Skip to main content

Perspectives on Engineering Biobetter Therapeutic Proteins with Greater Stability in Inflammatory Environments

  • Chapter
Book cover Biobetters

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 19))

Abstract

Rapid progression of genetic engineering technology has accelerated the development and availability of protein-based biopharmaceuticals for clinical use. However, their unique and complex structures render them susceptible to a plethora of post-translational modifications (PTMs) as well as chemical degradative processes they may encounter in distinct in vivo environments. Among the more common degradative reactions that can impact the structure and function of therapeutic proteins are oxidation, proteolysis, phosphorylation, and deamidation. Several PTMs such as oxidation further render modified proteins vulnerable to aggregation or proteolytic degradation by enzymatic or non-enzymatic mechanisms (Torosantucci et al., Pharm Res 31(3):541–553, 2014). Degradation of a therapeutic protein in vivo becomes problematic when the structural modification alters its intended function and safety or efficacy profile (Foye, Lippincott Williams & Wilkins, Philadelphia, 2008). As a result of protein aggregation or degradation, therapeutic activity can be decreased, increased, or altered to have off-target effects. Protein degradation or aggregation could be facilitated under inflammatory circumstances in diverse clinical settings such as cancer, chronic inflammatory diseases, organ transplants, infectious diseases, and cardiovascular disorders, and can exacerbate an inflammatory response with unintended consequences (Chennamsetty et al., Proc Natl Acad Sci U S A 106(29):11937–11942, 2009; Hermeling et al., Pharm Res, 21(6):897–903, 2004). Therefore, characterizing and controlling the degradation or aggregation profiles for a therapeutic protein, especially for indications where the physiological environment presents additional opportunity for instability, is an essential component of a drug manufacturer’s control strategy. Evaluating a manufacturer’s control strategy is a key risk assessment tool for the regulation of investigational and licensed biologic drugs for human use. Better risk assessment can result from (1) greater characterization of critical structural modifications that can influence therapeutic protein function (2), application of sensitive and suitable methods to objectively measure protein modifications, and (3) use of relevant preclinical models or human tissue samples for predicting the in vivo impact of the inflammatory environment on such protein alterations. The increasing number of novel investigational drugs and the simultaneous demand for safer and more effective drugs warrants the need to examine the mechanisms by which therapeutic proteins are modified in vitro and in vivo, as well as apply modern analytical and genetic engineering techniques to design biobetter biologic drugs with improved safety and efficacy profiles. This chapter will examine factors known to alter the stability of therapeutic proteins in vivo, potential interactions of susceptible proteins with the inflammatory environment, and review some challenges and potential strategies for designing biobetters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adibzadeh M et al (1992) Activity of liposomal interleukin-2 in vitro. Mol Biother 4(1):24–28

    CAS  PubMed  Google Scholar 

  • Almeida MR, Saraiva MJ (2012) Clearance of extracellular misfolded proteins in systemic amyloidosis: experience with transthyretin. FEBS Lett 586(18):2891–2896

    CAS  PubMed  Google Scholar 

  • Amin KA, Mohamed BM, El-Wakil MA, Ibrahem SO (2012) Impact of breast cancer and combination chemotherapy on oxidative stress, hepatic and cardiac markers. J Breast Cancer 15(3):306–312

    PubMed Central  PubMed  Google Scholar 

  • Amor S et al (2014) Inflammation in neurodegenerative diseases–an update. Immunology 142(2):151–166

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ano Bom AP et al (2012) Mutant p53 aggregates into prion-like amyloid oligomers and fibrils: implications for cancer. J Biol Chem 287(33):28152–28162

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arakawa T, Prestrelski SJ, Narhi LO, Boone TC, Kenney WC (1993) Cysteine 17 of recombinant human granulocyte-colony stimulating factor is partially solvent-exposed. J Protein Chem 12(5):525–531

    CAS  PubMed  Google Scholar 

  • Areti A, Yerra VG, Naidu V, Kumar A (2014) Oxidative stress and nerve damage: role in chemotherapy induced peripheral neuropathy. Redox Biol 2:289–295

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aryal B, Jeong J, Rao VA (2014) Doxorubicin-induced carbonylation and degradation of cardiac myosin binding protein C promote cardiotoxicity. Proc Natl Acad Sci U S A 111(5):2011–2016

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bailon P et al (2001) Rational design of a potent, long-lasting form of interferon: a 40 kDa branched polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C. Bioconjug Chem 12(2):195–202

    CAS  PubMed  Google Scholar 

  • Beals JM, Shanafelt AB (2006) Enhancing exposure of protein therapeutics. Drug Discov Today Technol 3(1):87–94

    PubMed  Google Scholar 

  • Bennett CL et al (2004) Pure red-cell aplasia and epoetin therapy. N Engl J Med 351(14):1403–1408

    CAS  PubMed  Google Scholar 

  • Bird GH et al (2010) Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proc Natl Acad Sci U S A 107(32):14093–14098

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bossi O et al (2008) UV irradiation increases ROS production via PKCdelta signaling in primary murine fibroblasts. J Cell Biochem 105(1):194–207

    CAS  PubMed  Google Scholar 

  • Boyd SE, Pike RN, Rudy GB, Whisstock JC, Garcia de la Banda M (2005) PoPS: a computational tool for modeling and predicting protease specificity. J Bioinform Comput Biol 3(3):551–585

    CAS  PubMed  Google Scholar 

  • Braun CR et al (2010) Photoreactive stapled BH3 peptides to dissect the BCL-2 family interactome. Chem Biol 17(12):1325–1333

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brems DN, Brown PL, Becker GW (1990) Equilibrium denaturation of human growth hormone and its cysteine-modified forms. J Biol Chem 265(10):5504–5511

    CAS  PubMed  Google Scholar 

  • Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122(9):945–962

    CAS  PubMed  Google Scholar 

  • Calabrese V et al (2006) Redox regulation of cellular stress response in neurodegenerative disorders. Ital J Biochem 55(3–4):263–282

    CAS  PubMed  Google Scholar 

  • Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL (2009) Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci U S A 106(29):11937–11942

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cines DB, Yasothan U, Kirkpatrick P (2008) Romiplostim. Nat Rev Drug Discov 7(11):887–888

    CAS  PubMed  Google Scholar 

  • Clark R et al (1996) Long-acting growth hormones produced by conjugation with polyethylene glycol. J Biol Chem 271(36):21969–21977

    CAS  PubMed  Google Scholar 

  • Comhair SA, Bhathena PR, Dweik RA, Kavuru M, Erzurum SC (2000) Rapid loss of superoxide dismutase activity during antigen-induced asthmatic response. Lancet 355(9204):624

    CAS  PubMed  Google Scholar 

  • Dabbs RA, Wyatt AR, Yerbury JJ, Ecroyd H, Wilson MR (2013) Extracellular chaperones. Top Curr Chem 328:241–268

    CAS  PubMed  Google Scholar 

  • De Rosa R et al (2005) Intranasal administration of nerve growth factor (NGF) rescues recognition memory deficits in AD11 anti-NGF transgenic mice. Proc Natl Acad Sci U S A 102(10):3811–3816

    PubMed Central  PubMed  Google Scholar 

  • Della Pina P et al (2012) Biological drugs: classic adverse effects and new clinical evidences. Cardiovasc Toxicol 12(4):285–297

    PubMed  Google Scholar 

  • Dobson CM (2006) Protein aggregation and its consequences for human disease. Protein Pept Lett 13(3):219–227

    CAS  PubMed  Google Scholar 

  • Doroshow JH, Locker GY, Myers CE (1980) Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest 65(1):128–135

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dulaney SB, Huang X (2012) Strategies in synthesis of heparin/heparan sulfate oligosaccharides: 2000-present. Adv Carbohydr Chem Biochem 67:95–136

    PubMed Central  CAS  PubMed  Google Scholar 

  • Egrie JC, Browne JK (2001) Development and characterization of novel erythropoiesis stimulating protein (NESP). Br J Cancer 84(S1):3–10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 31(4):290–299

    CAS  PubMed  Google Scholar 

  • Elliott S et al (2004) Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol 32(12):1146–1155

    CAS  PubMed  Google Scholar 

  • Foye WOLTLWDA (2008) Foye’s principles of medicinal chemistry. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P (2012) Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv 9(11):1319–1323

    CAS  PubMed  Google Scholar 

  • Gaspar MM, Perez-Soler R, Cruz ME (1996) Biological characterization of L-asparaginase liposomal formulations. Cancer Chemother Pharmacol 38(4):373–377

    CAS  PubMed  Google Scholar 

  • Gasteiger E et al (2005) Protein Identification and analysis tools on the ExPASy server. In: Walker J (ed) The proteomics protocols handbook. Humana, Totowa, pp 571–607

    Google Scholar 

  • Giasson BI et al (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290(5493):985–989

    CAS  PubMed  Google Scholar 

  • Gillies SD et al (2002) Bi-functional cytokine fusion proteins for gene therapy and antibody-targeted treatment of cancer. Cancer Immunol Immunother 51(8):449–460

    CAS  PubMed  Google Scholar 

  • Goldenberg MM (1999) Etanercept, a novel drug for the treatment of patients with severe, active rheumatoid arthritis. Clin Ther 21(1):75–87, discussion 71–72

    CAS  PubMed  Google Scholar 

  • Goth L (2008) Catalase deficiency and type 2 diabetes. Diabetes Care 31(12):e93

    CAS  PubMed  Google Scholar 

  • Gsponer J, Babu MM (2012) Cellular strategies for regulating functional and nonfunctional protein aggregation. Cell Rep 2(5):1425–1437

    PubMed Central  CAS  PubMed  Google Scholar 

  • Han J et al (2008) Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 283(28):19665–19677

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hazell LJ, van den Berg JJ, Stocker R (1994) Oxidation of low-density lipoprotein by hypochlorite causes aggregation that is mediated by modification of lysine residues rather than lipid oxidation. Biochem J 302(Pt 1):297–304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heikoop JC, van den Boogaart P, Mulders JW, Grootenhuis PD (1997) Structure-based design and protein engineering of intersubunit disulfide bonds in gonadotropins. Nat Biotechnol 15(7):658–662

    CAS  PubMed  Google Scholar 

  • Herczenik E et al (2007) Activation of human platelets by misfolded proteins. Arterioscler Thromb Vasc Biol 27(7):1657–1665

    CAS  PubMed  Google Scholar 

  • Hermeling S, Crommelin DJ, Schellekens H, Jiskoot W (2004) Structure-immunogenicity relationships of therapeutic proteins. Pharm Res 21(6):897–903

    CAS  PubMed  Google Scholar 

  • Hochgrebe T, Pankhurst GJ, Wilce J, Easterbrook-Smith SB (2000) pH-dependent changes in the in vitro ligand-binding properties and structure of human clusterin. Biochemistry 39(6):1411–1419

    CAS  PubMed  Google Scholar 

  • Iborra M et al (2011) Role of oxidative stress and antioxidant enzymes in Crohn’s disease. Biochem Soc Trans 39(4):1102–1106

    CAS  PubMed  Google Scholar 

  • Inoguchi T et al (2003) Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J Am Soc Nephrol 14(8 Suppl 3):S227–S232

    CAS  PubMed  Google Scholar 

  • Ishikawa M et al (1992) The substitution of cysteine 17 of recombinant human G-CSF with alanine greatly enhanced its stability. Cell Struct Funct 17(1):61–65

    CAS  PubMed  Google Scholar 

  • Jasin HE (1983) Generation of IgG aggregates by the myeloperoxidase-hydrogen peroxide system. J Immunol 130(4):1918–1923

    CAS  PubMed  Google Scholar 

  • Jazayeri JA, Carroll GJ (2008) Fc-based cytokines : prospects for engineering superior therapeutics. BioDrugs 22(1):11–26

    CAS  PubMed  Google Scholar 

  • Jiang Y, Jiang W, Qiu Y, Dai W (2011) Effect of a structurally modified human granulocyte colony stimulating factor, G-CSFa, on leukopenia in mice and monkeys. J Hematol Oncol 4:28

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345(1–2):91–104

    CAS  PubMed  Google Scholar 

  • Kahook MY et al (2010) High-molecular-weight aggregates in repackaged bevacizumab. Retina 30(6):887–892

    PubMed  Google Scholar 

  • Kaufman RJ (1998) Post-translational modifications required for coagulation factor secretion and function. Thromb Haemost 79(6):1068–1079

    CAS  PubMed  Google Scholar 

  • Keeney PM et al (2009) Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson’s disease cell model. Hum Gene Ther 20(8):897–907

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kim TH et al (2012) PEG-transferrin conjugated TRAIL (TNF-related apoptosis-inducing ligand) for therapeutic tumor targeting. J Control Release 162(2):422–428

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kirkham P, Rahman I (2006) Oxidative stress in asthma and COPD: antioxidants as a therapeutic strategy. Pharmacol Ther 111(2):476–494

    CAS  PubMed  Google Scholar 

  • Kroon DJ, Baldwin-Ferro A, Lalan P (1992) Identification of sites of degradation in a therapeutic monoclonal antibody by peptide mapping. Pharm Res 9(11):1386–1393

    CAS  PubMed  Google Scholar 

  • Labbadia J et al (2012) Suppression of protein aggregation by chaperone modification of high molecular weight complexes. Brain 135(Pt 4):1180–1196

    PubMed Central  PubMed  Google Scholar 

  • Lam XM, Yang JY, Cleland JL (1997) Antioxidants for prevention of methionine oxidation in recombinant monoclonal antibody HER2. J Pharm Sci 86(11):1250–1255

    CAS  PubMed  Google Scholar 

  • Lawson KV, Rose TE, Harran PG (2013) Template-constrained macrocyclic peptides prepared from native, unprotected precursors. Proc Natl Acad Sci U S A 110(40):E3753–E3760

    PubMed Central  PubMed  Google Scholar 

  • Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB (2001) Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 61(10):3894–3901

    CAS  PubMed  Google Scholar 

  • Li J et al (2001) Thrombocytopenia caused by the development of antibodies to thrombopoietin. Blood 98(12):3241–3248

    CAS  PubMed  Google Scholar 

  • Lochhead JJ, Thorne RG (2012) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64(7):614–628

    CAS  PubMed  Google Scholar 

  • Lopert P, Day BJ, Patel M (2012) Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. PLoS One 7(11):e50683

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu HS et al (1992) Folding and oxidation of recombinant human granulocyte colony stimulating factor produced in Escherichia coli. Characterization of the disulfide-reduced intermediates and cysteine––serine analogs. J Biol Chem 267(13):8770–8777

    CAS  PubMed  Google Scholar 

  • Lu HS et al (1999) Chemical modification and site-directed mutagenesis of methionine residues in recombinant human granulocyte colony-stimulating factor: effect on stability and biological activity. Arch Biochem Biophys 362(1):1–11

    CAS  PubMed  Google Scholar 

  • Luxon BA, Grace M, Brassard D, Bordens R (2002) Pegylated interferons for the treatment of chronic hepatitis C infection. Clin Ther 24(9):1363–1383

    CAS  PubMed  Google Scholar 

  • Mansour RB et al (2008) Increased levels of autoantibodies against catalase and superoxide dismutase associated with oxidative stress in patients with rheumatoid arthritis and systemic lupus erythematosus. Scand J Rheumatol 37(2):103–108

    PubMed  Google Scholar 

  • Matheson NR, Wong PS, Travis J (1979) Enzymatic inactivation of human alpha-1-proteinase inhibitor by neutrophil myeloperoxidase. Biochem Biophys Res Commun 88(2):402–409

    CAS  PubMed  Google Scholar 

  • Matheson NR, Janoff A, Travis J (1982) Enzymatic oxidation of alpha-1-proteinase inhibitor in abnormal tissue turnover. Mol Cell Biochem 45(2):65–71

    CAS  PubMed  Google Scholar 

  • McGoff P, Scher DS (2000) Solution formulation of proteins/peptides. In: McNally EJ (ed) Protein formulation and delivery. Marcel Dekker, New York, pp 133–152

    Google Scholar 

  • Meredith SC (2005) Protein denaturation and aggregation: cellular responses to denatured and aggregated proteins. Ann N Y Acad Sci 1066:181–221

    CAS  PubMed  Google Scholar 

  • Migliore MM, Vyas TK, Campbell RB, Amiji MM, Waszczak BL (2010) Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. J Pharm Sci 99(4):1745–1761

    CAS  PubMed  Google Scholar 

  • Mohsenzadegan M, Mirshafiey A (2012) The immunopathogenic role of reactive oxygen species in Alzheimer disease. Iran J Allergy Asthma Immunol 11(3):203–216

    CAS  PubMed  Google Scholar 

  • Mulinacci F, Poirier E, Capelle MA, Gurny R, Arvinte T (2013) Influence of methionine oxidation on the aggregation of recombinant human growth hormone. Eur J Pharm Biopharm 85(1):42–52

    CAS  PubMed  Google Scholar 

  • Nilsson P et al (2013) A2 secretion and plaque formation depend on autophagy. Cell Rep 5(1):61–69

    CAS  PubMed  Google Scholar 

  • Park JB et al (2010) PEGylation of bacterial cocaine esterase for protection against protease digestion and immunogenicity. J Control Release 142(2):174–179

    PubMed Central  CAS  PubMed  Google Scholar 

  • Patel J, Kothari R, Tunga R, Ritter NM, Tunga BS (2011) Stability considerations for biopharmaceuticals. Part 1: overview of protein and peptide degradation pathways. Bioprocess Int 9:20–31

    CAS  Google Scholar 

  • Pavisic R et al (2010) Recombinant human granulocyte colony stimulating factor pre-screening and screening of stabilizing carbohydrates and polyols. Int J Pharm 387(1–2):110–119

    CAS  PubMed  Google Scholar 

  • Perl A (2013) Oxidative stress in the pathology and treatment of systemic lupus erythematosus. Nat Rev Rheumatol 9(11):674–686

    PubMed Central  CAS  PubMed  Google Scholar 

  • Phillips NB et al (2010) Supramolecular protein engineering: design of zinc-stapled insulin hexamers as a long acting depot. J Biol Chem 285(16):11755–11759

    PubMed Central  CAS  PubMed  Google Scholar 

  • Poon S, Easterbrook-Smith SB, Rybchyn MS, Carver JA, Wilson MR (2000) Clusterin is an ATP-independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry 39(51):15953–15960

    CAS  PubMed  Google Scholar 

  • Rajadhyaksha M, Boyden T, Liras J, El-Kattan A, Brodfuehrer J (2011) Current advances in delivery of biotherapeutics across the blood–brain barrier. Curr Drug Discov Technol 8(2):87–101

    CAS  PubMed  Google Scholar 

  • Raju TS, Scallon BJ (2006) Glycosylation in the Fc domain of IgG increases resistance to proteolytic cleavage by papain. Biochem Biophys Res Commun 341(3):797–803

    CAS  PubMed  Google Scholar 

  • Rangel LP, Costa DC, Vieira TC, Silva JL (2014) The aggregation of mutant p53 produces prion-like properties in cancer. Prion 8(1):75–84

    CAS  PubMed  Google Scholar 

  • Raso SW et al (2005) Aggregation of granulocyte-colony stimulating factor in vitro involves a conformationally altered monomeric state. Protein Sci 14(9):2246–2257

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ratanji KD, Derrick JP, Dearman RJ, Kimber I (2014) Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol 11(2):99–109

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reily C et al (2013) Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biol 1(1):86–93

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reubsaet JL et al (1998) Oxidation of recombinant methionyl human granulocyte colony stimulating factor. J Pharm Biomed Anal 17(2):283–289

    CAS  PubMed  Google Scholar 

  • Rosenberg AS (2006) Effects of protein aggregates: an immunologic perspective. AAPS J 8(3):E501–E507

    PubMed Central  PubMed  Google Scholar 

  • Schellekens H, Hennink WE, Brinks V (2013) The immunogenicity of polyethylene glycol: facts and fiction. Pharm Res 30(7):1729–1734

    CAS  PubMed  Google Scholar 

  • Schulte S (2008) Use of albumin fusion technology to prolong the half-life of recombinant factor VIIa. Thromb Res 122(Suppl 4):S14–S19

    CAS  PubMed  Google Scholar 

  • Schulte S (2009) Half-life extension through albumin fusion technologies. Thromb Res 124(Suppl 2):S6–S8

    CAS  PubMed  Google Scholar 

  • Seidl A et al (2012) Tungsten-induced denaturation and aggregation of epoetin alfa during primary packaging as a cause of immunogenicity. Pharm Res 29(6):1454–1467

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shacter E (2000) Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 32(3–4):307–326

    CAS  PubMed  Google Scholar 

  • Shacter E, Beecham EJ, Covey JM, Kohn KW, Potter M (1988) Activated neutrophils induce prolonged DNA damage in neighboring cells. Carcinogenesis 9(12):2297–2304

    CAS  PubMed  Google Scholar 

  • Shah D, Sah S, Wanchu A, Wu MX, Bhatnagar A (2013) Altered redox state and apoptosis in the pathogenesis of systemic lupus erythematosus. Immunobiology 218(4):620–627

    CAS  PubMed  Google Scholar 

  • Sharma B (2007a) Immunogenicity of therapeutic proteins. Part 1: impact of product handling. Biotechnol Adv 25(3):310–317

    CAS  PubMed  Google Scholar 

  • Sharma B (2007b) Immunogenicity of therapeutic proteins. Part 3: impact of manufacturing changes. Biotechnol Adv 25(3):325–331

    CAS  PubMed  Google Scholar 

  • Shukla HD, Pitha PM (2012) Role of hsp90 in systemic lupus erythematosus and its clinical relevance. Autoimmune Dis 2012:728605

    PubMed Central  PubMed  Google Scholar 

  • Silva JL, De Moura Gallo CV, Costa DC, Rangel LP (2014) Prion-like aggregation of mutant p53 in cancer. Trends Biochem Sci 39(6):260–267

    CAS  PubMed  Google Scholar 

  • Sola RJ, Griebenow K (2009) Effects of glycosylation on the stability of protein pharmaceuticals. J Pharm Sci 98(4):1223–1245

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song J et al (2011) Bioinformatic approaches for predicting substrates of proteases. J Bioinform Comput Biol 9(1):149–178

    CAS  PubMed  Google Scholar 

  • Song J et al (2012) PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites. PLoS One 7(11):e50300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soong R, Brender JR, Macdonald PM, Ramamoorthy A (2009) Association of highly compact type II diabetes related islet amyloid polypeptide intermediate species at physiological temperature revealed by diffusion NMR spectroscopy. J Am Chem Soc 131(20):7079–7085

    CAS  PubMed  Google Scholar 

  • Sorgato MC, Sartorelli L, Loschen G, Azzi A (1974) Oxygen radicals and hydrogen peroxide in rat brain mitochondria. FEBS Lett 45(1):92–95

    CAS  PubMed  Google Scholar 

  • Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40(12):1250–1258

    CAS  PubMed  Google Scholar 

  • Swaminathan J, Ehrhardt C (2012) Liposomal delivery of proteins and peptides. Expert Opin Drug Deliv 9(12):1489–1503

    CAS  PubMed  Google Scholar 

  • Takalo M, Salminen A, Soininen H, Hiltunen M, Haapasalo A (2013) Protein aggregation and degradation mechanisms in neurodegenerative diseases. Am J Neurodegener Dis 2(1):1–14

    PubMed Central  PubMed  Google Scholar 

  • Tarnai I et al (2007) Effect of C111T polymorphism in exon 9 of the catalase gene on blood catalase activity in different types of diabetes mellitus. Free Radic Res 41(7):806–811

    CAS  PubMed  Google Scholar 

  • Tong P et al (2013) An engineered HIV-1 gp41 trimeric coiled coil with increased stability and anti-HIV-1 activity: implication for developing anti-HIV microbicides. J Antimicrob Chemother 68(11):2533–2544

    CAS  PubMed  Google Scholar 

  • Torosantucci R, Schoneich C, Jiskoot W (2014) Oxidation of therapeutic proteins and peptides: structural and biological consequences. Pharm Res 31(3):541–553

    CAS  PubMed  Google Scholar 

  • Tucker HM et al (2000) The plasmin system is induced by and degrades amyloid-beta aggregates. J Neurosci 20(11):3937–3946

    CAS  PubMed  Google Scholar 

  • Ulrich AS (2002) Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 22(2):129–150

    CAS  PubMed  Google Scholar 

  • Veronese FM, Mero A (2008) The impact of PEGylation on biological therapies. BioDrugs 22(5):315–329

    CAS  PubMed  Google Scholar 

  • Vigneri R, Squatrito S, Sciacca L (2010) Insulin and its analogs: actions via insulin and IGF receptors. Acta Diabetol 47(4):271–278

    CAS  PubMed  Google Scholar 

  • Vugmeyster Y, Xu X, Theil FP, Khawli LA, Leach MW (2012) Pharmacokinetics and toxicology of therapeutic proteins: advances and challenges. World J Biol Chem 3(4):73–92

    PubMed Central  PubMed  Google Scholar 

  • Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24(10):1241–1252

    CAS  PubMed  Google Scholar 

  • Wang T, Xia Y (2012) Inducible nitric oxide synthase aggresome formation is mediated by nitric oxide. Biochem Biophys Res Commun 426(3):386–389

    CAS  PubMed  Google Scholar 

  • Wang YS et al (2002) Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv Drug Deliv Rev 54(4):547–570

    CAS  PubMed  Google Scholar 

  • Wang YJ et al (2010) PEGylation markedly enhances the in vivo potency of recombinant human non-glycosylated erythropoietin: a comparison with glycosylated erythropoietin. J Control Release 145(3):306–313

    CAS  PubMed  Google Scholar 

  • Wang XM, Lehky TJ, Brell JM, Dorsey SG (2012) Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 59(1):3–9

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weiner AL (1994) Liposomes for protein delivery: selecting manufacture and development processes. Immuno Methods 4(3):201–209

    CAS  Google Scholar 

  • Wolf P et al (2000) Topical treatment with liposomes containing T4 endonuclease V protects human skin in vivo from ultraviolet-induced upregulation of interleukin-10 and tumor necrosis factor-alpha. J Invest Dermatol 114(1):149–156

    CAS  PubMed  Google Scholar 

  • Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11(12):3013–3069

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wyatt AR, Yerbury JJ, Ecroyd H, Wilson MR (2013) Extracellular chaperones and proteostasis. Annu Rev Biochem 82:295–322

    CAS  PubMed  Google Scholar 

  • Xiao G, Gan LS (2013) Receptor-mediated endocytosis and brain delivery of therapeutic biologics. Int J Cell Biol 2013:703545

    PubMed Central  PubMed  Google Scholar 

  • Xu X, Vugmeyster Y (2012) Challenges and opportunities in absorption, distribution, metabolism, and excretion studies of therapeutic biologics. AAPS J 14(4):781–791

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xu J et al (2011) Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol 7(5):285–295

    CAS  PubMed  Google Scholar 

  • Yao Z, Dai W, Perry J, Brechbiel MW, Sung C (2004) Effect of albumin fusion on the biodistribution of interleukin-2. Cancer Immunol Immunother 53(5):404–410

    CAS  PubMed  Google Scholar 

  • Yerbury JJ, Rybchyn MS, Easterbrook-Smith SB, Henriques C, Wilson MR (2005) The acute phase protein haptoglobin is a mammalian extracellular chaperone with an action similar to clusterin. Biochemistry 44(32):10914–10925

    CAS  PubMed  Google Scholar 

  • Yin J et al (2005) Effects of excipients on the hydrogen peroxide-induced oxidation of methionine residues in granulocyte colony-stimulating factor. Pharm Res 22(1):141–147

    CAS  PubMed  Google Scholar 

  • Zheng K, Yarmarkovich M, Bantog C, Bayer R, Patapoff TW (2014) Influence of glycosylation pattern on the molecular properties of monoclonal antibodies. MAbs 6(3):649–658

    PubMed Central  PubMed  Google Scholar 

  • Zhong X, Wright JF (2013) Biological insights into therapeutic protein modifications throughout trafficking and their biopharmaceutical applications. Int J Cell Biol 2013:273086

    PubMed Central  PubMed  Google Scholar 

  • Zinman B (2013) Newer insulin analogs: advances in basal insulin replacement. Diabetes Obes Metab 15(Suppl 1):6–10

    CAS  PubMed  Google Scholar 

Download references

Disclosure

The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the U.S. Food and Drug Administration and the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ashutosh Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Rao, V.A. (2015). Perspectives on Engineering Biobetter Therapeutic Proteins with Greater Stability in Inflammatory Environments. In: Rosenberg, A., Demeule, B. (eds) Biobetters. AAPS Advances in the Pharmaceutical Sciences Series, vol 19. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2543-8_11

Download citation

Publish with us

Policies and ethics