Skip to main content

Leucine-Protein Supplemented Recovery and Exercise

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

Abstract

The endurance-trained state is arguably the natural expression condition of human skeletal muscle [1]. Early humans experienced environmental selection pressure and migration out of Africa, that would have favoured a high physical endurance capacity [2, 3]. Improved endurance capabilities in early humans likely facilitated scavenging and persistence hunting and the co-emergence and increased post-exercise consumption of readily digestible protein and calorie intake [4]. Therefore, scavenging, hunting and gathering a high-protein diet [5] coupled with long-durations of endurance exercise (up to 8 h) supported not only the high energetic and tissue amino acid requirements of the musculoskeletal system, but also the metabolic demands of an increasingly larger brain mass contributing to social, cultural and technological development [5]. Animals would have been consumed within the hours following hunting, tracking or gathering, which is also when nutrient delivery to the exercised tissue is best because of transient increases in muscle blood flow, insulin sensitivity and glucose and amino acid uptake [6, 7]. Disturbances to muscle homeostasis from regular endurance exercise coupled with post-exercise hyperaminoacidaemia from a protein-rich diet might, therefore, be the normal environmental cues for adaptive remodelling in human skeletal muscle [8].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Booth FW, Gordon SE, Carlson CJ, Hamilton MT. Waging war on modern chronic diseases: primary prevention through exercise biology. J Appl Physiol. 2000;88(2):774–87.

    CAS  PubMed  Google Scholar 

  2. Carto SL, Weaver AJ, Hetherington R, Lam Y, Wiebe EC. Out of Africa and into an ice age: on the role of global climate change in the late Pleistocene migration of early modern humans out of Africa. J Hum Evol. 2008;56(2):139–51.

    Article  PubMed  Google Scholar 

  3. Hochachka PW, Gunga HC, Kirsch K. Our ancestral physiological phenotype: an adaptation for hypoxia tolerance and for endurance performance? Proc Natl Acad Sci U S A. 1998;95(4):1915–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wu G, Bazer FW, Burghardt RC, et al. Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids. 2011;40(4):1053–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bortz WMI. Physical exercise as an evolutionary force. J Hum Evol. 1985;14(2):145–55.

    Article  Google Scholar 

  6. Drummond MJ, Fry CS, Glynn EL, et al. Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise. J Appl Physiol. 2011;111(1):135–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Maarbjerg SJ, Sylow L, Richter EA. Current understanding of increased insulin sensitivity after exercise—emerging candidates. Acta Physiol. 2011;202(3):323–35.

    Article  CAS  Google Scholar 

  8. Rowlands DS, Thomson JS, Timmons BW, et al. The transcriptome and translational signalling following endurance exercise in trained skeletal muscle: Impact of dietary protein. Physiol Genomics. 2011;43(17):1004–20.

    Article  CAS  PubMed  Google Scholar 

  9. Thomson JS, Ali A, Rowlands DS. Leucine-protein supplemented recovery feeding enhances subsequent cycling performance. Appl Physiol Nutr Metab. 2011;36(2):242–53.

    Article  CAS  PubMed  Google Scholar 

  10. D’Antona G, Ragni M, Cardile A, et al. Branched-chain amino acid supplementation promotes survival and supports cardiac and skeletal muscle mitochondrial biogenesis in middle-aged mice. Cell Metab. 2010;12(4):362–72.

    Article  PubMed  Google Scholar 

  11. Nelson AR, Phillips SM, Stellingwerff T, et al. A protein-leucine supplement increases BCAA and nitrogen turnover but not performance. Med Sci Sports Exerc. 2012;44(1):57–68.

    Article  CAS  PubMed  Google Scholar 

  12. Kimball SR, Jefferson LS. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J Nutr. 2006;136:227S–31.

    CAS  PubMed  Google Scholar 

  13. Churchward-Venne TA, Burd NA, Mitchell CJ, et al. Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. J Physiol. 2012;590(Pt 11):2751–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Haegens A, Schols AM, van Essen AL, van Loon LJ, Langen RC. Leucine induces myofibrillar protein accretion in cultured skeletal muscle through mTOR dependent and -independent control of myosin heavy chain mRNA levels. Mol Nutr Food Res. 2012;56(5):741–52.

    Article  CAS  PubMed  Google Scholar 

  15. Rome S, Clément K, Rabasa-Lhoret R, et al. Microarray profiling of human skeletal muscle reveals that insulin regulates approximately 800 genes during a hyperinsulinemic clamp. J Biol Chem. 2003;278(20):18063–8.

    Article  CAS  PubMed  Google Scholar 

  16. Jentjens R, Jeukendrup AE. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117–44.

    Article  PubMed  Google Scholar 

  17. Beelen M, Burke LM, Gibala MJ, van Loon LJC. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab. 2010;20(6):515–32.

    CAS  PubMed  Google Scholar 

  18. van Loon LJ, Saris WH, Kruijshoop M, Wagenmakers AJ. Maximizing postexercise muscle glycogen synthesis: carbohydrate supplementation and the application of amino acid or protein hydrolysate mixtures. Am J Clin Nutr. 2000;72(1):106–11.

    PubMed  Google Scholar 

  19. Rowlands DS, Rossler K, Thorp RM, et al. Effect of dietary protein content during recovery from high-intensity cycling on subsequent performance and markers of stress, inflammation, and muscle damage in well-trained men. Appl Physiol Nutr Metab. 2008;33(1):39–51.

    Article  CAS  PubMed  Google Scholar 

  20. Egan B, Dowling P, O’Connor PL, et al. 2-D DIGE analysis of the mitochondrial proteome from human skeletal muscle reveals time course-dependent remodelling in response to 14 consecutive days of endurance exercise training. Proteomics. 2011;11(8):1413–28.

    Article  CAS  PubMed  Google Scholar 

  21. Seene T, Kaasik P, Umnova M. Structural rearrangements in contractile apparatus and resulting skeletal muscle remodelling: effect of exercise training. J Sports Med Phys Fitness. 2009;49(4):410–23.

    CAS  PubMed  Google Scholar 

  22. Rowlands DS, Thorp RM, Rossler K, Graham DF, Rockell MJ. Effect of protein-rich feeding on recovery following intense exercise. Int J Sport Nutr Exerc Metab. 2007;17(6):521–43.

    CAS  PubMed  Google Scholar 

  23. Luden ND, Saunders MJ, Todd MK. Postexercise carbohydrate-protein-antioxidant ingestion decreases plasma creatine kinase and muscle soreness. Int J Sport Nutr Exerc Metab. 2007;17(1):109–23.

    CAS  PubMed  Google Scholar 

  24. Pritchett K, Bishop P, Pritchett R, Green M, Katica C. Acute effects of chocolate milk and a commercial recovery beverage on postexercise recovery indices and endurance cycling performance. Appl Physiol Nutr Metab. 2009;34(6):1017–22.

    Article  PubMed  Google Scholar 

  25. Pasiakos SM, McClung HL, McClung JP, et al. Leucine-enriched essential amino acid supplementation during moderate steady state exercise enhances postexercise muscle protein synthesis. Am J Clin Nutr. 2011;94(3):809–18.

    Article  CAS  PubMed  Google Scholar 

  26. Carbone JW, McClung JP, Pasiakos SM. Skeletal muscle responses to negative energy balance: effects of dietary protein. Adv Nutr. 2012;3(2):119–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Bolster DR, Pikosky MA, Gaine PC, et al. Dietary protein intake impacts human skeletal muscle protein fractional synthetic rates after endurance exercise. Am J Physiol Endocrinol Metab. 2005;289(4):E678–83.

    Article  CAS  PubMed  Google Scholar 

  28. Gaine PC, Pikosky MA, Bolster DR, Martin WF, Maresh CM, Rodriguez NR. Postexercise whole-body protein turnover response to three levels of protein intake. Med Sci Sports Exerc. 2007;39(3):480–6.

