Skip to main content

Glycoprotein Enrichment Method Using a Selective Magnetic Nano-Probe Platform (MNP) Functionalized with Lectins

  • Protocol
  • First Online:
Clinical Proteomics

Abstract

Protein post-translational modifications (PTMs) have increasingly become a research field of incredible importance to fully understand the regulation of biological processes in health and disease. Among PTMs, glycosylation is one of the most studied for which contributed the development and improvement of enrichment techniques. Nowadays, glycoprotein enrichment methods are based on lectin affinity, covalent interactions, and hydrophilic interaction liquid chromatography (HILIC). Nonetheless, the nanotechnology era has fetched new methods to enrich glycoproteins from complex samples as human biological fluids. For instance, magnetic nanoparticles (MNPs) are being used as an interesting enrichment approach allowing a better characterization of glycoproteins and glycopeptides.

In this chapter, we describe an enrichment method based on MNPs functionalized with lectins (Concavalin A, wheat germ agglutinin, and Maackia amurensis lectin) to enrich specific sets of glycoproteins from biological fluids. Moreover, it is proposed a bioinformatic strategy to deal with data retrieved from mass spectrometry analysis of enriched samples aiming the identification of relevant biological processes modulated by a given stimuli and, ultimately, of new biomarkers for disease screening/management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karve TM, Cheema AK (2011) Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids 2011:207691

    Article  PubMed Central  PubMed  Google Scholar 

  2. Grotenbreg G, Ploegh H (2007) Chemical biology: dressed-up proteins. Nature 446:993–995

    Article  CAS  PubMed  Google Scholar 

  3. Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867

    Article  CAS  PubMed  Google Scholar 

  4. Reis CA, Osorio H, Silva L et al (2010) Alterations in glycosylation as biomarkers for cancer detection. J Clin Pathol 63:322–329

    Article  CAS  PubMed  Google Scholar 

  5. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Article  CAS  PubMed  Google Scholar 

  6. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291:2364–2369

    Article  CAS  PubMed  Google Scholar 

  7. Hart GW, Akimoto Y (2009) The O-GlcNAc modification. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, chapter 18, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  8. Brockhausen I, Schachter H, Stanley P (2009) O-GalNAc Glycans. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) Essentials of glycobiology, chapter 9, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  9. Lowe JB, Marth JD (2003) A genetic approach to mammalian glycan function. Annu Rev Biochem 72:643–691

    Article  CAS  PubMed  Google Scholar 

  10. Roth Z, Yehezkel G, Khalaila I (2012) Identification and quantification of protein glycosylation. Int J Carbohydr Chem 2012:1–10

    Article  Google Scholar 

  11. Wei X, Li L (2009) Comparative glycoproteomics: approaches and applications. Brief Funct Genomic Proteomic 8:104–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Ferreira JA, Daniel-da-Silva AL, Alves RM et al (2011) Synthesis and optimization of lectin functionalized nanoprobes for the selective recovery of glycoproteins from human body fluids. Anal Chem 83:7035–7043

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y, Wang H, Lu H (2013) Sequential selective enrichment of phosphopeptides and glycopeptides using amine-functionalized magnetic nanoparticles. Mol Biosyst 9:492–500

    Article  CAS  PubMed  Google Scholar 

  14. Doerr A (2012) Making PTMs a priority. Nat Methods 9:862–863

    Article  PubMed  Google Scholar 

  15. Zhang H, Loriaux P, Eng J et al (2006) UniPep—a database for human N-linked glycosites: a resource for biomarker discovery. Genome Biol 7:R73

    Article  PubMed Central  PubMed  Google Scholar 

  16. Drake RR, Schwegler EE, Malik G et al (2006) Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol Cell Proteomics 5:1957–1967

    Article  CAS  PubMed  Google Scholar 

  17. Ongay S, Boichenko A, Govorukhina N et al (2012) Glycopeptide enrichment and separation for protein glycosylation analysis. J Sep Sci 35:2341–2372

    Article  CAS  PubMed  Google Scholar 

  18. Jensen PH, Mysling S, Hojrup P et al (2013) Glycopeptide enrichment for MALDI-TOF mass spectrometry analysis by hydrophilic interaction liquid chromatography solid phase extraction (HILIC SPE). Methods Mol Biol 951:131–144

    Article  CAS  PubMed  Google Scholar 

  19. Endo T (1996) Fractionation of glycoprotein-derived oligosaccharides by affinity chromatography using immobilized lectin columns. J Chromatogr A 720:251–261

    Article  CAS  PubMed  Google Scholar 

  20. Li QK, Gabrielson E, Zhang H (2012) Application of glycoproteomics for the discovery of biomarkers in lung cancer. Proteomics Clin Appl 6:244–256

    Article  PubMed  Google Scholar 

  21. Pan S, Chen R, Aebersold R et al (2011) Mass spectrometry based glycoproteomics—from a proteomics perspective. Mol Cell Proteomics 10(R110):003251

    PubMed  Google Scholar 

  22. Becker JW, Reeke GN Jr, Wang JL et al (1975) The covalent and three-dimensional structure of concanavalin A. III. Structure of the monomer and its interactions with metals and saccharides. J Biol Chem 250:1513–1524

    CAS  PubMed  Google Scholar 

  23. Bakry N, Kamata Y, Simpson LL (1991) Lectins from Triticum vulgaris and Limax flavus are universal antagonists of botulinum neurotoxin and tetanus toxin. J Pharmacol Exp Ther 258:830–836

    CAS  PubMed  Google Scholar 

  24. Wang X, Xia N, Liu L (2013) Boronic Acid-based approach for separation and immobilization of glycoproteins and its application in sensing. Int J Mol Sci 14:20890–20912

    Article  PubMed Central  PubMed  Google Scholar 

  25. Zhang H, Li XJ, Martin DB et al (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666

    Article  CAS  PubMed  Google Scholar 

  26. Hagglund P, Bunkenborg J, Elortza F et al (2004) A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. J Proteome Res 3:556–566

    Article  PubMed  Google Scholar 

  27. Pankhurst QA, Connolly J, Jones SK et al (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181

    Article  CAS  Google Scholar 

  28. Salata O (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3

    Article  Google Scholar 

  29. Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46:1222–1244

    Article  CAS  PubMed  Google Scholar 

  30. Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205

    Article  CAS  PubMed  Google Scholar 

  31. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115–2117

    Article  CAS  PubMed  Google Scholar 

  32. Abdulwahab KO, Malik MA, O’Brien P et al (2014) A one-pot synthesis of monodispersed iron cobalt oxide and iron manganese oxide nanoparticles from bimetallic pivalate clusters. Chem Mater 26:999–1013

    Article  CAS  Google Scholar 

  33. Liu X, Guan Y, Ma Z et al (2004) Surface modification and characterization of magnetic polymer nanospheres prepared by miniemulsion polymerization. Langmuir 20:10278–10282

    Article  CAS  PubMed  Google Scholar 

  34. Salgueiriño-Maceira V, Correa-Duarte MA, Hucht A et al (2006) One-dimensional assemblies of silica-coated cobalt nanoparticles: Magnetic pearl necklaces. J Magn Magn Mater 303:163–166

    Article  Google Scholar 

  35. Mendoza-Resendez R, Luna C, Barriga-Castro ED et al (2012) Control of crystallite orientation and size in Fe and FeCo nanoneedles. Nanotechnology 23:225601

    Article  PubMed  Google Scholar 

  36. Tang J, Liu Y, Qi D et al (2009) On-plate-selective enrichment of glycopeptides using boronic acid-modified gold nanoparticles for direct MALDI-QIT-TOF MS analysis. Proteomics 9:5046–5055

    Article  CAS  PubMed  Google Scholar 

  37. Tang J, Liu Y, Yin P et al (2010) Concanavalin A-immobilized magnetic nanoparticles for selective enrichment of glycoproteins and application to glycoproteomics in hepatocelluar carcinoma cell line. Proteomics 10:2000–2014

    Article  CAS  PubMed  Google Scholar 

  38. Bodnar ED, Perreault H (2013) Qualitative and quantitative assessment on the use of magnetic nanoparticles for glycopeptide enrichment. Anal Chem 85:10895–10903

    Article  CAS  PubMed  Google Scholar 

  39. Lin P-C, Chou P-H, Chen S-H et al (2006) Ethylene glycol-protected magnetic nanoparticles for a multiplexed immunoassay in human plasma. Small 2:485–489

    Article  CAS  PubMed  Google Scholar 

  40. Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Bindea G, Galon J, Mlecnik B (2013) CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29:661–663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Liu J, Sun Z, Deng Y et al (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed Engl 48:5875–5879

    Article  CAS  PubMed  Google Scholar 

  43. Bumb A, Brechbiel MW, Choyke PL et al (2008) Synthesis and characterization of ultra-small superparamagnetic iron oxide nanoparticles thinly coated with silica. Nanotechnology 19:335601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lin P-C, Tseng M-C, Su A-K et al (2007) Functionalized magnetic nanoparticles for small-molecule isolation, identification, and quantification. Anal Chem 79:3401–3408

    Article  CAS  PubMed  Google Scholar 

  45. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kanehisa M, Goto S, Kawashima S et al (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. BioCarta LLC (2000) Available from http://www.biocarta.com

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT, Portugal), European Union, QREN, FEDER and COMPETE for funding the QOPNA research unit (project PEst-C/QUI/UI0062/2013) and research projects EXPL/BBB-BEP/0317/2012 (FCOMP-01-0124-FEDER-027554).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Vitorino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cova, M. et al. (2015). Glycoprotein Enrichment Method Using a Selective Magnetic Nano-Probe Platform (MNP) Functionalized with Lectins. In: Vlahou, A., Makridakis, M. (eds) Clinical Proteomics. Methods in Molecular Biology, vol 1243. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1872-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1872-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1871-3

  • Online ISBN: 978-1-4939-1872-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics