Skip to main content

Accurate Measurement of Circulating Mitochondrial DNA Content from Human Blood Samples Using Real-Time Quantitative PCR

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1264))

Abstract

We describe a protocol to accurately measure the amount of human mitochondrial DNA (MtDNA) in peripheral blood samples which can be modified to quantify MtDNA from other body fluids, human cells, and tissues. This protocol is based on the use of real-time quantitative PCR (qPCR) to quantify the amount of MtDNA relative to nuclear DNA (designated the Mt/N ratio). In the last decade, there have been increasing numbers of studies describing altered MtDNA or Mt/N in circulation in common nongenetic diseases where mitochondrial dysfunction may play a role (for review see Malik and Czajka, Mitochondrion 13:481–492, 2013). These studies are distinct from those looking at genetic mitochondrial disease and are attempting to identify acquired changes in circulating MtDNA content as an indicator of mitochondrial function. However, the methodology being used is not always specific and reproducible. As more than 95 % of the human mitochondrial genome is duplicated in the human nuclear genome, it is important to avoid co-amplification of nuclear pseudogenes. Furthermore, template preparation protocols can also affect the results because of the size and structural differences between the mitochondrial and nuclear genomes. Here we describe how to (1) prepare DNA from blood samples; (2) pretreat the DNA to prevent dilution bias; (3) prepare dilution standards for absolute quantification using the unique primers human mitochondrial genome forward primer (hMitoF3) and human mitochondrial genome reverse primer(hMitoR3) for the mitochondrial genome, and human nuclear genome forward primer (hB2MF1) and human nuclear genome reverse primer (hB2MR1) primers for the human nuclear genome; (4) carry out qPCR for either relative or absolute quantification from test samples; (5) analyze qPCR data; and (6) calculate the sample size to adequately power studies. The protocol presented here is suitable for high-throughput use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wojtczak L, Zabłocki K (2008) Basic mitochondria physiology in cell viability and death. In: Dykens JA, Will Y (eds) Drug-induced mitochondria dysfunction. Wiley, Hoboken, NJ, pp 3–36

    Google Scholar 

  2. Michel S, Wanet A, De Pauw A, Rommelaere G, Arnould T, Renard P (2012) Crosstalk between mitochondrial (dys)function and mitochondrial abundance. J Cell Physiol 227:2297–2310

    Article  CAS  PubMed  Google Scholar 

  3. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  CAS  PubMed  Google Scholar 

  4. Malik AN, Czajka A (2013) Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 13:481–492

    Article  CAS  PubMed  Google Scholar 

  5. Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V, Rachmanova V (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55:597–610

    Article  CAS  PubMed  Google Scholar 

  6. Piko L, Matsumoto L (1976) Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Dev Biol 49:1–10

    Article  CAS  PubMed  Google Scholar 

  7. Duran HE, Simsek-Duran F, Oehninger SC, Jones HW Jr, Castora FJ (2011) The association of reproductive senescence with mitochondrial quantity, function, and DNA integrity in human oocytes at different stages of maturation. Fertil Steril 96:384–388

    Article  CAS  PubMed  Google Scholar 

  8. Selak MA, Lyver E, Micklow E, Deutsch EC, Onder O, Selamoglu N, Yager C, Knight S, Carroll M, Daldal F, Dancis A, Lynch DR, Sarry JE (2011) Blood cells from Friedreich ataxia patients harbor frataxin deficiency without a loss of mitochondrial function. Mitochondrion 11:342–350

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez-Enriquez S, Kai Y, Maldonado E, Currin RT, Lemasters JJ (2009) Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy 5:1099–1106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bogenhagen DF (2011) Mitochondrial DNA nucleoid structure. Biochim Biophys Acta 1819:914–920

    Article  PubMed  Google Scholar 

  11. Falkenberg M, Larsson NG, Gustafsson CM (2007) DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem 76:679–699

    Article  CAS  PubMed  Google Scholar 

  12. Hock MB, Kralli A (2009) Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol 71:177–203

    Article  CAS  PubMed  Google Scholar 

  13. Williams RS (1986) Mitochondrial gene expression in mammalian striated muscle. Evidence that variation in gene dosage is the major regulatory event. J Biol Chem 261:12390–12394

    CAS  PubMed  Google Scholar 

  14. Malik AN, Shahni R, Iqbal MM (2009) Increased peripheral blood mitochondrial DNA in type 2 diabetic patients with nephropathy. Diabetes Res Clin Pract 86:e22–e24

    Article  CAS  PubMed  Google Scholar 

  15. Malik AN, Shahni R, Rodriguez-de-Ledesma A, Laftah A, Cunningham P (2011) Mitochondrial DNA as a non-invasive biomarker: accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias. Biochem Biophys Res Commun 412:1–7

    Article  CAS  PubMed  Google Scholar 

  16. Chiu RW, Chan LY, Lam NY, Tsui NB, Ng EK, Rainer TH, Lo YM (2003) Quantitative analysis of circulating mitochondrial DNA in plasma. Clin Chem 49:719–726

    Article  CAS  PubMed  Google Scholar 

  17. Hammond EL, Sayer D, Nolan D, Walker UA, Ronde A, Montaner JS, Cote HC, Gahan ME, Cherry CL, Wesselingh SL, Reiss P, Mallal S (2003) Assessment of precision and concordance of quantitative mitochondrial DNA assays: a collaborative international quality assurance study. J Clin Virol 27:97–110

    Article  CAS  PubMed  Google Scholar 

  18. Kam WW, Lake V, Banos C, Davies J, Banati R (2013) Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers. Int J Mol Sci 14:11544–11559

    Article  PubMed Central  PubMed  Google Scholar 

  19. Venegas V, Halberg MC (2012) Measurement of mitochondrial DNA copy number. Methods Mol Biol 837:327–335

    Article  CAS  PubMed  Google Scholar 

  20. Dimmock D, Tang LY, Schmitt ES, Wong LJ (2010) Quantitative evaluation of the mitochondrial DNA depletion syndrome. Clin Chem 56:1119–1127

    Article  CAS  PubMed  Google Scholar 

  21. Guo W, Jiang L, Bhasin S, Khan SM, Swerdlow RH (2009) DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 9:261–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Kiran Hoolsy-Chandani for critical reading of the manuscript. We are grateful to mitoDNA Service Lab (mitodna@kcl.ac.uk) for their help in the development and high-throughput testing of this protocol. SA is supported by a King’s overseas PhD scholarship and AC is supported by a KCL PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshan Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ajaz, S., Czajka, A., Malik, A. (2015). Accurate Measurement of Circulating Mitochondrial DNA Content from Human Blood Samples Using Real-Time Quantitative PCR. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1264. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2257-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2257-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2256-7

  • Online ISBN: 978-1-4939-2257-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics