Skip to main content

Methods to Immobilize GPCR on the Surface of SPR Sensors

  • Protocol
  • First Online:
Book cover G Protein-Coupled Receptor Screening Assays

Abstract

The G protein-coupled receptors (GPCRs) form one of the largest membrane receptor families. The nature of the ligands that interact with these receptors is highly diverse; they include light, peptides and hormones, neurotransmitters, and small molecular weight compounds. The GPCRs are involved in a wide variety of physiological processes and thus hold considerable therapeutic potential.

GPCR function is usually determined in cell-based assays, whose complexity nonetheless limits their use. The use of alternative, cell-free assays is hampered by the difficulties in purifying these seven-transmembrane domain receptors without altering their functional properties. Several methods have been proposed to immobilize GPCR on biosensor surfaces which use antibodies or avidin-/biotin-based capture procedures, alone or with reconstitution of the GPCR physiological microenvironment. Here we propose a method for GPCR immobilization in their native membrane microenvironment that requires no manipulation of the target receptor and maintains the many conformations GPCR can adopt in the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rich RL, Myszka DG (2007) Higher-throughput, label-free, real-time molecular interaction analysis. Anal Biochem 361:1–6

    Article  CAS  PubMed  Google Scholar 

  2. Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  CAS  PubMed  Google Scholar 

  3. Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT et al (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A 100:4903–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  5. Wise A, Gearing K, Rees S (2002) Target validation of G-protein coupled receptors. Drug Discov Today 7:235–246

    Article  CAS  PubMed  Google Scholar 

  6. Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32:325–338

    Article  CAS  PubMed  Google Scholar 

  7. Drake MT, Shenoy SK, Lefkowitz RJ (2006) Trafficking of G protein-coupled receptors. Circ Res 99:570–582

    Article  CAS  PubMed  Google Scholar 

  8. Tan CM, Brady AE, Nickols HH, Wang Q, Limbird LE (2004) Membrane trafficking of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 44:559–609

    Article  CAS  PubMed  Google Scholar 

  9. Alves ID, Park CK, Hruby VJ (2005) Plasmon resonance methods in GPCR signaling and other membrane events. Curr Protein Pept Sci 6:293–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wink T, van Zuilen SJ, Bult A, van Bennkom WP (1997) Self-assembled monolayers for biosensors. Analyst 122:43R–50R

    Article  CAS  PubMed  Google Scholar 

  11. Fruh V, IJzerman AP, Siegal G (2011) How to catch a membrane protein in action: a review of functional membrane protein immobilization strategies and their applications. Chem Rev 111:640–656

    Article  PubMed  CAS  Google Scholar 

  12. O’Shannessy DJ, Brigham-Burke M, Peck K (1992) Immobilization chemistries suitable for use in the BIAcore surface plasmon resonance detector. Anal Biochem 205:132–136

    Article  PubMed  Google Scholar 

  13. Stein T, Gerisch G (1996) Oriented binding of a lipid-anchored cell adhesion protein onto a biosensor surface using hydrophobic immobilization and photoactive crosslinking. Anal Biochem 237:252–259

    Article  CAS  PubMed  Google Scholar 

  14. Gottschalk I, Lagerquist C, Zuo SS, Lundqvist A, Lundahl P (2002) Immobilized-biomembrane affinity chromatography for binding studies of membrane proteins. J Chromatogr B Analyt Technol Biomed Life Sci 768:31–40

    Article  CAS  PubMed  Google Scholar 

  15. Civjan NR, Bayburt TH, Schuler MA, Sligar SG (2003) Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers. Biotechniques 35:556–563

    Article  CAS  PubMed  Google Scholar 

  16. Charvolin D, Perez JB, Rouviere F, Giusti F, Bazzacco P, Abdine A et al (2009) The use of amphipols as universal molecular adapters to immobilize membrane proteins onto solid supports. Proc Natl Acad Sci U S A 106:405–410

    Article  CAS  PubMed  Google Scholar 

  17. Harding PJ, Hadingham TC, McDonnell JM, Watts A (2006) Direct analysis of a GPCR-agonist interaction by surface plasmon resonance. Eur Biophys J 35:709–712

    Article  CAS  PubMed  Google Scholar 

  18. Neumann L, Wohland T, Whelan RJ, Zare RN, Kobilka BK (2002) Functional immobilization of a ligand-activated G-protein-coupled receptor. Chembiochem 3:993–998

    Article  CAS  PubMed  Google Scholar 

  19. Karlsson OP, Lofas S (2002) Flow-mediated on-surface reconstitution of G-protein coupled receptors for applications in surface plasmon resonance biosensors. Anal Biochem 300:132–138

    Article  CAS  PubMed  Google Scholar 

  20. Navratilova I, Dioszegi M, Myszka DG (2006) Analyzing ligand and small molecule binding activity of solubilized GPCRs using biosensor technology. Anal Biochem 355:132–139

    Article  CAS  PubMed  Google Scholar 

  21. Navratilova I, Sodroski J, Myszka DG (2005) Solubilization, stabilization, and purification of chemokine receptors using biosensor technology. Anal Biochem 339:271–281

    Article  CAS  PubMed  Google Scholar 

  22. Stenlund P, Babcock GJ, Sodroski J, Myszka DG (2003) Capture and reconstitution of G protein-coupled receptors on a biosensor surface. Anal Biochem 316:243–250

    Article  CAS  PubMed  Google Scholar 

  23. Salamon Z, Wang Y, Brown MF, Macleod HA, Tollin G (1994) Conformational changes in rhodopsin probed by surface plasmon resonance spectroscopy. Biochemistry 33:13706–13711

    Article  CAS  PubMed  Google Scholar 

  24. Munoz LM, Holgado BL, Martinez AC, Rodriguez-Frade JM, Mellado M (2012) Chemokine receptor oligomerization: a further step toward chemokine function. Immunol Lett 145:23–29

    Article  CAS  PubMed  Google Scholar 

  25. Thelen M, Munoz LM, Rodriguez-Frade JM, Mellado M (2010) Chemokine receptor oligomerization: functional considerations. Curr Opin Pharmacol 10:38–43

    Article  CAS  PubMed  Google Scholar 

  26. Fallahi-Sichani M, Linderman JJ (2009) Lipid raft-mediated regulation of G-protein coupled receptor signaling by ligands which influence receptor dimerization: a computational study. PLoS One 4:e6604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 143:235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu W, Yoon SI, Huang P, Wang Y, Chen C, Chong PL et al (2006) Localization of the kappa opioid receptor in lipid rafts. J Pharmacol Exp Ther 317:1295–1306

    Article  CAS  PubMed  Google Scholar 

  29. Yoshiura C, Kofuku Y, Ueda T, Mase Y, Yokogawa M, Osawa M et al (2010) NMR analyses of the interaction between CCR5 and its ligand using functional reconstitution of CCR5 in lipid bilayers. J Am Chem Soc 132:6768–6777

    Article  CAS  PubMed  Google Scholar 

  30. Hoffman TL, Canziani G, Jia L, Rucker J, Doms RW (2000) A biosensor assay for studying ligand-membrane receptor interactions: binding of antibodies and HIV-1 Env to chemokine receptors. Proc Natl Acad Sci U S A 97:11215–11220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weiss RA (1987) Retroviruses and human disease. J Clin Pathol 40:1064–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Verma IM, Somia N (1997) Gene therapy – promises, problems and prospects. Nature 389:239–242

    Article  CAS  PubMed  Google Scholar 

  33. Balliet JW, Bates P (1998) Efficient infection mediated by viral receptors incorporated into retroviral particles. J Virol 72:671–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Walther W, Stein U (2000) Viral vectors for gene transfer: a review of their use in the treatment of human diseases. Drugs 60:249–271

    Article  CAS  PubMed  Google Scholar 

  35. Lewis PF, Emerman M (1994) Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 68:510–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Matrai J, Chuah MK, VandenDriessche T (2010) Recent advances in lentiviral vector development and applications. Mol Ther 18:477–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vogt VM, Simon MN (1999) Mass determination of rous sarcoma virus virions by scanning transmission electron microscopy. J Virol 73:7050–7055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Akkina RK, Walton RM, Chen ML, Li QX, Planelles V, Chen IS (1996) High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J Virol 70:2581–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bartz SR, Rogel ME, Emerman M (1996) Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control. J Virol 70:2324–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  PubMed  Google Scholar 

  41. Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  CAS  PubMed  Google Scholar 

  42. Sachdeva G, D’Costa J, Cho JE, Kachapati K, Choudhry V, Arya SK (2007) Chimeric HIV-1 and HIV-2 lentiviral vectors with added safety insurance. J Med Virol 79:118–126

    Article  CAS  PubMed  Google Scholar 

  43. Gruber A, Kan-Mitchell J, Kuhen KL, Mukai T, Wong-Staal F (2000) Dendritic cells transduced by multiply deleted HIV-1 vectors exhibit normal phenotypes and functions and elicit an HIV-specific cytotoxic T-lymphocyte response in vitro. Blood 96:1327–1333

    Article  CAS  PubMed  Google Scholar 

  44. Amado RG, Chen IS (1999) Lentiviral vectors–the promise of gene therapy within reach? Science 285:674–676

    Article  CAS  PubMed  Google Scholar 

  45. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nguyen DH, Taub DD (2003) Inhibition of chemokine receptor function by membrane cholesterol oxidation. Exp Cell Res 291:36–45

    Article  CAS  PubMed  Google Scholar 

  47. Zhang J, Pekosz A, Lamb RA (2000) Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol 4:4634–4644

    Article  Google Scholar 

  48. Vega B, Calle A, Sanchez A, Lechuga LM, Ortiz AM, Armelles G et al (2013) Real-time detection of the chemokine CXCL12 in urine samples by surface plasmon resonance. Talanta 109:209–215

    Article  CAS  PubMed  Google Scholar 

  49. Vega B, Munoz LM, Holgado BL, Lucas P, Rodriguez-Frade JM, Calle A et al (2011) Technical advance: surface plasmon resonance-based analysis of CXCL12 binding using immobilized lentiviral particles. J Leukoc Biol 90:399–408

    Article  CAS  PubMed  Google Scholar 

  50. Barroso R, Martinez Munoz L, Barrondo S, Vega B, Holgado BL, Lucas P et al (2012) EBI2 regulates CXCL13-mediated responses by heterodimerization with CXCR5. FASEB J 26:4841–4854

    Article  CAS  PubMed  Google Scholar 

  51. Gasmi M, Glynn J, Jin MJ, Jolly DJ, Yee JK, Chen ST (1999) Requirements for efficient production and transduction of human immunodeficiency virus type 1-based vectors. J Virol 73:1828–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 93:11382–11388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frade JM, Mellado M, del Real G, Gutierrez-Ramos JC, Lind P, Martinez-A C (1997) Characterization of the CCR2 chemokine receptor: functional CCR2 receptor expression in B cells. J Immunol 159:5576–5584

    CAS  PubMed  Google Scholar 

  54. D’Hautcourt JL (2002) Quantitative flow cytometric analysis of membrane antigen expression. In: Robinson JP (ed) Current protocols in cytometry. Wiley, New York, Chapter 6: Unit 6 12

    Google Scholar 

  55. Mellado M, Kremer L, Manes S, Martinez-A C, Rodriguez-Frade JM (1997) Characterization of antigen-antibody and ligand-receptor interactions. In: Lefkovits I (ed) Immunology methods manual: . Academic, London, pp 1145–1162

    Google Scholar 

  56. Briggs JA, Wilk T, Welker R, Krausslich HG, Fuller SD (2003) Structural organization of authentic, mature HIV-1 virions and cores. EMBO J 22:1707–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mauriz E, Calle A, Abad A, Montoya A, Hildebrandt A, Barcelo D et al (2006) Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor. Biosens Bioelectron 21:2129–2136

    Article  CAS  PubMed  Google Scholar 

  58. Mauriz E, Calle A, Montoya A, Lechuga LM (2006) Determination of environmental organic pollutants with a portable optical immunosensor. Talanta 69:359–364

    Article  CAS  PubMed  Google Scholar 

  59. Scherr M, Battmer K, Blomer U, Ganser A, Grez M (2001) Quantitative determination of lentiviral vector particle numbers by real-time PCR. Biotechniques 31:520–524

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the people at the Chemokine SIgnaling Group for much of the work that contributed to this review, especially Beatriz Vega, Pilar Lucas, and Jorge Villaverde, and to C. Bastos and C. Mark for the secretarial and editorial assistance, respectively. This work was supported in part by grants from the Spanish Ministry of Science and Innovation (SAF 2011-27370), the RETICS Program (RD12/0009/009; RIER), and the Madrid regional government (S2010/BMD-2350; RAPHYME).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Miguel Rodríguez-Frade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Martínez-Muñoz, L., Barroso, R., Paredes, A.G., Mellado, M., Rodríguez-Frade, J.M. (2015). Methods to Immobilize GPCR on the Surface of SPR Sensors. In: Prazeres, D.M.F., Martins, S.A.M. (eds) G Protein-Coupled Receptor Screening Assays. Methods in Molecular Biology, vol 1272. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-2336-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2336-6_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-2335-9

  • Online ISBN: 978-1-4939-2336-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics