Skip to main content

Transgene-Induced Gene Silencing in Plants

  • Protocol
  • First Online:
Plant Gene Silencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1287))

Abstract

RNAi is the most important reverse genetics tool to trigger transgenic gene silencing, which is now applied widely to investigate gene function and also practically applied to enhance resistance to biotic and abiotic stress. Recently, the most effective way to induce transgenic gene silencing is to introduce inverted repeat (IR) double-stranded RNA (dsRNA) or artificial microRNA (amiRNA) instead of a transgenic sense or antisense strand of genes. The stable transgenic plants can be acquired through Agrobacterium tumefaciens-mediated transformation of binary vectors containing an RNAi hairpin construct or amiRNA precursor backbone sequence. Here we primarily describe these two methods’ vector construction, plant transformation, and transgenic line verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  CAS  PubMed  Google Scholar 

  2. Baulcombe D (2005) RNA silencing. Trends Biochem Sci 30:290–293

    Article  CAS  PubMed  Google Scholar 

  3. Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci U S A 97:4985–4990

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 95:13959–13964

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Smith NA, Singh SP, Wang MB et al (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  CAS  PubMed  Google Scholar 

  6. Wesley SV, Helliwell CA, Smith NA et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  7. Guo HS, Fei JF, Xie Q et al (2003) A chemical-regulated inducible RNAi system in plants. Plant J 34:383–392

    Article  CAS  PubMed  Google Scholar 

  8. Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  10. Reinhart BJ, Weinstein EG, Rhoades MW et al (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Ambros V (2003) MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113:673–676

    Article  CAS  PubMed  Google Scholar 

  12. Finnegan EJ, Margis R, Waterhouse PM (2003) Posttranscriptional gene silencing is not compromised in the Arabidopsis CARPEL FACTORY (DICER-LIKE1) mutant, a homolog of Dicer-1 from Drosophila. Curr Biol 13:236–240

    Article  CAS  PubMed  Google Scholar 

  13. Yang L, Liu ZQ, Lu F et al (2006) SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47:841–850

    Article  CAS  PubMed  Google Scholar 

  14. Dong Z, Han MH, Fedoroff N (2008) The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proc Natl Acad Sci U S A 105:9970–9975

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits rnicroRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102:11928–11933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Guo HS, Xie Q, Fei JF et al (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Vaucheret H, Vazquez F, Crete P et al (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Schwab R, Ossowski S, Riester M et al (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  CAS  PubMed  Google Scholar 

  20. Warthmann N, Chen H, Ossowski S et al (2008) Highly specific gene silencing by artificial miRNAs in rice. PLos One 3:e1829

    Article  PubMed Central  PubMed  Google Scholar 

  21. De Guire V, Caron M, Scott N et al (2010) Designing small multiple-target artificial RNAs. Nucleic Acids Res 38:e140

    Article  PubMed Central  PubMed  Google Scholar 

  22. Niu QW, Lin SS, Reyes JL et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  CAS  PubMed  Google Scholar 

  23. Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Duan CG, Wang CH, Fang RX et al (2008) Artificial MicroRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11095

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Du QS, Duan CG, Zhang ZH et al (2007) DCL4 targets Cucumber mosaic virus satellite RNA at novel secondary structures. J Virol 81:9142–9151

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Shapiro MB, Senapathy P (1987) RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res 15:7155–7174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  28. Li T, Liu B, Spalding MH et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  29. DeFrancesco L (2011) Move over ZFNs. Nat Biotechnol 29:681–684

    Article  Google Scholar 

  30. Mao YB, Cai WJ, Wang JW et al (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  CAS  PubMed  Google Scholar 

  31. Baum JA, Bogaert T, Clinton W et al (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  PubMed  Google Scholar 

  32. Duan CG, Wang CH, Guo HS (2012) Application of RNA silencing to plant disease resistance. Silence 3:5

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Science Foundation of China (91219301 and 31123007) and the Ministry of Science and Technology of China (2011CB100703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Shan Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jin, Y., Guo, HS. (2015). Transgene-Induced Gene Silencing in Plants. In: Mysore, K., Senthil-Kumar, M. (eds) Plant Gene Silencing. Methods in Molecular Biology, vol 1287. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2453-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2453-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2452-3

  • Online ISBN: 978-1-4939-2453-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics