Skip to main content

Gene Delivery to Neurons of the Dorsal Root Ganglia Using Adeno-Associated Viral Vectors

  • Protocol
  • First Online:
Gene Delivery and Therapy for Neurological Disorders

Part of the book series: Neuromethods ((NM,volume 98))

Abstract

Viral vector-mediated gene transfer, especially using adeno-associated viral (AAV) vectors, is a powerful strategy to manipulate gene expression in vivo in injured neurons. In this chapter we provide two methods to efficiently transduce dorsal root ganglion (DRG) neurons in vivo using AAV. We describe detailed procedures to perform direct injections into specific DRG and delivery via the intrathecal space to transduce the lumbar DRG. Finally, we discuss the specific advantages and disadvantages of these two methods of delivery. The main advantages of direct injection are that high transduction rates can be achieved in specific ganglia (L4/L5) with low amounts (μl) of a viral vector stock; however, the procedure is complex, invasive, and time-consuming. Intrathecal injection has the advantage of being a fast and simple method to transduce multiple DRG bilaterally, and involves no surgical manipulation of the DRG. However, intrathecal delivery does require much larger amounts of viral stock (10–20 μl) and has the disadvantage that viral particles will leak from the cerebrospinal fluid to the spinal cord and/or peripheral tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaudet D, Methot J, Dery S et al (2013) Efficacy and long-term safety of alipogene tiparvovec (AAV1-LPLS447X) gene therapy for lipoprotein lipase deficiency: an open-label trial. Gene Ther 20:361–369

    Article  CAS  PubMed  Google Scholar 

  2. Kaplitt MG, Feigin A, Tang C et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105

    Article  CAS  PubMed  Google Scholar 

  3. Hermens WT, Ter BO, Dijkhuizen PA et al (1999) Purification of recombinant adeno-associated virus by iodixanol gradient ultracentrifugation allows rapid and reproducible preparation of vector stocks for gene transfer in the nervous system. Hum Gene Ther 10:1885–1891

    Article  CAS  PubMed  Google Scholar 

  4. Kaplitt MG, Leone P, Samulski RJ et al (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 8:148–154

    Article  CAS  PubMed  Google Scholar 

  5. McCown TJ, Xiao X, Li J et al (1996) Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 713:99–107

    Article  CAS  PubMed  Google Scholar 

  6. Peel AL, Zolotukhin S, Schrimsher GW et al (1997) Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Ther 4:16–24

    Article  CAS  PubMed  Google Scholar 

  7. Hoke A (2006) Mechanisms of Disease: what factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol 2:448–454

    Article  CAS  PubMed  Google Scholar 

  8. Macgillavry HD, Stam FJ, Sassen MM et al (2009) NFIL3 and cAMP response element-binding protein form a transcriptional feedforward loop that controls neuronal regeneration-associated gene expression. J Neurosci 29:15542–15550

    Article  CAS  PubMed  Google Scholar 

  9. Stam FJ, Macgillavry HD, Armstrong NJ et al (2007) Identification of candidate transcriptional modulators involved in successful regeneration after nerve injury. Eur J Neurosci 25:3629–3637

    Article  PubMed  Google Scholar 

  10. Geeven G, Macgillavry HD, Eggers R et al (2011) LLM3D: a log-linear modeling-based method to predict functional gene regulatory interactions from genome-wide expression data. Nucleic Acids Res 39:5313–5327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Arthur-Farraj PJ, Latouche M, Wilton DK et al (2012) c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75:633–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Li S, Liu Q, Wang Y et al (2013) Differential gene expression profiling and biological process analysis in proximal nerve segments after sciatic nerve transection. PLoS One 8:e57000

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Verhaagen J, Van Kesteren RE, Bossers KA et al (2012) Molecular target discovery for neural repair in the functional genomics era. Handb Clin Neurol 109:595–616

    Article  PubMed  Google Scholar 

  14. Beutler AS, Reinhardt M (2009) AAV for pain: steps towards clinical translation. Gene Ther 16:461–469

    Article  CAS  PubMed  Google Scholar 

  15. Mingozzi F, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12:341–355

    Article  CAS  PubMed  Google Scholar 

  16. Ginn SL, Alexander IE, Edelstein ML et al (2013) Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med 15:65–77

    Article  CAS  PubMed  Google Scholar 

  17. Mason MR, Ehlert EM, Eggers R et al (2010) Comparison of AAV serotypes for gene delivery to dorsal root ganglion neurons. Mol Ther 18:715–724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  PubMed  Google Scholar 

  19. Yu H, Fischer G, Jia G et al (2011) Lentiviral gene transfer into the dorsal root ganglion of adult rats. Mol Pain 7:63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Storek B, Harder NM, Banck MS et al (2006) Intrathecal long-term gene expression by self-complementary adeno-associated virus type 1 suitable for chronic pain studies in rats. Mol Pain 2:4

    Article  PubMed Central  PubMed  Google Scholar 

  21. Storek B, Reinhardt M, Wang C et al (2008) Sensory neuron targeting by self-complementary AAV8 via lumbar puncture for chronic pain. Proc Natl Acad Sci U S A 105:1055–1060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Towne C, Pertin M, Beggah AT et al (2009) Recombinant adeno-associated virus serotype 6 (rAAV2/6)-mediated gene transfer to nociceptive neurons through different routes of delivery. Mol Pain 5:52

    Article  PubMed Central  PubMed  Google Scholar 

  23. Xu Q, Chou B, Fitzsimmons B et al (2012) In vivo gene knockdown in rat dorsal root ganglia mediated by self-complementary adeno-associated virus serotype 5 following intrathecal delivery. PLoS One 7:e32581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Malkmus SA, Yaksh TL (2004) Intrathecal catheterization and drug delivery in the rat. Methods Mol Med 99:109–121

    PubMed  Google Scholar 

  25. Yaksh TL, Rudy TA (1976) Chronic catheterization of the spinal subarachnoid space. Physiol Behav 17:1031–1036

    Article  CAS  PubMed  Google Scholar 

  26. Vulchanova L, Schuster DJ, Belur LR et al (2010) Differential adeno-associated virus mediated gene transfer to sensory neurons following intrathecal delivery by direct lumbar puncture. Mol Pain 6:31

    Article  PubMed Central  PubMed  Google Scholar 

  27. Parikh P, Hao Y, Hosseinkhani M et al (2011) Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc Natl Acad Sci U S A 108:E99–E107

    Article  PubMed Central  PubMed  Google Scholar 

  28. Asato F, Butler M, Blomberg H et al (2001) Distribution of intrathecal catheter positions in rat. Acta Anaesthesiol Scand 45:608–611

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for research funding provided by the International Spinal Research Trust and the Dutch Organization for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew R. J. Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fagoe, N.D., Eggers, R., Verhaagen, J., Mason, M.R.J. (2015). Gene Delivery to Neurons of the Dorsal Root Ganglia Using Adeno-Associated Viral Vectors. In: Bo, X., Verhaagen, J. (eds) Gene Delivery and Therapy for Neurological Disorders. Neuromethods, vol 98. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2306-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2306-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2305-2

  • Online ISBN: 978-1-4939-2306-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics