
Improved Methods for Classification, Prediction and Design of 
Antimicrobial Peptides

Guangshun Wang*

Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 
Nebraska Medical Center, Omaha, NE 68198-6495, USA

Abstract

Peptides with diverse amino acid sequences, structures and functions are essential players in 

biological systems. The construction of well-annotated databases not only facilitates effective 

information management, search and mining, but also lays the foundation for developing and 

testing new peptide algorithms and machines. The antimicrobial peptide database (APD) is an 

original construction in terms of both database design and peptide entries. The host defense 

antimicrobial peptides (AMPs) registered in the APD cover the five kingdoms (bacteria, protists, 

fungi, plants, and animals) or three domains of life (bacteria, archaea, and eukaryota). This 

comprehensive database (http://aps.unmc.edu/AP) provides useful information on peptide 

discovery timeline, nomenclature, classification, glossary, calculation tools, and statistics. The 

APD enables effective search, prediction, and design of peptides with antibacterial, antiviral, 

antifungal, antiparasitic, insecticidal, spermicidal, anticancer activities, chemotactic, immune 

modulation, or anti-oxidative properties. A universal classification scheme is proposed herein to 

unify innate immunity peptides from a variety of biological sources. As an improvement, the 

upgraded APD makes predictions based on the database-defined parameter space and provides a 

list of the sequences most similar to natural AMPs. In addition, the powerful pipeline design of the 

database search engine laid a solid basis for designing novel antimicrobials to combat resistant 

superbugs, viruses, fungi or parasites. This comprehensive AMP database is a useful tool for both 

research and education.
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1. Introduction

There are at least two good reasons for our current focus on host defense antimicrobial 

peptides (AMPs). First, AMPs have remained potent for millions of years. Therefore, AMPs 

constitute useful templates for developing a new generation of antimicrobials to meet the 

growing antibiotic resistance problem worldwide. Second, AMPs are key components of the 
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innate immune system universally required for the survival of both invertebrates and 

vertebrates. Thus, research in this direction improves our understanding of innate immunity 

and its relationships with the adaptive immune system in vertebrates [1-6].

Lysozyme, discovered by Alexander Fleming in 1922, is now recognized as the first 

antimicrobial peptide. However, there was little research on AMPs until the discoveries of 

cecropins, defensins, and magainins in the 1980s [7-9]. Since then, AMPs have been 

identified from a variety of living species. Select AMPs identified during 1922-2012 are 

listed in the discovery timeline page of the antimicrobial peptide database (APD) [10, 11]. In 

earlier days when the number of AMPs was limited, these peptides were handled in review 

articles. With a rapid increase in the number of such peptides, it became impractical to 

continue to manage them manually. As a consequence, several databases have been 

established to categorize these peptides [10-31]. AMSDb appears to be the first such 

database available online in 1998 [12]. The information format of this database is identical 

to the SWISS-Prot (UniProt) [32]. It contains 895 antimicrobial peptides, proteins, and their 

precursors from plants and animals. Unfortunately, AMSDb is no longer updated. To meet 

the need of better databases with a broad scope, two general databases were published side 

by side in 2004. ANTIMIC reported more than 1700 entries [13], while a new version of 

ANTIMIC called DAMPD [14] contains 1232 entries. In 2004, the first version of the APD 

[10] reported 525 peptide entries. These peptides were manually collected from the literature 

with the aid of public search engines such as Pub-Med, Swiss-Prot, and PDB [32-34]. The 

peptide number reached 1228 entries in the second version of the APD [11] and there are 

2329 peptide entries in the current version.

Since the publication of APD and ANTIMIC, several specialized databases have been 

established to emphasize certain aspects of natural, synthetic, or recombinant AMPs from a 

special peptide family (circular peptides, defensins, and thiopeptides) or source (e.g., 

bacteria, plants, shrimps, amphibians) [15-28]. For example, defensin knowledgebase is 

dedicated to defensins only, while DADP contains only polypeptides from frogs. More 

recently, the CAMP [29], YADAMP [30], and LAMP [31] were also built. Table 1 lists 

major databases dedicated to AMPs. Among these databases, the APD [10, 11] stands out. 

This article highlights the unique aspects of the APD as well as new developments since the 

publication of the second version in 2009.

2. Database design and search functions

2.1. Criteria for peptide collections

In terms of peptide registration, the APD database [11] follows a set of self-defined criteria. 

First, the peptide must have a known amino acid sequence, at least partially. Second, the 

peptide should have demonstrated antimicrobial activity. Third, the peptide contains less 

than 100 amino acids (this has recently been expanded to 200 amino acids so that some 

important antimicrobial proteins could be collected). Fourth, the peptide originates primarily 

from natural sources, including bacteria, protozoa, fungi, plants, and animals. Only a small 

set of synthetic peptides of general interest was collected. Also, the APD emphasizes unique 

sequences. Therefore, peptides from different species currently occupy the same entry in this 

database if they share the same amino acid sequence. At present, there are 46 such entries in 
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the APD, which were “found in multiple species” (the quoted phrase can be searched in the 

additional information field). Since in silico-predicted peptides may not be truly 

antimicrobial peptides, they are not registered into the APD at this stage. By following the 

above criteria, the APD database provides a well-defined set of peptides to the research 

community. Indeed, the APD is a well-recognized resource in the field of AMPs. For 

example, the web hits were ~15,000 per year prior to 2008 [11]. Since the publication of the 

second version in 2009, there is a dramatic increase in database use. For example, the web 

hits reached 86,000 in 2012 alone.

2.2. A flexible database design

The design of any database is to facilitate information search. Users can conduct a simple 

search by using peptide name and amino acid sequence in single-letter code. Different from 

other databases in Table 1, the power of the APD search engine can be ascribed to two 

important features. First, the search engine is composed of a pipeline of search functions. 

Second, the modular design of the APD enables continued expansion and development. 

These features greatly facilitate information search at an advanced level. For example, we 

obtained 268 defensins using the word “defensin” as a search term. The number of defensins 

rapidly reduced to 19 when the word “monkey” is also used. Only seven peptides were 

found when a combination of “defensin”, “monkey” and “theta” are used.

2.3. Database search functions

To make it easier for the APD users, Table 2 lists major search functions, peptide 

information and examples. Most of these search functions are self-explanatory. The name 

field of the APD, however, has been substantially expanded and deserves some description. 

It consists of the following elements:

Peptide name + family name + peptide source kingdom + post-translational modification + 

peptide binding molecules.

In the beginning, it gives peptide name, including synonyms and even the outdated names. 

In the case of human cathelicidin LL-37, the word LL37 is also used in the literature and 

FALL-39 is an outdated name. To help users to understand the AMP nomenclature, the 

major methods used to name AMPs are summarized in the APD website (aps.unmc.edu/AP/

naming.php). These include the peptide property-based method, the source-based method, 

and a third method that uses both peptide features and source information. For examples, 

please visit the APD website.

After the peptide name, the peptide family name is also given in the NAME field. Selected 

AMP families are tabulated in Table 3. Using the peptide family name, one can obtain a list 

of AMPs from the same family. For example, there are 268 defensins from a variety of 

sources and 185 brevinins from amphibians.

Following the family name, the peptide is further annotated in the NAME field based on the 

source domains or kingdoms. The five kingdoms of life are bacteria, protists (protozoa + 

algea), fungi, plants, and animals [35], while the three domains of life are bacteria, archaea, 

and eukaryote [36]. The peptide counts in each kingdom are listed in Table 4. Selected 
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classes in each life domain are also given in the NAME field, allowing users to focus only 

on the AMPs of their interest.

The importance of post-translational modifications (PTMs) is only secondary to the peptide 

sequence itself [37]. Because PTMs could influence both structure and function of the 

peptide, it is necessary to annotate sequence modification information in the same location. 

Table 5 contains 23 types of PTMs in the APD. To our knowledge, the APD is the only 

AMP database that contains extensive information on peptide chemical modifications. In 

addition, the effect of chemical modification on a peptide net charge is considered in the 

APD.

How AMPs kill pathogens is an important question to ask. The information for binding 

targets of AMPs is also annotated in the APD (Table 6). In addition to membranes, AMPs 

can bind to DNA, heat shock proteins, carbohydrates, and lipid II [1-6].

3. Classification of AMPs based on peptide activity, 3D structure and chain 

bonding pattern

There are a variety of approaches for classifying AMPs. Some of these methods are 

summarized on the classification page of the APD website (aps.unmc.edu/AP/class.php). 

For example, the peptides may be classified based on the biosynthesis machinery. Some 

peptides are synthesized by a multiple enzyme system, while the majority of AMPs are 

gene-coded. The expression and degradation of gene-coded AMPs are elegantly regulated 

because either over or under expression of AMPs could cause problems [1-5]. AMPs can 

also be classified based on molecular targets (e.g., membrane targeting and cell-penetrating 

peptides) [6]. In the following, we first describe structure and activity-based classification 

schemes in the APD and then introduce a universal classification scheme for antimicrobial 

peptides.

3.1. Antimicrobial activity

As key effector molecules of innate immunity, AMPs are able to control invading 

pathogenic microbes, including bacteria, viruses, fungi, and parasites [1-4]. It is natural to 

classify these host defense peptides based on their functions, including antibacterial, 

antiviral, antifungal, insecticidal, and spermicidal activities. In addition, some AMPs also 

possess other functional roles such as anticancer, wound healing and immune modulation 

[4]. The APD database has annotated 17 types of peptide activities or functions (Table 7). 

Several newly annotated activity types are unique in this database, making the APD most 

comprehensive in terms of activity annotation.

3.2. Three-dimensional structure of AMPs

According to the APD, only a small population of AMPs (13%) has a known 3D structure, 

primarily determined by solution nuclear magnetic resonance (NMR) spectroscopy [10]. In 

addition, X-ray diffraction was also used to solve the structures of some AMPs with a folded 

structure in water. The structural information is well annotated in the APD database, 

including structural class, method for structural determination, structural regions, key 
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residues, and membrane-mimetic models for structural determination. In addition, users can 

directly view the 3D structure via the link to the PDB [33]. The AMP structures are usually 

classified into α-helical, β-sheet, and extended structures [4, 38]. A more general 

classification approach has been proposed recently [6]. In this approach, the AMP structures 

are classified into four families: α, β, αβ, and non-αβ based on the types of secondary 

structures. Peptides in the α family contain α-helical structure (Figure 1A) as the major 

secondary structure. In contrast, AMPs in the β family are characterized by at least a pair of 

two β-strands in the structure (Figure 1B). The αβ family contains both α and β structures 

(Figure 1C), whereas the non-αβ family has neither α nor β structure (Figure 1D). This 

structural classification scheme is now executed in the APD. Typical examples and peptide 

counts from different families are provided in Table 8. While the α-helical family is the 

largest with 328 entries, the non-αβ family is the smallest with merely 9 entries. Table 8 also 

shows that the lysine/arginine (K/R) ratios in these structural families differ. While lysines 

are dominant in the α-helical family, arginines are preferred in the β-family as well as the 

non-αβ family. Not surprisingly, AMPs with both α and β structures have a moderate K/R 

ratio of ~1.2. These ratios might become useful as indicators for classifying a newly 

discovered peptide into a particular structural family.

3.3. A universal classification of AMPs based on peptide bonding patterns

Because only a small number of AMPs has a 3D structure, we herein propose a systematic 

classification approach that is independent of 3D structure, peptide source, or activity. This 

classification is framed based on the connection mode of polypeptide chains. Class I 

includes linear AMPs (Figure 2A), which may be chemically modified (amidation, sulfate, 

phosphate, bromide, or glycosylation) at side chains or even backbones. However, such 

modifications (Table 5) for class I AMPs do not lead to chain connections between different 

amino acids. Class II covers all AMPs with chemical bonds between different peptide side 

chains (Figure 2B). These include lantibiotics (thioether rings) and the defensin family 

(disulfide bonds). Broadly, it can be any type of chemical connections between two amino 

acids. When two or more peptides work together, they belong to this class as long as any of 

the polypeptide chain contains a sidechain-sidechain connection. Class III AMPs must 

possess a chemical bond between peptide side chain and backbone (Figure 2C). The typical 

members are lassos where the carboxyl group of residue E8 or D9 is covalently linked to the 

N-terminal amine group. It can be any type of chemical bonding between the side chain of 

one amino acid and the backbone of another amino acid (see Table 9). Lastly, class IV is 

composed of circular peptides where a peptide bond is formed between the amino and 

carboxylic ends of the peptide backbone (Figure 2D). These circular peptides may (or may 

not) contain additional modifications such as disulfide bonds. Examples are enterocin AS-48 

from bacteria, cyclotides from plants and θ-defensins from primates [37].

Each class of AMPs can be further classified. For class I peptides, they can be classified into 

two subclasses based on the number of polypeptide chains (Table 9). Single-chain linear 

AMPs are further classified based on chemical modifications. Unmodified AMPs include 

“amino acid rich” and “not amino acid rich” families. Modified peptides are further divided 

into two types based on modification sites (side chain or backbone). These systematic 

classifications for class 1 AMPs are summarized in Table 10 with examples. Likewise, class 
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II AMPs with connections between side chains can be further classified based on the number 

of polypeptide chains as well as the type of chemical bonds (Table 9). A further 

classification of the single-chain disulfide-bonded AMPs (e.g. defensins or defensin-like) 

based on the number of S-S bonds is provided in Table 11. It is also possible to further 

classify single-chain lantibiotics based on the number of thioether bonds (Table 12). A new 

type of sidechain-sidechain connection will constitute a new subclass. In the same vein, 

class III AMPs can be further separated into different types based on the bond type (Table 

9). This chemical bond-based classification is also extended to class IV. Circular AMPs are 

classified based on the additional types and number of chemical bonds in the polypeptide 

chain (Table 13). This systematic classification system covers all AMPs and should 

complement with the existing classification systems proposed for AMPs from different life 

domains [39-43].

4. Peptide Prediction

Based on the information content used in the prediction programs, the prediction methods of 

AMPs have been classified into five types [6]. The first type uses only mature peptide 

sequences, while the second method involves only the precursor sequences. The third 

prediction type considers both mature and precursor sequences. The fourth method employs 

the sequence similarity of the modifying enzymes. Finally, the fifth prediction uses genomic 

information. It is possible that each prediction above can be achieved in different ways. For 

example, based on the mature AMP sequences in the APD [10, 11], numerous prediction 

methods have been developed. In the Lata method [44], two data sets were utilized: 

antimicrobial and non-antimicrobial. While it is easy to download the positive data set from 

the APD, it is difficult to get a true negative data set because the activities of the sequences 

in the negative data set have not been validated by experiments. Yet, the program is set up 

with a good predictive ability. A recent prediction method iAMP-2L [45] considers multiple 

functions of AMPs annotated in the APD. Different from all other prediction protocols 

(reviewed in ref. [6]), a unique prediction method is programmed in the APD. This method 

does not require a negative data set, but is coupled with the database. In the following, we 

describe an upgraded version of this APD method.

The original prediction method in the APD made predictions based on some known rules 

[10]. Hence, the method was referred to as knowledge-based prediction. For example, AMPs 

are usually cationic. A peptide with a negative net charge was predicted as “less likely to be 

an antibacterial peptide”. This simple prediction has its limitations because the database 

does contain anionic AMPs. To overcome this shortcoming, we have updated the prediction 

interface based on the parameter space defined by the whole peptide set in the APD. The 

parameters for antimicrobial peptides are better defined due to a four-fold increase in 

peptide number from the original 525 to the current 2329. Peptide parameters such as length, 

net charge, hydrophobic percentage, and amino acid composition can all be calculated. 

These parameters constitute the parameter space of natural AMPs.

In terms of net charge, the known AMPs occupy a very broad range. The AMP with the 

most negative net charge is chrombacin (net charge −12). Two AMPs, sheep cathelicidin 
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OaBac11 and fish histone-derived Oncorhyncin II, possess the highest net charge of +30. 

Thus, the boundary conditions for net charge are defined as

The above boundary condition can be incorporated into the APD program to make database-

based predictions. This expansion enables the prediction of a broader range of peptide 

sequences. Because the majority of the AMPs (97.4%) have a net charge between −5 and 

+10, it may be useful to define this range as the core region. The small number of AMPs 

outside the core region may be called the minor region. This core region may be used as an 

alternative condition for prediction.

The hydrophobic content (i.e., the sum of hydrophobic amino acids divided by the total 

number of amino acids in a peptide) is another important parameter that determines peptide 

properties. In the APD, hydrophobic amino acids include alanines (Ala), valines (Val), 

leucines (Leu), isoleucines (Ile), methionines (Met), phenylalanines (Phe), tryptophans 

(Trp), and cysteins (Cys) [10]. Based on the database sorting function, we identified the 

AMPs with the lowest and highest hydrophobic contents. Sheep anionic peptide SAAP 

(sequence: DDDDDD) contains no hydrophobic residues in the sequence, leading to a 

hydrophobic content of 0%, while gramicidins have the highest hydrophobic content of 

93%. Thus, the boundary conditions for peptide hydrophobic contents are defined as

The peak of this hydrophobic distribution is located between 40-50% [46]. This leads to 

another set of boundary conditions for our database-based prediction. We can also define the 

core region based on the hydrophobic content. The AMPs in the core region (98.6%) possess 

a hydrophobic content between 10% and 80%.

The length of the peptides in the current APD ranges from 5 to 174. The lower limit is real, 

while the upper limit is arbitrary since it is defined by the scope of peptides collected into 

the database (<200 amino acids). However, the majority of AMPs (92.9%) are less than 60 

amino acids in length, leading to a definition of the core length region of 5-60. We can 

anticipate that these boundary conditions will be fully determined when a sufficient number 

of representative natural AMPs have been identified and registered into the APD.

During this study, we have executed these new database-derived boundary conditions in the 

prediction interface of the APD (Figure 3). This interface makes predictions based on 

sequence similarity. In the first step, the prediction program will calculate the peptide 

parameters based on the input sequence. The calculated peptide parameters will then be 

compared with the APD parameter space. If one or more calculated parameters fall outside 

the database-defined parameter space, the users will be informed that “your input is less 

likely to be an antibacterial peptide”. If all the parameters fall within the defined parameter 

space, the database will conduct a second tier of prediction by broadly classifying input 

peptides into several classes: rich in amino acids (>25% for any amino acid), helical, and 

Wang Page 7

Methods Mol Biol. Author manuscript; available in PMC 2015 September 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disulfide-linked. With the execution of the universal classification proposed in Table 9, a 

more accurate prediction will be realized. As the third tier of our prediction, the database 

compares the input sequence with all the peptides in the database by performing sequence 

alignment. Five peptides with most similar sequences will be provided in the output. 

Because we use database-derived parameters for prediction, we refer to this upgraded 

method as the APD-based prediction (the November 2013 version). Compared to the 

original prediction [10], the upgraded version is able to handle a broader range of peptide 

sequences. In addition, the chance of identifying the most similar sequences in the APD also 

increases substantially as a consequence of a four-fold increase in natural compounds.

The identification of most similar AMPs is a useful feature. For example, O’Shea did not 

find similar sequences by searching the BLAST database [47], but were able to do so using 

the APD. Based on the sequence similarity of a novel bacteriocin with plant Ib-AMP3, these 

authors named the new bacteriocin as bactofensin. The similarity also inspired the authors to 

test possible antimicrobial activities listed for Ib-AMP3. In addition, the authors can also 

check whether the new peptide has a similar 3D structure. Thus, the output from the APD 

prediction programs can guide users to design new experiments to test the structure and 

activity of the newly identified peptide based on the knowledge annotated for the most 

similar candidates in the database. Such a prediction of sequence, structure and activity at 

multiple levels requires careful annotation of AMP information in the APD.

5. Peptide design

The APD [10, 11] also provides a useful platform for identification of useful antimicrobials 

to combat difficult-to-kill pathogens such as human immune-deficiency virus (HIV) and 

methicillin-resistant Staphylococcus aureus (MRSA) [46]. Both database screening and 

database-guided design have been conducted. By screening a representative set of AMPs 

selected from the APD, we found several potent anti-HIV or anti-MRSA peptides [48, 49]. 

New peptides were also obtained by modifying, shuffling, or hybriding natural sequences. 

Mathematically, a known peptide sequence can be shuffled into multiple sequences. 

Experimentally, we found that sequence shuffling could lead to all the possibilities: less 

active, equally active, and more potent sequences [49]. An MIT group developed a large-

scale hybrid approach by combining sequence segments of 10 residues (i.e., grammars). 

This grammar approach can generate new sequences, which may, or may not, be bactericidal 

[50]. A complete different approach in the form of combinatorial libraries can also be 

pursued [51]. In principle, the amino acid at each position of the peptide sequence can be 

changed into other amino acids. In practice, it is necessary to bias the choice of amino acids 

in order to obtain active peptides [52]. This is because the amino acid use in natural AMPs is 

biased. The APD enabled us to identify the frequently occurring amino acids for AMPs from 

a variety of life domains [10, 53]. For example, the frequently occurring residues (≥8.5%) 

are leucines, glycines, and lysines based on the average percentages of all the 2329 peptides 

in the current APD. We demonstrated previously that these three amino acids contained 

sufficient information for designing antibacterial peptides [11].

Another important approach is de novo design (reviewed in ref. [6]). We have recently 

developed a novel database approach [54]. A flow chart for this approach is provided as 
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Figure 4. This flow chart contains two major tiers of information filters. The first tier 

consists of an activity filter that enables one to obtain a set of peptides with desired activity. 

Table 3 lists 17 types of peptide activities, each of which contains a set of model peptides. In 

our design, we selected a group of peptides with activity against Gram-positive bacteria. 

This set of peptides formed the templates for extracting useful parameters for designing anti-

MRSA peptides. The second tier contains numerous filters (F1, F2, to Fn), each defines one 

parameter for the peptide (P1, P2, to Pn). In determining these parameters, we followed the 

most probable principle, which projected the maximum for each parameter. Because the 

most probable parameters were used, the peptides assembled in this manner had a good 

chance to be antimicrobial. This is indeed the case. The designed peptide DFTamP1 rapidly 

killed MRSA USA300, a community-associated staphylococcal pathogen. It also showed 

some bacterial selectivity since DFTamP1 did not kill Gram-negative bacteria E. coli, P. 

aeruginosa, or Gram-positive B. subtilis. This success opens a new avenue to designing 

peptides with various types of activities (Table 7). Because this new method differs from all 

existing de novo approaches, it was referred to as ab initio design [54].

6. Concluding Remarks and Future Studies

The antimicrobial peptide database was constructed in 10 years ago. It is an original 

construction in terms of both database design and peptide entries. Each peptide entry in the 

APD was manually collected from the literature using the public search engines such as 

PubMed, PDB, and Swiss-Prot. By following a set of rules for data registration, the APD 

presents a well-defined set of natural AMPs. To achieve a more complete sampling of 

natural AMPs, the database is extensively annotated and regularly updated. In addition, the 

pipeline design led to a powerful search engine. This unique database, therefore, constitutes 

the basis for developing new methods for peptide classification, prediction and design. The 

APD is the first to adopt both five-kingdom and three-domain classifications, allowing users 

to search the AMP information from any kingdom (bacteria, protists, fungi, plants, and 

animals) or classes (e.g. insects, spiders, molluscs, crustaceans, reptiles, amphibians, fish, 

and birds) (Table 4). Once a domain is defined in the NAME field, the APD behaves like a 

specialized database (e.g., plant AMPs, bacteriocins, and amphibian peptides). The APD 

also executed a new structure classification scheme based on the types of secondary 

structures (α, β, αβ, and non-αβ) in a variety of 3D structures of AMPs (Figure 1) [6]. 

Needless to say, the structures in each family can be further grouped based on the number of 

secondary structures (e.g., α-helix and β-strand). Due to a limited number of known 3D 

structures, we have proposed a universal classification scheme here based on peptide chain 

bonding patterns (Figure 2). Since the information on peptide source, activity, and 3D 

structure is not required, this systematic classification (Tables 9-13) complements to the 

existing classification methods for AMPs in a defined life kingdom such as bacteria and 

plants [39-43]. It also offers an approach to unifying the classification of antimicrobial 

peptides. This classification is general and can be applied to other biologically active 

peptides.

There are various prediction methods for AMPs (reviewed in ref. [6]). The APD is unique in 

that the prediction is highly coupled with the database. The upgraded version of the APD 

makes predictions in three steps by following the similarity principle. Each step deals with a 
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specific question. The first tier asks whether the peptide parameters of the input sequence 

fall within the database parameter space. Based on the amino acid composition analysis, the 

second tier asks which peptide class the input sequence belongs to. The third tier determines 

five most similar sequences based on sequence alignment with all the peptides in the 

database. It is clear why we have been strict in following a set of rules in registering AMPs. 

Our practice allows us to more accurately map the parameter space for natural AMPs. When 

a large number of predicted or artificial sequences are included, such parameters could 

deviate from nature’s parameters, thereby influencing the prediction quality. In addition, 

users can get an idea of the structural type and functional space of the input sequence by 

viewing the similar sequences already in the APD. For example, the input sequence is most 

likely to form a helix-bundle structure stabilized by three disulfide bonds if the best match is 

a saposin-like protein. If the sequence matches human cathelicidin LL-37, it is likely to have 

multiple functions, ranging from antimicrobial, wound healing, to immune modulation. Like 

LL-37, the peptide may also have a broad-spectrum activity to kill bacteria, fungi, viruses, 

and parasites. This information will guide the users to validate both structure and activity of 

a new peptide.

Finally and importantly, the construction of this well-annotated database also enabled us to 

develop novel approaches for designing peptides with desired properties. Based on the 

database, we have tested two general approaches: peptide screening [48,49] and database-

guided design [46, 54]. In particular, we demonstrated the first ab initio design based on the 

database by developing the database filtering technology [54]. This approach is not limited 

to the development of anti-MRSA peptides and can be applied to the design of peptides with 

other types of activities (Table 7) as well. It is also desirable that the designed peptides only 

kill a specific species. Our detailed annotations of AMP targeting organisms into the 

database set the stage for this effort. In addition, other database filters such as peptide 

selectivity and stability to proteases can be created as well. Taken together, the APD is a 

powerful engine for research and education in the field of innate immunity and drug 

discovery.
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Figure 1. Classification of the 3D structures of antimicrobial peptides into four families [6]
Shown are representatives from each family: (A) α-helical structure of human cathelicidin 

LL-37 (PDB entry: 2K6O) [55]; (B) the β-sheet structure of plant kalata B1 (PDB entry: 

1JNU) [56]; (C) the αβ structure of human β-defensin-1 (HBD-1) (PDB entry: 1IJV) [57]; 

and (D) the non-αβ structure of cattle indolicidin (PDB entry: 1G89) [58].
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Figure 2. Classification of antimicrobial peptides based on the connection patterns of the 
polypeptide chain
(A) linear polypeptide chains (e.g. LL-37 and magainins); (B) sidechain-linked peptides 

such as defensins and lantibiotics; (C) polypeptide chains with side chain to backbone 

connection (e.g. lassos); and (D) circular peptides with a seamless backbone (e.g. 

cyclotides).
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Figure 3. Prediction of antimicrobial peptides based on the antimicrobial peptide database
The prediction consists of three steps. As the first step, the program will determine whether 

the input sequence is in the database-defined parameter space (such as charge and 

hydrophobic content). If identical, the users will be informed. If one or more calculated 

parameters of the input peptide are out of the boundaries, it is predicted as “your sequence is 

less likely to be an antibacterial peptide”. Second, the input sequence will be classified into 

three families: rich in amino acids such as histatins and tryptophans, disulfide-linked 

peptides, and linear. Third, sequence alignments will be conducted to find five peptides that 

are most similar to the query sequence.
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Figure 4. Ab initio peptide design based on the database filtering technology (DFT)
The DFT tech developed recently [54] is composed of two layers of filters. The first layer 

filter enables the identification of a set of antimicrobial peptides with the desired activity 

from the antimicrobial peptide database (see Table 7). This set of peptides is then used as 

templates to extract useful parameters for peptide design by utilizing the second layer filters 

(F1, F2, F3, …, to Fn). These peptide parameters (P1, P2, P3, …, to Pn) are combined to 

generate a single or limited number of peptides.
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Table 1

A chronological list of the databases for antimicrobial peptidesa

Year Database URL (http://) Scope Country Ref

1998 AMSDb www.bbcm.univ.trieste.it/~tossi/amsdb.html Plant/animal
AMPs

Italy [12]

2002 SAPD oma.terkko.helsinki.fi:808
0/~SAPD/

Synthetic
AMPs

Finland [25]

2003,
2004

Peptaibols www.cryst.bbk.ac.uk/peptaibol/home.shtml Fungal
peptaibols

England [26]

2004,
2009

APD aps.unmc.edu/AP/ AMPs USA [10-
11]

2004,
2012

DAMPD apps.sanbi.ac.za/dampd/ AMPs South
Africa/Sau
di Arabia

[13-
14]

2006 PenBase penbase.immunaqua.com Shrimp
AMPs

France [15]

2006,
2008

Cybase research1t.imb.uq.edu.au/
cybase/

Circular
proteins

Australia [18]

2006,
2010

BAGLE bioinformatics.biol.rug.nl/
websoftware/bagel/bagel_
start.php

Bacterial
AMPs

Netherland [21]

2007 AMPer marray.cmdr.ubc.ca/cgi-
bin/amp.pl

Like
AMSDb

Canada [24]

2007,
2010

BACTIBAS
E

bactibase.pfba-lab-
tun.org/main.php

Bacteriocins Canada/Tu
nisie

[17]

2007 Defensins defensins.bii.a-star.edu.sg/ Defensins Singapore [16]

2008 RAPD faculty.ist.unomaha.edu/chen/rapd/index.php Recombinan
t AMPs

USA [20]

2009 PhytAMP phytamp.pfba-lab-
tun.org/main.php

Plant AMPs Tunisie/Ca
nada

[19]

2010 CAMP www.bicnirrh.res.in/antimicrobial AMPs India [29]

2012 YADAMD yadamp.unisa.it/ AMPs Italy [30]

2012 DADP split4.pmfst.hr/dadp/ Amphibian
AMPs

Croatia [22]

2012 THIOBASE db-
mml.sjtu.edu.cn/THIOBA
SE/

Bacteria
thiopeptides

China [23]

2012 EnzyBase biotechlab.fudan.edu.cn/d
atabase/EnzyBase/home.p
hp

Cleaving
enzymes

China [27]

2013 LAMP biotechlab.fudan.edu.cn/d
atabase/lamp/guide.php

AMPs China [31]

2013 MilkAMP /milkampdb.org Milk AMPs Canada [28]

a
Adapted from the APD website (http://aps.unmc.edu/AP/links.php) [10, 11].
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Table 2

Search functions of the antimicrobial peptide database

Search
Function

Peptide Information Examples

APD ID A unique 5-digit number for each
database entry

AP00310

Name Peptide name or synonyms LL-37 (LL37, FALL-39)

AMP
sequence

Amino acid sequence in single-letter
code

LLGDFFRKSKEKIGKEFKRI
VQRIKDFLRNLVPRTES

Name Life kingdoms Bacteria, plants, fungi, protists,
animals

Name Life domains Bacteria, archaea

Name Classes Fish, reptiles, amphibians,
birds, insects,

Name Peptide family Defensins, cathelicidins,
histatins, cecropins, magainins,

Source
species

Location where the peptide is found Neutrophils; Homo sapiens

Length The number of amino acids 37 (for LL-37)

Net Charge At pH 7 +6 (for LL-37)

Hydrophobi
c%

Sum of L, I, V. M, A, F, W, C divided
by peptide length

35% (for LL-37)

Name Chemical modification type See Table 5

Structure  (1) Known 3D (α, β, αβ, non-αβ);
 (2) Partial known (bridged, rich);
 (3) unknown

Helix for LL-37

Structural
method

X-ray; NMR; CD NMR (for LL-37)

PDB ID Self explained 2K6O (for LL-37)

Activity Known antimicrobial activity Gram+/Gram−; Gram+; Gram−;
viruses; HIV-1; fungi

Name Binding target See Table 6

Additional
info

Mechanism of action Magainin: forming pores

Additional
info

Synergy LL-37 and lysozyme

Additional
info

Animal model Mouse

Author or
Pub year

Search author or publication year
separately

Any
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Table 3

Select antimicrobial peptide families in the APDa

Peptide family Count Peptide family Count

Defensins 268 Aureins 12

Cathelicidins 78 Maximins 30

Histatins 12 Brevinins 185

Neuropeptides 20 Temporins 105

Chemokines 26 Ranatuerins 49

Ribonucleases 6 Dermaseptins 55

Caerins 29

Cyclotides 151 Maculatins 7

Uperins 12

Lantibiotics 51 Magainins 5

Microcins 13 Cecropins 24

a
Peptide counts in this and subsequent tables were obtained from the APD on November 30, 2013.
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Table 4

Antimicrobial peptides from the three domains and five kingdoms of lifea

Domain Peptide count Class Peptide count

Bacteria 209 Insects 216

Archeae 2 Spiders 33

Eukaryota 2082 Molluscs 27

Worms 14

Kingdom Peptide count Crustaceans 32

Bacteria 208 Birds 36

Protists 7 Reptiles 10

Fungi 12 Fish 79

Plants 301 Amphibians 929

Animals 1761 Ruminants 44

Humans 102
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Table 5

Post-translational modifications of natural antimicrobial peptides

Search key Post-translational
modification

Peptide count

XXA Amidation 448

XXB Chromophore/ion-binding
moieties

4

XXC Backbone cyclization 176

XXD D-amino acids 17

XXE Acetylation 11

XXF Carboxylic-acid-containing
unit

8

XXG Glycosylation 12

XXH Halogenation (Cl, Br) 8

XXJ Sidechain-backbone
cyclization

15

XXK Hydroxylation 9

XXL Lipidation 9

XXM Methylation 3

XXN Nitrolation 0

XXO Oxidation 10

XXP Phosphorylation 3

XXQ N-terminal cyclic glutamate 15

XXR Reduction 2

XXS Sulfation 1

XXT Thioether bridge 46

XXU Rana Box via a single S-S
bond

269

XXW Dehydration 21

XXY Citrullination 1

Structure
searcha

Disulfide bridges 551

a
This number was obtained by searching for disulfide bond-containing AMPs classified as “Bridge”, “β structure”, and “αβ structure” families, 

respectively. The “bridged” AMPs are known to have disulfide bonds but unknown 3D structure. Beta structures without disulfide bonds were 
excluded by including “c” as a sequence search term. For the αβ structures, only the AMPs with a packed 3D fold were counted.
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Table 6

Binding targets of antimicrobial peptides

Search keya Binding target Count

BBBh2o Self aggregation in water 15

BBBm Oligomers in membranes 4

BBII Ions 16

BBW Lipid II 17

BBL LPS 54

BBr Receptors 3

BBMm Membranes 81

BBN Nucleic acids 11

BBS Sugars/carbohydrates 44

a
Search by entering the code into the name field of the APD [10, 11].
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Table 7

Biological activities of host defense antimicrobial peptides

Year created Activitya Count

2003 Antibacterial (G+/G−) 1909

2003 Antifungal 850

2003 Antiviral 138

2003 Anticancer 158

2003 Hemolytic 284

2008 Anti-HIV 92

2009 Anti-G+ 360

2009 Anti-G− 172

2009 Antiparasitic 59

2009 Insecticidal 22

2009 Spermicidal 9

2011 Chemotactic 47

2012 Anti-protist 4

2013 Antioxidant 10

2013 Anti-inflammatory 2

2013 Wound healing 7

2013 Enzyme inhibitor 5

a
Some newly defined search functions can be searched in the “additional information” field of the APD by entering the words in the table. These 

include antioxidant, anti-inflammatory, and wound healing, and enzyme inhibitor.

Methods Mol Biol. Author manuscript; available in PMC 2015 September 22.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang Page 25

Table 8

Classification of 3D structures of antimicrobial peptides

Structurea K/R ratio Peptide count Examples

α 13.65/5.26=2.59 329 Cecropin, dermcidin, LL-37, magainin

β 5.63/10.7=0.53 97 Human alpha defensins (HNP-1, HNP-
4, and HD-5), plant kalata B1

α β 8.47/7.05=1.2 81 Drosomycin, Human beta defensins
(HBD-1, HBD-4), PhD1

Non-αβ 4.85/10.19=0.48 9 Indolicidin, tritrpticin, drosocin, nisin
A

a
For AMPs without 3D structures, additional annotations were made in the APD: (1) unknown, no 3D structure; (2) bridge, disulfide-linked, 

usually beta-structure; (3) rich, rich in certain amino acids.
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Table 9

A universal classification of antimicrobial peptides

Class Chain
linkage

Subclass Link type Class
symbol

Examples

I Linear &
open
chainsa

1. One chain None UCLL1a LL-37, magainins

2. Two chains None UCLL2 Enterocin L50

II Sidechain-
Sidechain

1. One chain Cβ-S-S-Cβ

(Disulfide-
bond)

UCSS1aa Defensin-like

Cβ-S-Cβ

(thioether)
UCSS1ba lantibiotics

2. Two chains Inter-chain
Cβ-S-S-Cβ

UCSS2a Distinctin,
halocidin, centrocin

Intra-chain
Cβ-S-Cβ

UCSS2b Lacticin-3147, Smb

III Sidechain-
Backbone

One chain CO-NH
amide

UCSB1a Microcin J25,
Lariatins

CO-O ester UCSB1b Fusaricidin A

Cβ-S-Cα UCSB1c Thuricin CD

IV Backbone-
Backbone

One chain CO-NH
amide

UCBB1aa AS-48, subtilosin
A, cyclotides, θ-
defenins

a
Further classifications are provided in Tables 10-13.
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Table 10

Classification of class 1 linear antimicrobial peptides (UCLL1)

Subclass Modification
sitea

Modification
type

Sub-type Peptide examples

UCLL1A None None Not-AA-richb LL-37

AA-Rich (25%) Pro-rich; Arg-rich PR-39

UCLL1B Sidechain Group
attachment

Hydroxylation;
halogenation;
phosphorylation
; glycosylation;
lipidation;
sulfation

Piscidin 4 (hydroxylated Trp);
datucin, MccC7

Sidechain
cyclization

cyclic glutamate Heliocin

UCLL1C Backbone End capping Amidation;
acetylation;
other
attachments

Aurein 1.2; temproin A

Configuration
change

D-amino acids, Gramicidin; bombinin H4

Backbone
transformed

Dehydrated; Cypemycin (Linaridins)

Heterocyclic
rings

Thiopeptides in ThioBase

a
Post-translational modification (PTM) is a broad concept that includes all types of functional groups attached to the peptide chain via covalent 

bond formation. A detailed list of PTMs is provided in Table 5. Some common examples are N-terminal acetylation, C-terminal amidation, 
phosphorylation, glycosylation, aromatic halogenation, and sulfation. In the extreme case, even the peptide backbone is modified, leading to 
dehydrated or heterocycles. However, all these modifications are limited to a single amino acid and do not lead to a polypeptide chain connection 
between different amino acids as observed in the other three major classes of AMPs (Table 9).

b
AA = Amino acids.
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Table 11

Sidechain-sidechain connected antimicrobial peptides: further classification of single-chain peptides 

containing disulfide bonds (UCSS1a)

Type S-S bond count Sub-typea Examples

I 1 A Brevinin, esculentin (Rana
box)

B Thanatin

C Bactenecin

II 2 A Ec-AMP1, lasiocepsin,
Glycocin F

B Protegrin, polyphemusin,
CXCL1, LEAP-2

III 3 A NK-lysin, caenopore-5

B HNP-1, HBD-1, big defensins

IV 4 B ASABF, NaD1, drosomycin

V 5 B PhD1, WAMP-1a, Ec-CBP

VI 6 B Copsin

a
The peptides can further be classified into sub-types based on 3D structure (A: α-helical; B: β-sheet-containing (β and αβ families); C: non-αβ; D: 

unclassified due to an unknown 3D structure).
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Table 12

Sidechain-sidechain connected antimicrobial peptides: further classification of single-chain lantibiotics 

containing thioether bonds (UCSS1b)

Type Number of linkage Examples

I 1 Not found

II 2 Bovicin HJ50

III 3 Epilancin 15X, Lacticin 481

IV 4 Cinnamycin, Actagardine A

V 5 Nisin, Microbisporicin, Subtilin, Ericin A,
Paenibacillin

VI 6 Paenicidin A

VII 7 Geobacillin I
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Table 13

Classification of circular antimicrobial peptides (UCBB1a)

Type Additional Links Examples

A None Bacterial enterocin AS-48

B Sidechain-sidechain (Cβ-S-S-Cβ) Plant cyclotides, primate θ-defensins

C Sidechain-backbone (Cβ-S-Cα) Bacterial subtilosin
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