandin, A. A. (2012). Two-dimensional phonon transport in graphene. Journal of Physics-Condensed Matter, 24, 233203.

    Google Scholar 

  184. Nika, D. L., Pokatilov, E. P., & Balandin, A. A. (2011). Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches. Physica Status Solidi B-Basic Solid State Physics, 248, 2609–2614.

    Google Scholar 

  185. Berber, S., Kwon, Y. K., & Tomanek, D. (2000). Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 84, 4613–4616.

    Google Scholar 

  186. Balandin, A. A., Ghosh, S., Bao, W. Z., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902–907.

    Google Scholar 

  187. Balandin, A. A. (2011). Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 10, 569–581.

    Google Scholar 

  188. Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E. P., Nika, D. L., Balandin, A. A., Bao, W., Miao, F., & Lau, C. N. (2008). Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 92, 151911.

    Google Scholar 

  189. Seol, J. H., Jo, I., Moore, A. L., Lindsay, L., Aitken, Z. H., Pettes, M. T., Li, X. S., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R. S., & Shi, L. (2010). Two-dimensional phonon transport in supported graphene. Science, 328, 213–216.

    Google Scholar 

  190. Ghosh, S., Bao, W. Z., Nika, D. L., Subrina, S., Pokatilov, E. P., Lau, C. N., & Balandin, A. A. (2010). Dimensional crossover of thermal transport in few-layer graphene. Nature Materials, 9, 555–558.

    Google Scholar 

  191. Jauregui, L. A., Yue, Y. N., Sidorov, A. N., Hu, J. N., Yu, Q. K., Lopez, G., Jalilian, R., Benjamin, D. K., Delk, D. A., Wu, W., Liu, Z. H., Wang, X. W., Jiang, Z. G., Ruan, X. L., Bao, J. M., Pei, S. S., & Chen, Y. P. (2010). Thermal transport in graphene nanostructures: experiments and simulations. Graphene, Ge/Iii-V, and Emerging Materials for Post-Cmos Applications 2, 28, 73–83.

    Google Scholar 

  192. Faugeras, C., Faugeras, B., Orlita, M., Potemski, M., Nair, R. R., & Geim, A. K. (2010). Thermal conductivity of graphene in corbino membrane geometry. ACS Nano, 4, 1889–1892.

    Google Scholar 

  193. Murali, R., Yang, Y. X., Brenner, K., Beck, T., & Meindl, J. D. (2009). Breakdown current density of graphene nanoribbons. Applied Physics Letters, 94, 243114.

    Google Scholar 

  194. Nika, D. L., Pokatilov, E. P., Askerov, A. S., & Balandin, A. A. (2009). Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Physical Review B, 79, 155413.

    Google Scholar 

  195. Nika, D. L., Ghosh, S., Pokatilov, E. P., & Balandin, A. A. (2009). Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Applied Physics Letters, 94, 203103.

    Google Scholar 

  196. Evans, W. J., Hu, L., & Keblinski, P. (2010). Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination. Applied Physics Letters, 96, 203112.

    Google Scholar 

  197. Lindsay, L., Broido, D. A., Mingo, N. (2010). Diameter dependence of carbon nanotube thermal conductivity and extension to the graphene limit. Physical Review B, 82, 161402(R).

    Google Scholar 

  198. Munoz, E., Lu, J. X., & Yakobson, B. I. (2010). Ballistic thermal conductance of graphene ribbons. Nano Letters, 10, 1652–1656.

    Google Scholar 

  199. Schwamb, T., Burg, B. R., Schirmer, N. C., & Poulikakos, D. (2009). An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology, 20, 405704.

    Google Scholar 

  200. Mahanta, N. K., & Abramson, A. R. (2012). Thermal conductivity of graphene and graphene oxide nanoplatelets. 13th IEEE ITHERM Conference, 1–6.

    Google Scholar 

  201. Shen, X., Lin, X. Y., Jia, J. J., Wang, Z. Y., Li, Z. G., & Kim, J. K. (2014). Tunable thermal conductivities of graphene oxide by functionalization and tensile loading. Carbon, 80, 235–245.

    Google Scholar 

  202. Wu, H., & Drzal, L. T. (2012). Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon, 50, 1135–1145.

    Google Scholar 

  203. Xiang, J. L., & Drzal, L. T. (2011). Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon, 49, 773–778.

    Google Scholar 

  204. Xin, G. Q., Sun, H. T., Hu, T., Fard, H. R., Sun, X., Koratkar, N., Borca-Tasciuc, T., & Lian, J. (2014). Large-area freestanding graphene paper for superior thermal management. Advanced Materials, 26, 4521–4526.

    Google Scholar 

  205. Yu, W., Xie, H. Q., Li, F. X., Zhao, J. C., & Zhang, Z. H. (2013). Significant thermal conductivity enhancement in graphene oxide papers modified with alkaline earth metal ions. Applied Physics Letters, 103, 141913.

    Google Scholar 

  206. P. Kim, L. Shi, A., Majumdar, & McEuen, P. L. (2001). Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters, 87, 215502.

    Google Scholar 

  207. Pop, E., Mann, D., Wang, Q., Goodson, K. E., & Dai, H. J. (2006). Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Letters, 6, 96–100.

    Google Scholar 

  208. Hone, J., Whitney, M., Piskoti, C., & Zettl, A. (1999). Thermal conductivity of single-walled carbon nanotubes. Physical Review B, 59, R2514–R2516.

    Google Scholar 

  209. Chang, C. W., Fennimore, A. M., Afanasiev, A., Okawa, D., Ikuno, T., Garcia, H., Li, D. Y., Majumdar, A., & Zettl, A. (2006). Isotope effect on the thermal conductivity of boron nitride nanotubes. Physical Review Letters, 97, 085901.

    Google Scholar 

  210. Fujii, M., Zhang, X., Xie, H. Q., Ago, H., Takahashi, K., Ikuta, T., Abe, H., & Shimizu, T. (2005). Measuring the thermal conductivity of a single carbon nanotube. Physical Review Letters, 95, 065502.

    Google Scholar 

  211. Che, J. W., Cagin, T., & Goddard, W. A. (2000). Thermal conductivity of carbon nanotubes. Nanotechnology, 11, 65–69.

    Google Scholar 

  212. Donadio, D., & Galli, G. (2007). Thermal conductivity of isolated and interacting carbon nanotubes: Comparing results from molecular dynamics and the Boltzmann transport equation. Physical Review Letters, 99, 255502.

    Google Scholar 

  213. Subrina, S., Kotchetkov, D., & Balandin, A. A. (2009). Heat removal in silicon-on-insulator integrated circuits with graphene lateral heat spreaders. IEEE Electr Device Letters, 30, 1281–1283.

    Google Scholar 

  214. Peres, N. M. R., Guinea, F., & Neto, A. H. C. (2006). Electronic properties of disordered two-dimensional carbon. Physical Review B, 73, 125411.

    Google Scholar 

  215. Gusynin, V. P., Sharapov, S. G., & Carbotte, J. P. (2006). Unusual microwave response of Dirac quasiparticles in graphene. Physical Review Letters, 96, 256802.

    Google Scholar 

  216. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R., & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320, 1308–1308.

    Google Scholar 

  217. Ni, Z. H., Wang, H. M., Kasim, J., Fan, H. M., Yu, T., Wu, Y. H., Feng, Y. P., & Shen, Z. X. (2007). Graphene thickness determination using reflection and contrast spectroscopy. Nano Letters, 7, 2758–2763.

    Google Scholar 

  218. Aboutalebi, S. H., Gudarzi, M. M., Zheng, Q. B., Kim, J. K. (2011). Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Advanced Functional Materials, 21, 2978–2988.

    Google Scholar 

  219. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z. Z., Slesarev, A., Alemany, L. B., Lu, W., & Tour, J. M. (2010). Improved synthesis of graphene oxide. ACS Nano, 4, 4806–4814.

    Google Scholar 

  220. Lee, C., Wei, X. D., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385–388.

    Google Scholar 

  221. Zheng, Q., Li, Z., & Yang, J. (2013). Effects of N doping and NH2 grafting on the mechanical and wrinkling properties of graphene sheets. Rsc Advances, 3, 923–929.

    Google Scholar 

  222. Zheng, Q., Geng, Y., Wang, S., Li, Z., & Kim, J.-K. (2010). Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon, 48, 4315–4322.

    Google Scholar 

  223. Shen, X., Lin, X. Y., Yousefi, N., Jia, J. J., & Kim, J. K. (2014). Wrinkling in graphene sheets and graphene oxide papers. Carbon, 66, 84–92.

    Google Scholar 

  224. Uddin, M. N., Huang, Z. D., Mai, Y. W., & Kim, J. K. (2014). Tensile and tearing fracture properties of graphene oxide papers intercalated with carbon nanotubes. Carbon, 77, 481–491.

    Google Scholar 

  225. Politano, A., Marino, A. R., Campi, D., Farias, D., Miranda, R., & Chiarello, G. (2012). Elastic properties of a macroscopic graphene sample from phonon dispersion measurements. Carbon, 50, 4903–4910.

    Google Scholar 

  226. Liu, F., Ming, P. M., & Li, J. (2007). Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B, 76, 064120.

    Google Scholar 

  227. Bera, S., Arnold, A., Evers, F., Narayanan, R., & Wolfle, P. (2010). Elastic properties of graphene flakes: Boundary effects and lattice vibrations. Physical Review B, 82, 195445.

    Google Scholar 

  228. Cadelano, E., Palla, P. L., Giordano, S., & Colombo, L. (2010). Elastic properties of hydrogenated graphene. Physical Review B, 82, 235414.

    Google Scholar 

  229. Zheng, Q. B., Geng, Y., Wang, S. J., Li, Z. G., & Kim, J. K. (2010). Effects of functional groups on the mechanical and wrinkling properties of graphene sheets. Carbon, 48, 4315–4322.

    Google Scholar 

  230. Kim, J., Cote, L. J., Kim, F., & Huang, J. X. (2010). Visualizing graphene based sheets by fluorescence quenching microscopy. Journal of the American Chemical Society, 132, 260–267.

    Google Scholar 

  231. Zakharchenko, K. V., Katsnelson, M. I., & Fasolino, A. (2009). Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Physical Review Letters, 102, 046808.

    Google Scholar 

  232. Cadelano, E., Palla, P. L., Giordano, S., & Colombo, L. (2009). Nonlinear elasticity of monolayer graphene. Physical Review Letters, 102, 235502.

    Google Scholar 

  233. Reddy, C. D., Ramasubramaniam, A., Shenoy, V. B., & Zhang, Y. W. (2009). Edge elastic properties of defect-free single-layer graphene sheets. Applied Physics Letters, 94, 101904.

    Google Scholar 

  234. Suk, J. W., Piner, R. D., An, J. H., & Ruoff, R. S. (2010). Mechanical properties of mono layer graphene oxide. Acs Nano, 4, 6557–6564.

    Google Scholar 

  235. Zheng, Q. B., Li, Z. G., Geng, Y., Wang, S. J., & Kim, J. K. (2010). Molecular dynamics study of the effect of chemical functionalization on the elastic properties of graphene sheets. Journal of Nanoscience and Nanotechnology, 10, 7070–7074.

    Google Scholar 

  236. Pei, Q. X., Zhang, Y. W., & Shenoy, V. B. (2010). A molecular dynamics study of the mechanical properties of hydrogen functionalized graphene. Carbon, 48, 898–904.

    Google Scholar 

  237. Pei, Q. X., Zhang, Y. W., & Shenoy, V. B. (2010). Mechanical properties of methyl functionalized graphene: A molecular dynamics study. Nanotechnology, 21, 115709.

    Google Scholar 

  238. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T., & Ruoff, R. S. (2007). Preparation and characterization of graphene oxide paper. Nature, 448, 457–460.

    Google Scholar 

  239. Park, S., Lee, K. S., Bozoklu, G., Cai, W., Nguyen, S. T., & Ruoff’, R. S. (2008). Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano, 2, 572–578.

    Google Scholar 

  240. Park, S., Dikin, D. A., Nguyen, S. T., & Ruoff, R. S. (2009). Graphene oxide sheets chemically cross-linked by polyallylamine. Journal of Physical Chemistry C, 113, 15801–15804.

    Google Scholar 

  241. Guo, P., Song, H. H., & Chen, X. H. (2009). Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochemistry Communications, 11, 1320–1324.

    Google Scholar 

  242. Lin, X. Y., Liu, X., Jia, J. J., Shen, X., & Kim, J. K. (2014). Electrical and mechanical properties of carbon nanofiber/graphene oxide hybrid papers. Composites Science and Technology, 100, 166–173.

    Google Scholar 

  243. Casablanca, L. B., Shaibat, M. A., Cai, W. W. W., Park, S., Piner, R., Ruoff, R. S., & Ishii, Y. (2010). NMR-based structural modeling of graphite oxide using multidimensional C-13 solid-state NMR and ab initio chemical shift calculations. Journal of the American Chemical Society, 132, 5672–5676.

    Google Scholar 

  244. Paredes, J. I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A., & Tascon, J. M. D. (2009). Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir, 25, 5957–5968.

    Google Scholar 

  245. Kim, J., Kim, F., & Huang, J. X. (2010). Seeing graphene-based sheets. Materials Today, 13, 28–38.

    Google Scholar 

  246. Zheng, J. A., Di, C. A., Liu, Y. Q., Liu, H. T., Guo, Y. L., Du, C. Y., Wu, T., Yu, G., & Zhu, D. B. (2010). High quality graphene with large flakes exfoliated by oleyl amine. Chemical Communications, 46, 5728–5730.

    Google Scholar 

  247. Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Obergfell, D., Roth, S., Girit, C., & Zettl, A. (2007). On the roughness of single- and bi-layer graphene membranes. Solid State Communications, 143, 101–109.

    Google Scholar 

  248. Gomez-Navarro, C., Meyer, J. C., Sundaram, R. S., Chuvilin, A., Kurasch, S., Burghard, M., Kern, K., & Kaiser, U. (2010). Atomic structure of reduced graphene oxide. Nano Letters, 10, 1144–1148.

    Google Scholar 

  249. Meyer, J. C., Kisielowski, C., Erni, R., Rossell, M. D., Crommie, M. F., & Zettl, A. (2008). Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Letters, 8, 3582–3586.

    Google Scholar 

  250. Hansma, P. K., & Tersoff, J. (1987). Scanning tunneling microscopy. Journal of Applied Physics, 61, R1–R23.

    Google Scholar 

  251. The Nobel Prize in Physics. (1986). http://www.nobelprize.org/nobel_prizes/physics/laureates/1986/press.html. Accessed 01 Dec 2014.

  252. Hansma, P. K., Elings, V. B., Marti, O., & Bracker, C. E. (1988). Scanning tunneling microscopy and atomic force microscopy—application to biology and technology. Science, 242, 209–216.

    Google Scholar 

  253. Tapaszto, L., Dobrik, G., Lambin, P., & Biro, L. P. (2008). Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotechnology, 3, 397–401.

    Google Scholar 

  254. Schouteden, K., Volodin, A., & Moorkens, T., Van Haesendonck, C. (2011). Peeling off graphene from Co nanoparticle covered graphite in a scanning tunneling microscope. Carbon, 49, 2258–2263.

    Google Scholar 

  255. Harrison, S. E., Capano, M. A., & Reifenberger, R. (2010). Scanning tunneling microscope study of striated carbon ridges in few-layer epitaxial graphene formed on 4 H-silicon carbide (0001). Applied Physics Letters, 96, 081905.

    Google Scholar 

  256. Breitwieser, R., Hu, Y. C., Chao, Y. C., Li, R. J., Tzeng, Y. R., Li, L. J., Liou, S. C., Lin, K. C., Chen, C. W., & Pai, W. W. (2014). Flipping nanoscale ripples of free-standing graphene using a scanning tunneling microscope tip. Carbon, 77, 236–243.

    Google Scholar 

  257. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., & Geim, A. K. (2006). Raman spectrum of graphene and graphene layers. Physical Review Letters, 97, 187401.

    Google Scholar 

  258. Voggu, R., Das, B., Rout, C. S., & Rao, C. N. R. (2008). Effects of charge transfer interaction of graphene with electron donor and acceptor molecules examined using Raman spectroscopy and cognate techniques. Journal of Physics-Condensed Matter, 20, 472204.

    Google Scholar 

  259. Ferrari, A. C., & Robertson, J. (2000). Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61, 14095–14107.

    Google Scholar 

  260. Barpanda, P., Fanchini, G., & Amatucci, G. G. (2011). Structure, surface morphology and electrochemical properties of brominated activated carbons. Carbon, 49, 2538–2548.

    Google Scholar 

  261. Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cancado, L. G., Jorio, A., & Saito, R. (2007). Studying disorder in graphite-based systems by Raman spectroscopy. Physical Chemistry Chemical Physics, 9, 1276–1291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbin Zheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zheng, Q., Kim, JK. (2015). Synthesis, Structure, and Properties of Graphene and Graphene Oxide. In: Graphene for Transparent Conductors., vol 23. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2769-2_2

Download citation

Publish with us

Policies and ethics