Skip to main content

Ex Vivo Generation of Functional Immune Cells by Mitochondria-Targeted Photosensitization of Cancer Cells

  • Protocol
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1265))

Abstract

Stimulating the immune system for potent immune therapy against cancer is potentially a revolutionary method to eradicate cancer. Tumors stimulated with photosensitizers (PSs) not only kill cancer cells but also help to boost the immune system. We recently reported that tumor-associated antigens (TAAs) generated by delivery of a mitochondria-acting PS zinc phthalocyanine (ZnPc) to MCF-7 breast cancer cells followed by laser irradiation can lead to ex vivo stimulation of mouse bone marrow-derived dendritic cells (BMDCs). The antigens generated from the breast cancer cells were also found to cause significant DC maturation and the activated DCs were able to stimulate T cells to cytotoxic CD8+ T cells. In this protocol, we describe methods to engineer a mitochondria-targeted biodegradable nanoparticle (NP) formulation, T-ZnPc-NPs for delivery of ZnPc to the mitochondria of MCF-7 cells, subsequent photodynamic therapy (PDT) using a long wavelength laser irradiation to produce TAAs, DC stimulation by the TAAs to secrete interferon-gamma (IFN-γ), and matured DC-driven T-cell activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rakha EA, Putti TC, Abd El-Rehim DM, Paish C, Green AR, Powe DG et al (2006) Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol 208:495–506

    Article  CAS  PubMed  Google Scholar 

  2. Tchou J, Wang LC, Selven B, Zhang H, Conejo-Garcia J, Borghaei H et al (2012) Mesothelin, a novel immunotherapy target for triple negative breast cancer. Breast Cancer Res Treat 133:799–804

    Article  CAS  PubMed  Google Scholar 

  3. Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH et al (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28:3271–3277

    Article  PubMed  Google Scholar 

  4. Nguyen PL, Taghian AG, Katz MS, Niemierko A, Raad RFA, Boon WL et al (2008) Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy. J Clin Oncol 26:2373–2378

    Article  PubMed  Google Scholar 

  5. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Marrache S, Choi JH, Tundup S, Zaver D, Harn DA, Dhar S (2013) Immune stimulating photoactive hybrid nanoparticles for metastatic breast cancer. Integr Biol 5:215–223

    Article  CAS  Google Scholar 

  7. Farokhzad OC, Jon SY, Khademhosseini A, Tran TNT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672

    Article  CAS  PubMed  Google Scholar 

  8. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci U S A 103:6315–6320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  CAS  PubMed  Google Scholar 

  10. Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF et al (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci U S A 105:2586–2591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC (2011) Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci U S A 108:1850–1855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Marrache S, Dhar S (2013) Biodegradable synthetic high-density lipoprotein nanoparticles for atherosclerosis. Proc Natl Acad Sci U S A 110:9445–9450

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Marrache S, Pathak RK, Darley KL, Zaver D, Choi JH, Kolishetti N et al (2013) Nanocarriers as therapeutic platforms for tracking and treating diseases. Curr Med Chem 20:3500–3514

    Article  CAS  PubMed  Google Scholar 

  14. Smith RAJ, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci U S A 100:5407–5412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Marrache S, Dhar S (2012) Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci U S A 109:16288–16293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Marrache S, Tundup S, Harn DA, Dhar S (2013) Ex vivo programming of dendritic cells by mitochondria-targeted nanoparticles to produce interferon-gamma for cancer immunotherapy. ACS Nano 7:7392–7402

    Article  CAS  PubMed  Google Scholar 

  17. Powell T, Major JR, Macpherson G (2001) Generation of dendritic cells from rat bone marrow. Methods Mol Med 64:199–205

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a start-up grant from the National Institutes of Health (P30 GM 092378) to UGA and by the Office of the Vice President for Research, UGA, to S.D., and a grant from the National Institutes of Health (NIH AI056484) to D.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanta Dhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Marrache, S., Tundup, S., Harn, D.A., Dhar, S. (2015). Ex Vivo Generation of Functional Immune Cells by Mitochondria-Targeted Photosensitization of Cancer Cells. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1265. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2288-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2288-8_9

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2287-1

  • Online ISBN: 978-1-4939-2288-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics