Skip to main content

Self-Microemulsifying Materials

  • Chapter
  • First Online:
Drug Delivery

Abstract

Up to this point in our discussions, we have looked at drug delivery systems at the mercy of their respective environments. In Chap. 2, we focused on the advantages of bulk and surface erosion. In Chap. 3, we addressed the control over fabricated shape in the form of a thin film with the effects and applications in delivery of drug dosage forms. These approaches largely focus on the viewpoint that the drug is housed in a system that is steadily or immediately affected by its external environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scannell, J. W., Blanckley, A., Boldon, H., & Warrington, B. (2012). Diagnosing the decline in pharmaceutical R&D efficiency. Nature Reviews Drug Discovery, 11(3), 191–200.

    Article  Google Scholar 

  2. (a) Lin, J. H., & Lu, A. Y. H. (1997). Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacological Reviews, 49(4), 403–449. (b) Estes, L. (1998). Review of pharmacokinetics and pharmacodynamics of antimicrobial agents. Mayo Clinic Proceedings, 73(11), 1114–1122.

    Google Scholar 

  3. Philp, D., & Stoddart, J. F. (1996). Self-assembly in natural and unnatural systems. Angewandte Chemie, International Edition in English, 35(11), 1154–1196.

    Google Scholar 

  4. Israelachvili, J. N. (2011). Intermolecular and surface forces: Revised third edition (Google eBook) (p. 704). Amsterdam: Academic Press.

    Google Scholar 

  5. (a) Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions, 2(72), 1525. (b) Blanazs, A., Armes, S. P., & Ryan, A. J. (2009). Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications. Macromolecular Rapid Communications, 30(4–5), 267–77. (c) Israelachvili, J. (1987). Physical principles of surfactant self-association into micelles, bilayers, vesicles and microemulsion droplets. In K. L. Mittal & P. Bothorel (Eds.), Surfactants in solution (pp. 3–33). Boston, MA: Springer US. doi:10.1007/978-1-4613-1831-6.

  6. Tanford, C. (1980). The hydrophobic effect: Formation of micelles and biological membranes (p. 233). New York: Wiley.

    Google Scholar 

  7. Gruen, D. W. (1985). A model for the chains in amphiphilic aggregates. 2. Thermodynamic and experimental comparisons for aggregates of different shape and size. The Journal of Physical Chemistry, 89(1), 153–163.

    Article  Google Scholar 

  8. (a) Israelachvili, J. N., Marčelja, S., & Horn, R. G. (1980). Physical principles of membrane organization. Quarterly Reviews of Biophysics, 13(02), 121–200. (b) Israelachvili, J., & Ninham, B. (1977). Intermolecular forces—The long and short of it. Journal of Colloid and Interface Science, 58(1), 14–25.

    Google Scholar 

  9. Nagarajan, R., & Ruckenstein, E. (1977). Critical micelle concentration: A transition point for micellar size distribution. Journal of Colloid and Interface Science, 60(2), 221–231.

    Article  Google Scholar 

  10. Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1977). Theory of self-assembly of lipid bilayers and vesicles. Biochimica et Biophysica Acta, 470(2), 185–201.

    Article  Google Scholar 

  11. (a) Lipowsky, R., & Sackmann, E. (Eds.). (1995). Structure and dynamics of membranes: I. From cells to vesicles/II. Generic and specific interactions (Google eBook). (p. 1052). Amsterdam, The Netherlands: Elsevier. (b) Pautot, S., Frisken, B. J., & Weitz, D. A. (2003). Engineering asymmetric vesicles. Proceedings of the National Academy of Sciences of the United States of America, 100(19), 10718–10721.

    Google Scholar 

  12. (a) Fromherz, P. (1983). Lipid-vesicle structure: Size control by edge-active agents. Chemical Physics Letters, 94(3), 259–266. (b) Marsh, D. (2013). Handbook of lipid bilayers (2nd ed., p. 1174). Boca Raton, FL: CRC Press.

    Google Scholar 

  13. Leermakers, F. A. M., & Scheutjens, J. M. H. M. (1988). Statistical thermodynamics of association colloids. I. Lipid bilayer membranes. The Journal of Chemical Physics, 89(5), 3264.

    Article  Google Scholar 

  14. Bates, F. S., & Fredrickson, G. H. (1990). Block copolymer thermodynamics: Theory and experiment. Annual Review of Physical Chemistry, 41, 525–557.

    Article  Google Scholar 

  15. (a) Choi, H. S., Liu, W., Misra, P., Tanaka, E., Zimmer, J. P., Itty Ipe, B., et al. (2007). Renal clearance of quantum dots. Nature Biotechnology, 25(10), 1165–70. (b) Svenson, S., & Prud’homme, R. K. (Eds.). (2012). Multifunctional nanoparticles for drug delivery applications: Imaging, targeting, and delivery (p. 373). New York: Springer.

    Google Scholar 

  16. (a) Patel, K. (2008). Design of diffusion controlled drug delivery systems (p. 141). ProQuest. (b) Bakowsky, H., Richter, T., Kneuer, C., Hoekstra, D., Rothe, U., Bendas, G., et al. (2008). Adhesion characteristics and stability assessment of lectin-modified liposomes for site-specific drug delivery. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1778(1), 242–249.

    Google Scholar 

  17. Geng, Y., Dalhaimer, P., Cai, S., Tsai, R., Tewari, M., Minko, T., et al. (2007). Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnology, 2(4), 249–255.

    Article  Google Scholar 

  18. (a) Nagayasu, A., Uchiyama, K., & Kiwada, H. (1999). The size of liposomes: A factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Advanced Drug Delivery Reviews, 40(1), 75–87. (b) Chorny, M., Fishbein, I., Danenberg, H. D., & Golomb, G. (2002). Lipophilic drug loaded nanospheres prepared by nanoprecipitation: Effect of formulation variables on size, drug recovery and release kinetics. Journal of Controlled Release: Official Journal of the Controlled Release Society, 83(3), 389–400.

    Google Scholar 

  19. (a) Sun, B., & Chiu, D. T. (2005). Determination of the encapsulation efficiency of individual vesicles using single-vesicle photolysis and confocal single-molecule detection. Analytical Chemistry, 77(9), 2770–2776. (b) Lohse, B., Bolinger, P.-Y., & Stamou, D. (2008). Encapsulation efficiency measured on single small unilamellar vesicles. Journal of the American Chemical Society, 130(44), 14372–14373.

    Google Scholar 

  20. (a) Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1PII of original article: S0169–409X(96), 00423–1. Advanced Drug Delivery Reviews, 46(1), 3–26 (The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3). (b) Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341.

    Google Scholar 

  21. (a) Lappin, G., Rowland, M., & Garner, R. C. (2006). The use of isotopes in the determination of absolute bioavailability of drugs in humans. Expert Opinion on Drug Metabolism & Toxicology, 2(3), 419–427. (b) Lappin, G., & Stevens, L. (2008). Biomedical accelerator mass spectrometry: Recent applications in metabolism and pharmacokinetics. Expert Opinion on Drug Metabolism & Toxicology, 4(8), 1021–1033.

    Google Scholar 

  22. Food and Drug Administration (2003, March). Guidance for industry: Bioavailability and bioequivalence studies for orally administered drug products—General considerations (pp. 1–23). Rockville, MD: US Department of Health and Human Services, FDA, Center for Drug Evaluation and Research.

    Google Scholar 

  23. Hinderling, P. H. (2003). Evaluation of a novel method to estimate absolute bioavailability of drugs from oral data. Biopharmaceutics & Drug Disposition, 24(1), 1–16.

    Article  Google Scholar 

  24. Yuen, G. J., Morris, D. M., Mydlow, P. K., Haidar, S., Hall, S. T., & Hussey, E. K. (1995). Pharmacokinetics, absolute bioavailability, and absorption characteristics of lamivudine. The Journal of Clinical Pharmacology, 35(12), 1174–1180.

    Article  Google Scholar 

  25. (a) El-Kattan, A., & Varma, M. (2012). Oral absorption, intestinal metabolism and human oral bioavailability. In J. Paxton (Ed.), Topics on drug metabolism. InTech. ISBN 978-953-51-0099-7. (b) Antonietti, M., & Förster, S. (2003). Vesicles and liposomes: A self-assembly principle beyond lipids. Advanced Materials, 15(16), 1323–1333. (c) Maggio, B. (1985). Geometric and thermodynamic restrictions for the self-assembly of glycosphingolipid-phospholipid systems. Biochimica et Biophysica Acta (BBA)—Biomembranes, 815(2), 245–258.

    Google Scholar 

  26. (a) Bergstrand, N. (2003). Liposomes for drug delivery: From physico-chemical studies to applications (Doctoral Dissertation), Uppsala University. (b) Allen, T. M. (1998). Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs, 56(5), 747–756.

    Google Scholar 

  27. Sekimura, T., & Hotani, H. (1990). Morphogenesis of liposomes and bending energy of lipid bilayer. Mathematical and Computer Modelling, 14, 690–693.

    Article  Google Scholar 

  28. (a) Woodle, M. C. (1998). Controlling liposome blood clearance by surface-grafted polymers. Advanced Drug Delivery Reviews, 32(1), 139–152. (b) Jølck, R. I., Feldborg, L. N., Andersen, S., Moghimi, S. M., & Andresen, T. L. (2011). Engineering liposomes and nanoparticles for biological targeting. Advances in Biochemical Engineering/Biotechnology, 125, 251–280. (c) Lestini, B. J., Sagnella, S. M., Xu, Z., Shive, M. S., Richter, N. J., Jayaseharan, J., et al. (2002). Surface modification of liposomes for selective cell targeting in cardiovascular drug delivery. Journal of Controlled Release, 78(1), 235–247.

    Google Scholar 

  29. Brinker, C. J., Lu, Y., Sellinger, A., & Fan, H. (1999). Evaporation-induced self-assembly: Nanostructures made easy. Advanced Materials, 11(7), 579–585.

    Article  Google Scholar 

  30. (a) Won, Y. (1999). Giant wormlike rubber micelles. Science, 283(5404), 960–963. (b) Spenley, N., Cates, M., & McLeish, T. (1993). Nonlinear rheology of wormlike micelles. Physical Review Letters, 71(6), 939–942. (c) Lin, Z., Cai, J. J., Scriven, L. E., & Davis, H. T. (1994). Spherical-to-wormlike micelle transition in CTAB solutions. The Journal of Physical Chemistry, 98(23), 5984–5993.

    Google Scholar 

  31. Brady, J. E., Evans, D. F., Kachar, B., & Ninham, B. W. (1984). Spontaneous vesicles. Journal of the American Chemical Society, 106(15), 4279–4280.

    Article  Google Scholar 

  32. (a) Furukawa, K., Ebata, K., & Fujiki, M. (2000). One-dimensional silicon chain architecture: Molecular dot, rope, octopus, and toroid. Advanced Materials, 12(14), 1033–1036. (b) Lee, E., Jeong, Y.-H., Kim, J.-K., & Lee, M. (2007). Controlled self-assembly of asymmetric dumbbell-shaped Rod amphiphiles: transition from toroids to planar nets. Macromolecules, 40(23), 8355–8360. (c) Pochan, D. J., Chen, Z., Cui, H., Hales, K., Qi, K., & Wooley, K. L. (2004). Toroidal triblock copolymer assemblies. Science (New York, NY), 306(5693), 94–97.

    Google Scholar 

  33. Risselada, H. J., & Marrink, S. J. (2009). Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. Physical Chemistry Chemical Physics (PCCP), 11(12), 2056–2067.

    Article  Google Scholar 

  34. (a) Carnie, S., Israelachvili, J. N., & Pailthorpe, B. A. (1979). Lipid packing and transbilayer asymmetries of mixed lipid vesicles. Biochimica et Biophysica Acta (BBA)—Biomembranes, 554(2), 340–357. (b) Kaler, E. W., Herrington, K. L., Murthy, A. K., & Zasadzinski, J. A. N. (1992). Phase behavior and structures of mixtures of anionic and cationic surfactants. The Journal of Physical Chemistry, 96(16), 6698–6707.

    Google Scholar 

  35. (a) Rawicz, W., Olbrich, K. C., McIntosh, T., Needham, D., & Evans, E. (2000). Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophysical Journal, 79(1), 328–39. (b) Balgavý, P., Dubničková, M., Kučerka, N., Kiselev, M. A., Yaradaikin, S. P., & Uhrıková, D. (2001). Bilayer thickness and lipid interface area in unilamellar extruded 1,2-diacylphosphatidylcholine liposomes: A small-angle neutron scattering study. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1512(1), 40–52.

    Google Scholar 

  36. Drummond, C. J., & Fong, C. (1999). Surfactant self-assembly objects as novel drug delivery vehicles. Current Opinion in Colloid & Interface Science, 4(6), 449–456.

    Article  Google Scholar 

  37. Polozova, A., Li, X., Shangguan, T., Meers, P., Schuette, D. R., Ando, N., et al. (2005). Formation of homogeneous unilamellar liposomes from an interdigitated matrix. Biochimica et Biophysica Acta (BBA)—Biomembranes, 1668(1), 117–125.

    Article  Google Scholar 

  38. Moscho, A., Orwar, O., Chiu, D. T., Modi, B. P., & Zare, R. N. (1996). Rapid preparation of giant unilamellar vesicles. Proceedings of the National Academy of Sciences, 93(21), 11443–11447.

    Article  Google Scholar 

  39. (a) Scherer, J. R. (1989). Reply to “Hydrocarbon chain conformation in the HII phase.”. Biophysical Journal, 56(5), 1047–1049. (b) Makino, K., Yamada, T., Kimura, M., Oka, T., Ohshima, H., & Kondo, T. (1991). Temperature- and ionic strength-induced conformational changes in the lipid head group region of liposomes as suggested by zeta potential data. Biophysical Chemistry, 41(2), 175–183.

    Google Scholar 

  40. Prokop, A. (Ed.). (2011). Intracellular delivery: Fundamentals and applications (p. 886). New York: Springer.

    Google Scholar 

  41. Kozlov, M. M., & Andelman, D. (1996). Theory and phenomenology of mixed amphiphilic aggregates. Current Opinion in Colloid & Interface Science, 1(3), 362–366.

    Article  Google Scholar 

  42. Woodle, M. C., & Lasic, D. D. (1992). Sterically stabilized liposomes. Biochimica et Biophysica Acta (BBA)—Reviews on Biomembranes, 1113(2), 171–199.

    Article  Google Scholar 

  43. Newton, A. C. (1993). Interaction of proteins with lipid headgroups: Lessons from protein kinase C. Annual Review of Biophysics and Biomolecular Structure, 22, 1–25.

    Article  Google Scholar 

  44. Fattal, D. R., & Ben-Shaul, A. (1994). Mean-field calculations of chain packing and conformational statistics in lipid bilayers: Comparison with experiments and molecular dynamics studies. Biophysical Journal, 67(3), 985–995.

    Google Scholar 

  45. Malliaris, A., Le Moigne, J., Sturm, J., & Zana, R. (1985). Temperature dependence of the micelle aggregation number and rate of intramicellar excimer formation in aqueous surfactant solutions. The Journal of Physical Chemistry, 89(12), 2709–2713.

    Article  Google Scholar 

  46. (a) Discher, B. M., Won, Y. Y., Ege, D. S., Lee, J. C., Bates, F. S., Discher, D. E., et al. (1999). Polymersomes: Tough vesicles made from diblock copolymers. Science (New York, N.Y.), 284(5417), 1143–6. (b) Leroux, J.-C., Burt, H., Amsden, B., Uludag, H., & Letchford, K. (2007). A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: Micelles, nanospheres, nanocapsules and polymersomes. European Journal of Pharmaceutics and Biopharmaceutics, 65(3), 259–269.

    Google Scholar 

  47. (a) Lin, J. J., Silas, J. A., Bermudez, H., Milam, V. T., Bates, F. S., & Hammer, D. A. (2004). The effect of polymer chain length and surface density on the adhesiveness of functionalized polymersomes. Langmuir, 20(13), 5493–5500. (b) Discher, D. E., & Ahmed, F. (2006). Polymersomes. Annual Review of Biomedical Engineering, 8, 323–341.

    Google Scholar 

  48. (a) Thiele, J., Abate, A. R., Shum, H. C., Bachtler, S., Förster, S., & Weitz, D. A. (2010). Fabrication of polymersomes using double-emulsion templates in glass-coated stamped microfluidic devices. Small (Weinheim an der Bergstrasse, Germany), 6(16), 1723–1727. (b) Cha, J. N., Birkedal, H., Euliss, L. E., Bartl, M. H., Wong, M. S., Deming, T. J., et al. (2003). Spontaneous formation of nanoparticle vesicles from homopolymer polyelectrolytes. Journal of the American Chemical Society, 125(27), 8285–8289.

    Google Scholar 

  49. (a) Levine, D. H., Ghoroghchian, P. P., Freudenberg, J., Zhang, G., Therien, M. J., Greene, M. I., et al. (2008). Polymersomes: A new multi-functional tool for cancer diagnosis and therapy. Methods (San Diego, Calif.), 46(1), 25–32. (b) Ahmed, F., & Discher, D. E. (2004). Self-porating polymersomes of PEG-PLA and PEG-PCL: Hydrolysis-triggered controlled release vesicles. Journal of Controlled Release: Official Journal of the Controlled Release Society, 96(1), 37–53. (c) Kukula, H., Schlaad, H., Antonietti, M., & Förster, S. (2002). The formation of polymer vesicles or “peptosomes” by polybutadiene-block-poly (L-glutamate)s in dilute aqueous solution. Journal of the American Chemical Society, 124(8), 1658–1663.

    Google Scholar 

  50. Bermúdez, H., Aranda-Espinoza, H., Hammer, D. A., & Discher, D. E. (2003). Pore stability and dynamics in polymer membranes. Europhysics Letters, 64(4), 550–556.

    Article  Google Scholar 

  51. (a) Bermúdez, H., Hammer, D. A., & Discher, D. E. (2004). Effect of bilayer thickness on membrane bending rigidity. Langmuir: The ACS Journal of Surfaces and Colloids, 20(3), 540–543. (b) Bermudez, H., Brannan, A. K., Hammer, D. A., Bates, F. S., & Discher, D. E. (2002). Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules, 35(21), 8203–8208.

    Google Scholar 

  52. Discher, B. M., Bermudez, H., Hammer, D. A., Discher, D. E., Won, Y. Y., & Bates, F. S. (2002). Cross-linked polymersome membranes: Vesicles with broadly adjustable properties. Journal of Physical Chemistry B, 106, 2848–2854.

    Article  Google Scholar 

  53. Srinivas, G., Discher, D. E., & Klein, M. L. (2004). Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nature Materials, 3(9), 638–644.

    Article  Google Scholar 

  54. (a) De Gennes, P. G. (1987). Reptation of a polymer chain in the presence of fixed obstacles. The Journal of Chemical Physics (American Institute of Physics), 55(2), 572–571. (b) Rubinstein, M. (1987). Discretized model of entangled-polymer dynamics. Physical Review Letters, 59(17), 1946–1949.

    Google Scholar 

  55. (a) De Gennes, P. G. (1983). Entangled polymers. Physics Today (American Institute of Physics), 36(6), 33–31. (b) Duhamel, J., Yekta, A., Winnik, M. A., Jao, T. C., Mishra, M. K., & Rubin, I. D. (1993). A blob model to study polymer chain dynamics in solution. The Journal of Physical Chemistry, 97(51), 13708–13712.

    Google Scholar 

  56. Coldren, B., van Zanten, R., Mackel, M. J., Zasadzinski, J. A., & Jung, H.-T. (2003). From vesicle size distributions to bilayer elasticity via cryo-transmission and freeze-fracture electron microscopy. Langmuir, 19(14), 5632–5639.

    Article  Google Scholar 

  57. (a) Yamada, K., Yamaoka, K., Minoda, M., & Miyamoto, T. (1997). Controlled synthesis of amphiphilic block copolymers with pendant glucose residues by living cationic polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 35(2), 255–261. (b) Stemmelen, M., Travelet, C., Lapinte, V., Borsali, R., & Robin, J.-J. (2013). Synthesis and self-assembly of amphiphilic polymers based on polyoxazoline and vegetable oil derivatives. Polymer Chemistry, 4(5), 1445.

    Google Scholar 

  58. (a) Kuhl, T. L., Leckband, D. E., Lasic, D. D., & Israelachvili, J. N. (1994). Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups. Biophysical Journal, 66(5), 1479–88. (b) Werner, M., Sommer, J.-U., & Baulin, V. A. (2012). Homo-polymers with balanced hydrophobicity translocate through lipid bilayers and enhance local solvent permeability. Soft Matter, 8(46), 11714.

    Google Scholar 

  59. Nardin, C., Hirt, T., Leukel, J., & Meier, W. (2000). Polymerized ABA triblock copolymer vesicles. Langmuir, 16(3), 1035–1041.

    Article  Google Scholar 

  60. Gupta, S., Tyagi, R., Parmar, V. S., Sharma, S. K., & Haag, R. (2012). Polyether based amphiphiles for delivery of active components. Polymer, 53(15), 3053–3078.

    Article  Google Scholar 

  61. (a) Jankova, K., Chen, X., Kops, J., & Batsberg, W. (1998). Synthesis of amphiphilic PS- b -PEG- b -PS by atom transfer radical polymerization. Macromolecules, 31(2), 538–541. (b) Kanaoka, S., Omura, T., Sawamoto, M., & Higashimura, T. (1992). Star-shaped polymers by living cationic polymerization. 3. Synthesis of heteroarm amphiphilic star-shaped polymers of vinyl ethers with hydroxyl or carboxyl pendant groups. Macromolecules, 25(24), 6407–6413. (c) Delaittre, G., Dire, C., Rieger, J., Putaux, J.-L., & Charleux, B. (2009). Formation of polymer vesicles by simultaneous chain growth and self-assembly of amphiphilic block copolymers. Chemical Communications (Cambridge, England), 20, 2887–2889.

    Google Scholar 

  62. Jiang, Y., Chen, T., Ye, F., Liang, H., & Shi, A.-C. (2005). Effect of polydispersity on the formation of vesicles from amphiphilic diblock copolymers. Macromolecules, 38(15), 6710–6717.

    Article  Google Scholar 

  63. Cowie, J. M. G. (1991). Polymers: Chemistry and physics of modern materials (2nd ed., p. 450). Boca Raton, FL: Taylor & Francis.

    Google Scholar 

  64. Carothers, W. H. (1936). Polymers and polyfunctionality. Transactions of the Faraday Society, 32, 39.

    Article  Google Scholar 

  65. Jiang, G., & Ren, J. (2010). Synthesis of an amphiphilic multiarm star polymer as encapsulation and release carrier for guest molecules. Designed Monomers and Polymers, 13(3), 277–286.

    Article  Google Scholar 

  66. (a) Baysal, B., & Tobolsky, A. V. (1952). Rates of initiation in vinyl polymerization. Journal of Polymer Science, 8(5), 529–541. (b) Mayo, F. R., Gregg, R. A., & Matheson, M. S. (1951). Chain transfer in the polymerization of styrene. VI. Chain transfer with styrene and benzoyl peroxide; the efficiency of initiation and the mechanism of chain termination 1. Journal of the American Chemical Society, 73(4), 1691–1700.

    Google Scholar 

  67. Otsu, T., Yoshida, M., & Tazaki, T. (1982). A model for living radical polymerization. Die Makromolekulare Chemie. Rapid Communications, 3(2), 133–140.

    Article  Google Scholar 

  68. Wang, J.-S., & Matyjaszewski, K. (1995). Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 117(20), 5614–5615.

    Article  Google Scholar 

  69. Barner-Kowollik, C., Quinn, J. F., Morsley, D. R., & Davis, T. P. (2001). Modeling the reversible addition-fragmentation chain transfer process in cumyl dithiobenzoate-mediated styrene homopolymerizations: Assessing rate coefficients for the addition-fragmentation equilibrium. Journal of Polymer Science Part A: Polymer Chemistry, 39(9), 1353–1365.

    Article  Google Scholar 

  70. (a) Georges, M. K., Veregin, R. P. N., Kazmaier, P. M., & Hamer, G. K. (1993). Narrow molecular weight resins by a free-radical polymerization process. Macromolecules, 26(11), 2987–2988. (b) Hawker, C. J. (1997). “Living” free radical polymerization: A unique technique for the preparation of controlled macromolecular architectures. Accounts of Chemical Research, 30(9), 373–382.

    Google Scholar 

  71. Tomasi, J., Mennucci, B., & Cammi, R. (2005). Quantum mechanical continuum solvation models. Chemical Reviews, 105(8), 2999–3093.

    Article  Google Scholar 

  72. Bermudez, H., Brannan, A. K., Hammer, D. A., Bates, F. S., & Discher, D. E. (2002). Molecular weight dependence of polymersome membrane structure, elasticity, and stability. Macromolecules, 35(21), 8203–8208.

    Article  Google Scholar 

  73. Xiang, T. X. (1993). A computer simulation of free-volume distributions and related structural properties in a model lipid bilayer. Biophysical Journal, 65(3), 1108–1120.

    Article  Google Scholar 

  74. (a) Xu, J.-P., Ji, J., Chen, W.-D., & Shen, J.-C. (2005). Novel biomimetic polymersomes as polymer therapeutics for drug delivery. Journal of Controlled Release, 107(3), 502–512. (b) Soussan, E., Cassel, S., Blanzat, M., & Rico-Lattes, I. (2009). Drug delivery by soft matter: Matrix and vesicular carriers. Angewandte Chemie, International Edition in English, 48(2), 274–288.

    Google Scholar 

  75. Immordino, M. L., Dosio, F., & Cattel, L. (2006). Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine, 1(3), 297–315.

    Article  Google Scholar 

  76. Cates, M. E., & Candau, S. J. (1990). Statics and dynamics of worm-like surfactant micelles. Journal of Physics. Condensed Matter, 2(33), 6869–6892.

    Article  Google Scholar 

  77. (a) Garti, N., & Aserin, A. (1996). Double emulsions stabilized by macromolecular surfactants. Advances in Colloid and Interface Science, 65, 37–69. (b) Sapei, L., Naqvi, M. A., & Rousseau, D. (2012). Stability and release properties of double emulsions for food applications. Food Hydrocolloids, 27(2), 316–323. (c) Pradhan, M., & Rousseau, D. (2012). A one-step process for oil-in-water-in-oil double emulsion formation using a single surfactant. Journal of Colloid and Interface Science, 386(1), 398–404.

    Google Scholar 

  78. Garti, N. (1997). Double emulsions—Scope, limitations and new achievements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 123, 233–246.

    Article  Google Scholar 

  79. Pays, K., Giermanska-Kahn, J., Pouligny, B., Bibette, J., & Leal-Calderon, F. (2002). Double emulsions: How does release occur? Journal of Controlled Release, 79(1), 193–205.

    Article  Google Scholar 

  80. Garti, N. (1997). Progress in stabilization and transport phenomena of double emulsions in food applications. LWT—Food Science and Technology, 30(3), 222–235.

    Google Scholar 

  81. Hanson, J. A., Chang, C. B., Graves, S. M., Li, Z., Mason, T. G., & Deming, T. J. (2008). Nanoscale double emulsions stabilized by single-component block copolypeptides. Nature, 455(7209), 85–88.

    Article  Google Scholar 

  82. Su, J. Y., Hodges, R. S., & Kay, C. M. (1994). Effect of chain length on the formation and stability of synthetic alpha-helical coiled coils. Biochemistry, 33(51), 15501–15510.

    Article  Google Scholar 

  83. Holowka, E. P., Pochan, D. J., & Deming, T. J. (2005). Charged polypeptide vesicles with controllable diameter. Journal of the American Chemical Society, 127(35), 12423–12428.

    Article  Google Scholar 

  84. Voet, D., & Voet, J. G. (2011). Biochemistry (p. 1520). New York: Wiley.

    Google Scholar 

  85. Soga, O., van Nostrum, C. F., Fens, M., Rijcken, C. J., Schiffelers, R. M., Storm, G., et al. (2005). Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. Journal of Controlled Release, 103, 341.

    Article  Google Scholar 

  86. Blanco, E., Kessinger, C. W., Sumer, B. D., & Gao, J. (2009). Multifunctional micellar nanomedicine for cancer therapy. Experimental Biology and Medicine, 234, 123.

    Article  Google Scholar 

  87. Liu, J., Zeng, F., & Allen, C. (2007). In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics, 65, 309.

    Article  Google Scholar 

  88. Danson, S., Ferry, D., Alakhov, V., et al. (2004). Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. British Journal of Cancer, 90, 2085.

    Google Scholar 

  89. Matsumura, Y., Hamaguchi, T., Ura, T., et al. (2004). Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. British Journal of Cancer, 91, 1775.

    Article  Google Scholar 

  90. Sutton, D., Nasongkla, N., Blanco, E., & Gao, J. (2007). Functionalized micellar systems for cancer targeted drug delivery. Pharmaceutical Research, 24, 1029.

    Article  Google Scholar 

  91. Kim, T. Y., Kim, D. W., Chung, J. Y., Shin, S. G., Kim, S. C., Heo, D. S., et al. (2004). Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical Cancer Research, 10, 3708.

    Article  Google Scholar 

  92. Uchino, H., Matsumura, Y., Negishi, T., Koizumi, F., Hayashi, T., Honda, T., et al. (2005). Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. British Journal of Cancer, 93, 678.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holowka, E.P., Bhatia, S.K. (2014). Self-Microemulsifying Materials. In: Drug Delivery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1998-7_4

Download citation

Publish with us

Policies and ethics