    Article  CAS  PubMed  Google Scholar 

  29. Atherton PJ, Smith K, Etheridge T, Rankin D, Rennie MJ. Distinct anabolic signalling responses to amino acids in C2C12 skeletal muscle cells. Amino Acids. 2010;38(5):1533–9.

    Article  CAS  PubMed  Google Scholar 

  30. Bohe J, Low A, Wolfe RR, Rennie MJ. Human muscle protein synthesis is modulated by extracellular, not intramuscular amino acid availability: a dose-response study. J Physiol. 2003;552(Pt 1):315–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zanchi NE, Nicastro H, Lancha AHJ. Potential antiproteolytic effects of L-leucine: observations of in vitro and in vivo studies. Nutr Metab. 2008;17(5):20.

    Article  Google Scholar 

  32. Baptista IL, Leal ML, Artioli GG, et al. Leucine attenuates skeletal muscle wasting via inhibition of ubiquitin ligases. Muscle Nerve. 2010;41(6):800–8.

    Article  CAS  PubMed  Google Scholar 

  33. Manders RJ, Koopman R, Sluijsmans WE, et al. Co-ingestion of a protein hydrolysate with or without additional leucine effectively reduces postprandial blood glucose excursions in Type 2 diabetic men. J Nutr. 2006;136(5):1294–9.

    CAS  PubMed  Google Scholar 

  34. Timmerman KL, Lee JL, Dreyer HC, et al. Insulin stimulates human skeletal muscle protein synthesis via an indirect mechanism involving endothelial-dependent vasodilation and mammalian target of rapamycin complex 1 signaling. J Clin Endocrinol Metab. 2010;95(8):3848–57.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Greenhaff PL, Karagounis LG, Peirce N, et al. Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab. 2008;295(3):E595–604.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Stump CS, Short KR, Bigelow ML, Schimke JM, Nair KS. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts. Proc Natl Acad Sci U S A. 2003;100(13):7996–8001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Barazzoni R, Short KR, Asmann Y, Coenen-Schimke JM, Robinson MM, Nair KS. Insulin fails to enhance mTOR phosphorylation, mitochondrial protein synthesis, and ATP production in human skeletal muscle without amino acid replacement. Am J Physiol Endocrinol Metab. 2012;303(9):E1117–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Verhoeven S, Vanschoonbeek K, Verdijk LB, et al. Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am J Clin Nutr. 2009;89(5):1468–75.

    Article  CAS  PubMed  Google Scholar 

  39. Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009;136(3):521–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Rusu D, Drouin R, Pouliot Y, Gauthier S, Poubelle PE. A bovine whey protein extract stimulates human neutrophils to generate bioactive IL-1Ra through a NF-kB- and MAPK-dependent mechanism. J Nutr. 2010;140(2):382–91.

    Article  CAS  PubMed  Google Scholar 

  41. Robinson MM, Turner SM, Hellerstein MK, Hamilton KL, Miller BF. Long-term synthesis rates of skeletal muscle DNA and protein are higher during aerobic training in older humans than in sedentary young subjects but are not altered by protein supplementation. FASEB J. 2011;25(9):3240–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Ferguson-Stegall L, McCleave E, Ding Z, et al. Aerobic exercise training adaptations are increased by postexercise carbohydrate-protein supplementation. J Nutr Metab. 2011;2011(623182):1–11.

    Article  Google Scholar 

  43. Okazaki K, Ichinose T, Mitono H, et al. Impact of protein and carbohydrate supplementation on plasma volume expansion and thermoregulatory adaptation by aerobic training in older men. J Appl Physiol. 2009;107(3):725–33.

    Article  CAS  PubMed  Google Scholar 

  44. Wilkinson SB, Phillips SM, Atherton PJ, et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(Pt 15):3701–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Breen L, Philp A, Witard OC, et al. The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. J Physiol. 2011;589(Pt 16):4011–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Jimenez RH, Lee J-S, Francesconi M, et al. Regulation of gene expression in hepatic cells by the mammalian Target of Rapamycin (mTOR). PLoS One. 2010;5(2):e9084.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Mayer C, Grummt I. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene. 2006;25(48):6384–91.

    Article  CAS  PubMed  Google Scholar 

  48. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–84.

    Article  CAS  PubMed  Google Scholar 

  49. Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature. 2007;450(7170):736–40.

    Article  CAS  PubMed  Google Scholar 

  50. Duvel K, Yecies JL, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 2010;39(2):171–83.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Sun Q, Chen X, Ma J, et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth. Proc Natl Acad Sci U S A. 2011;108(10):4129–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Yi Z, Bowen BP, Hwang H, et al. Global relationship between the proteome and transcriptome of human skeletal muscle. J Proteome Res. 2008;7(8):3230–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Hoppeler H. The different relationship of VO2max to muscle mitochondria in humans and quadrupedal animals. Respir Res. 1990;80(2–3):137–45.

    CAS  Google Scholar 

  54. Mahoney DJ, Parise G, Melov S, Safdar A, Tarnopolsky MA. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J. 2005;19(11):1498–500.

    CAS  PubMed  Google Scholar 

  55. Mann CJ, Perdiguero E, Kharraz Y, et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle. 2011;1(1):21.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol. 2010;298(5):R1173–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Chen X, Li Y. Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adh Migr. 2009;3(4):337–41.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Nelson AR, Fort L, Clarke J, Stellingwerff T, Broadbent S, Rowlands DS. Effect of post-exercise protein-leucine feeding on neutrophil function, immunomodulatory plasma metabolites and cortisol during a 6-day block of intense cycling. Eur J Appl Physiol. 2013;113(9):2211–22.

    Article  CAS  PubMed  Google Scholar 

  59. Nauseef WM. How human neutrophils kill and degrade microbes: an integrated view. Immunol Rev. 2007;219:88–102.

    Article  CAS  PubMed  Google Scholar 

  60. Moore DR, Robinson MJ, Fry JL, et al. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am J Clin Nutr. 2009;89(1):161–8.

    Article  CAS  PubMed  Google Scholar 

  61. Rowlands DS, Nelson AR, Phillips SM, et al. Protein-leucine fed dose effects on muscle protein synthesis after endurance exercise. Med Sci Sports Exerc. 2014;Epub ahead of print.

    Google Scholar 

  62. Bosurgi L, Manfredi AA, Rovere-Querini P. Macrophages in injured skeletal muscle: a perpetuum mobile causing and limiting fibrosis, prompting or restricting resolution and regeneration. Front Immunol. 2011;2(62):1–10.

    Google Scholar 

  63. Howarth KR, Moreau NA, Phillips SM, Gibala MJ. Co-ingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol. 2009;106(4):1036–7.

    Article  Google Scholar 

  64. Harber MP, Konopka AR, Jemiolo B, Trappe SW, Trappe TA, Reidy PT. Muscle protein synthesis and gene expression during recovery from aerobic exercise in the fasted and fed states. Am J Physiol Regul Integr Comp Physiol. 2010;299(5):R1254–62.

    Article  CAS  PubMed  Google Scholar 

  65. Lunn WR, Pasiakos SM, Colletto MR, et al. Chocolate milk and endurance exercise recovery: protein balance, glycogen, and performance. Med Sci Sports Exerc. 2012;44(4):682–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre R. Nelson Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nelson, A.R., Karagounis, L.G., Rowlands, D.S. (2015). Leucine-Protein Supplemented Recovery and Exercise. In: Rajendram, R., Preedy, V., Patel, V. (eds) Branched Chain Amino Acids in Clinical Nutrition. Nutrition and Health. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1914-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1914-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1913-0

  • Online ISBN: 978-1-4939-1914-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics