Skip to main content

Biomarkers as Prognostic, Predictive, and Surrogate Endpoints

  • Chapter
  • First Online:

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

The improved understanding of tumor biology associated with the recent technological advancement has revealed a growing number of potential tumor biomarkers as candidate for clinical use, providing new opportunities for improving the management of cancer patients in all phases of care. Biomarkers have several clinical applications in oncology, including risk assessment for disease recurrence or early diagnosis in healthy population. After the advent of targeted therapies, a growing interest has been focused on their potential role as prognostic, predictive, and surrogate endpoints, in order to promote personalized strategies. The introduction of molecular biomarkers in clinical practice has radically changed the natural history of some tumors, including gastrointestinal stromal tumor (GIST), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), and melanoma, allowing many patients to receive an individualized treatment. Liquid biopsies and the use of circulating biomarker represent the new perspective of the oncological scientific community, with very promising implications in the clinical management of cancer patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sawyers CL. The cancer biomarker problem. Nature. 2008;452:548–52.

    Article  CAS  PubMed  Google Scholar 

  2. Chevrier S, Arnould L, Ghiringhelli F, et al. Next-generation sequencing analysis of lung and colon carcinomas reveals a variety of genetic alterations. Int J Oncol. 2014;45:1167–74.

    CAS  PubMed  Google Scholar 

  3. Leary RJ, Lin JC, Cummins J, et al. Integrated analysis of homozygous deletions, focal amplifications, and sequence alterations in breast and colorectal cancers. Proc Natl Acad Sci U S A. 2008;105:16224–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hsu HS, Chen TP, Hung CH, et al. Characterization of a multiple epigenetic marker panel for lung cancer detection and risk assessment in plasma. Cancer. 2007;110:2019–26.

    Article  CAS  PubMed  Google Scholar 

  5. Cecener G, Tunca B, Egeli U, et al. The promoter hypermethylation status of GATA6, MGMT, and FHIT in glioblastoma. Cell Mol Neurobiol. 2012;32:237–44.

    Article  CAS  PubMed  Google Scholar 

  6. Fanale D, Iovanna JL, Calvo EL, Berthezene P, Belleau P, Dagorn JC, Bronte G, Cicero G, Bazan V, Rolfo C, Santini D, Russo A. Expert Opin Ther Targets. 2014 Aug;18(8):841–50.

    Article  Google Scholar 

  7. Fanale D, Iovanna JL, Calvo EL, et al. Analysis of germline gene copy number variants of patients with sporadic pancreatic adenocarcinoma reveals specific variations. Oncology. 2013;85:306–11.

    Article  CAS  PubMed  Google Scholar 

  8. Xu J, Tian S, Yin Z, et al. MicroRNA-binding site SNPs in deregulated genes are associated with clinical outcome of non-small cell lung cancer. variations. Lung Cancer. 2014 Sep;85(3):442–8.

    Google Scholar 

  9. Nowell PC. Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest. 2007;117:2033–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  CAS  PubMed  Google Scholar 

  11. Rolfo C, Fanale D, Hong DS, et al. Impact of microRNAs in resistance to chemotherapy and novel targeted agents in non-small cell lung cancer. Curr Pharm Biotechnol. 2014;15(5):475–85.

    Google Scholar 

  12. Casado-Vela J, Fuentes M, Franco-Zorrilla JM. Screening of protein-protein and protein-DNA interactions using microarrays: applications in biomedicine. Adv Protein Chem Struct Biol. 2014;95:231–81.

    Article  CAS  PubMed  Google Scholar 

  13. Schneider SS, Aslebagh R, Wetie AG, et al. Using breast milk to assess breast cancer risk: the role of mass spectrometry-based proteomics. Adv Exp Med Biol. 2014;806:399–408.

    Article  PubMed  Google Scholar 

  14. Chung L, Moore K, Phillips L, et al. Novel serum protein biomarker panel revealed by mass spectrometry and its prognostic value in breast cancer. Breast Cancer Res. 2014;16:R63.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Diamandis EP. Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations. Mol Cell Proteomics. 2004;3:367–78.

    Article  CAS  PubMed  Google Scholar 

  16. Serizawa M, Kusuhara M, Zangiacomi V, et al. Identification of metabolic signatures associated with erlotinib resistance of non-small cell lung cancer cells. Anticancer Res. 2014;34:2779–87.

    CAS  PubMed  Google Scholar 

  17. Zhang A, Yan G, Han Y, Wang X. Metabolomics approaches and applications in prostate cancer research. Appl Biochem Biotechnol. 2014 Sep;174(1):6–12.

    Google Scholar 

  18. Teutsch SM, Bradley LA, Palomaki GE, et al. The Evaluation of Genomic Applications in Practice and Prevention (EGAPP) initiative: methods of the EGAPP working group. Genet Med. 2009;11:3–14.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Shepherd FA, Tsao MS. Unraveling the mystery of prognostic and predictive factors in epidermal growth factor receptor therapy. J Clin Oncol. 2006;24:1219–20 (author reply 1220–1211).

    Article  PubMed  Google Scholar 

  20. McGuire WL. Estrogen receptors in human breast cancer. J Clin Invest. 1973;52:73–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  CAS  PubMed  Google Scholar 

  22. Grenader T, Yerushalmi R, Tokar M, et al. The 21-gene recurrence score assay (Oncotype DX™) in estrogen receptor-positive male breast cancer: experience in an Israeli cohort. Oncology. 2014;87:1–6.

    Article  CAS  PubMed  Google Scholar 

  23. Cusumano PG, Generali D, Ciruelos E, et al. European inter-institutional impact study of MammaPrint. Breast. 2014;23:423–8.

    Article  CAS  PubMed  Google Scholar 

  24. Hutchins G, Southward K, Handley K, et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol. 2011;29:1261–70.

    Article  PubMed  Google Scholar 

  25. Roth AD, Tejpar S, Delorenzi M, et al. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60–00 trial. J Clin Oncol. 2010;28:466–74.

    Article  CAS  PubMed  Google Scholar 

  26. Gray RG, Quirke P, Handley K, et al. Validation study of a quantitative multigene reverse transcriptase-polymerase chain reaction assay for assessment of recurrence risk in patients with stage II colon cancer. J Clin Oncol. 2011;29:4611–9.

    Article  PubMed  Google Scholar 

  27. Karagkounis G, Torbenson MS, Daniel HD, et al. Incidence and prognostic impact of KRAS and BRAF mutation in patients undergoing liver surgery for colorectal metastases. Cancer. 2013;119:4137–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Olaussen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med. 2006;355:983–91.

    Article  CAS  PubMed  Google Scholar 

  29. Cobleigh MA, Vogel CL, Tripathy D, et al. Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol. 1999;17:2639–48.

    CAS  PubMed  Google Scholar 

  30. Yin W, Jiang Y, Shen Z, et al. Trastuzumab in the adjuvant treatment of HER2-positive early breast cancer patients: a meta-analysis of published randomized controlled trials. PLoS One. 2011;6:e21030.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Swain SM, Kim SB, Cortés J, et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA study): overall survival results from a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol. 2013;14:461–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Geyer CE, Forster J, Lindquist D, et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med. 2006;355:2733–43.

    Article  CAS  PubMed  Google Scholar 

  33. Fisher B, Costantino J, Redmond C, et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors. N Engl J Med. 1989;320:479–84.

    Article  CAS  PubMed  Google Scholar 

  34. Carpenter R. Choosing early adjuvant therapy for postmenopausal women with hormone-sensitive breast cancer: aromatase inhibitors versus tamoxifen. Eur J Surg Oncol. 2008;34:746–55.

    Article  CAS  PubMed  Google Scholar 

  35. Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13:239–46.

    Article  CAS  PubMed  Google Scholar 

  36. Mok T, Kim DW, Wu YL, et al. First-line crizotinib versus pemetrexed cisplatin or pemetrexed carboplatin in patients with advanced alk-positive non-squamous non small-cell lung cancer: results of a phase III study (PROFILE 1014). J Clin Oncol. 2014;32:5s (suppl; abstr 8002).

    Article  Google Scholar 

  37. Douillard JY, Oliner KS, Siena S, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013;369:1023–34.

    Article  CAS  PubMed  Google Scholar 

  38. Ciardiello F, Lenz HJ, et al. Treatment outcome according to tumor RAS mutation status in CRYSTAL study patients with metastatic colorectal cancer (mCRC) randomized to FOLFIRI with/without cetuximab. J Clin Oncol. 2014;32:5s (suppl; abstr 3506).

    Article  Google Scholar 

  39. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Cassier PA, Fumagalli E, Rutkowski P, et al. Outcome of patients with platelet-derived growth factor receptor alpha-mutated gastrointestinal stromal tumors in the tyrosine kinase inhibitor era. Clin Cancer Res. 2012;18:4458–64.

    Article  CAS  PubMed  Google Scholar 

  41. Grimes DA, Schulz KF. Surrogate end points in clinical research: hazardous to your health. Obstet Gynecol. 2005;105:1114–8.

    Article  PubMed  Google Scholar 

  42. Harris L, Fritsche H, Mennel R, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol. 2007;25:5287–312.

    Article  CAS  PubMed  Google Scholar 

  43. Locker GY, Hamilton S, Harris J, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24:5313–27.

    Article  CAS  PubMed  Google Scholar 

  44. Choi H, Charnsangavej C, Faria SC, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007;25:1753–9.

    Article  PubMed  Google Scholar 

  45. Bhoil A, Singh B, Singh N, et al. Can 3’-deoxy-3’-(18)F-fluorothymidine or 2’-deoxy-2’-(18) F-fluoro-d-glucose PET/CT better assess response after 3-weeks treatment by epidermal growth factor receptor kinase inhibitor, in non-small lung cancer patients? Preliminary results.

    Google Scholar 

  46. BAhce I, Vos CG, Dickhoff C, et al. Metabolic activity measured by FDG PET predicts pathological response in locally advanced superior sulcus NSCLC. Lung Cancer. 2014 Aug;85(2):205–12.

    Google Scholar 

  47. Alix-Panabières C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59:110–8.

    Article  PubMed  Google Scholar 

  48. Murtaza M, Dawson SJ, Tsui DW, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497:108–12.

    Article  CAS  PubMed  Google Scholar 

  49. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10:472–84.

    Article  CAS  PubMed  Google Scholar 

  50. Cierna Z, Mego M, Janega P, et al. Matrix metalloproteinase 1 and circulating tumor cells in early breast cancer. BMC Cancer. 2014;14:472.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Bidard FC, Peeters DJ, Fehm T, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 2014;15:406–14.

    Article  PubMed  Google Scholar 

  52. Ma X, Xiao Z, Li X, et al. Prognostic role of circulating tumor cells and disseminated tumor cells in patients with prostate cancer: a systematic review and meta-analysis. Tumour Biol. 2014;35:5551–60.

    Article  CAS  PubMed  Google Scholar 

  53. Akagi Y, Kinugasa T, Adachi Y, Shirouzu K. Prognostic significance of isolated tumor cells in patients with colorectal cancer in recent 10-year studies. Mol Clin Oncol. 2013;1:582–92.

    PubMed Central  PubMed  Google Scholar 

  54. Krebs MG, Sloane R, Priest L, et al. Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol. 2011;29:1556–63.

    Article  PubMed  Google Scholar 

  55. Alix-Panabières C, Pantel K. Technologies for detection of circulating tumor cells: facts and vision. Lab Chip. 2014;14:57–62.

    Article  PubMed  Google Scholar 

  56. Danila DC, Heller G, Gignac GA, et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res. 2007;13:7053–8.

    Article  CAS  PubMed  Google Scholar 

  57. Hayes DF, Cristofanilli M, Budd GT, et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res. 2006;12:4218–24.

    Article  CAS  PubMed  Google Scholar 

  58. Cohen SJ, Punt CJ, Iannotti N, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26:3213–21.

    Article  PubMed  Google Scholar 

  59. Pailler E, Adam J, Barthélémy A, et al. Detection of circulating tumor cells harboring a unique ALK rearrangement in ALK-positive non-small-cell lung cancer. J Clin Oncol. 2013;31:2273–81.

    Article  PubMed  Google Scholar 

  60. Delgado PO, Alves BC, Gehrke FeS, et al. Characterization of cell-free circulating DNA in plasma in patients with prostate cancer. Tumour Biol. 2013;34:983–6.

    Article  CAS  PubMed  Google Scholar 

  61. Salvianti F, Pinzani P, Verderio P, et al. Multiparametric analysis of cell-free DNA in melanoma patients. PLoS One. 2012;7:e49843.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Schwarzenbach H, Müller V, Milde-Langosch K, et al. Evaluation of cell-free tumour DNA and RNA in patients with breast cancer and benign breast disease. Mol Biosyst. 2011;7:2848–54.

    Article  CAS  PubMed  Google Scholar 

  63. Stroun M, Lyautey J, Lederrey C, et al. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta. 2001;313:139–42.

    Article  CAS  PubMed  Google Scholar 

  64. Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32:579–86.

    Article  PubMed  Google Scholar 

  65. Umetani N, Kim J, Hiramatsu S, et al. Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clin Chem. 2006;52:1062–9.

    Article  CAS  PubMed  Google Scholar 

  66. Umetani N, Giuliano AE, Hiramatsu SH, et al. Prediction of breast tumor progression by integrity of free circulating DNA in serum. J Clin Oncol. 2006;24:4270–6.

    Article  CAS  PubMed  Google Scholar 

  67. Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6:224ra224.

    Article  Google Scholar 

  68. Beaver JA, Jelovac D, Balukrishna S, et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res. 2014;20:2643–50.

    Article  CAS  PubMed  Google Scholar 

  69. Siravegna G, Bardelli A. Minimal residual disease in breast cancer: in blood veritas. Clin Cancer Res. 2014;20:2505–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Passiglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Passiglia, F., Cicero, G., Castiglia, M., Bazan, V. (2015). Biomarkers as Prognostic, Predictive, and Surrogate Endpoints. In: Russo, A., Rosell, R., Rolfo, C. (eds) Targeted Therapies for Solid Tumors. Current Clinical Pathology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2047-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2047-1_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2046-4

  • Online ISBN: 978-1-4939-2047-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics