Skip to main content

Exfoliative Cytology and Effusions

  • Chapter
  • First Online:
  • 4577 Accesses

Abstract

Exfoliative cytology is often challenging. Correct diagnosis can be significantly enhanced by the use of cellblocks and immunocytochemical assays. This updated chapter offers panels of immunocytochemical assays that are designed to assist in differentiating commonly encountered processes in effusions. For example, adenocarcinomas of the lung or breast can be difficult to distinguish from reactive mesothelial cells or from epithelioid mesotheliomas using morphology alone. Other commonly encountered dilemmas include classifying malignant cells of undetermined primary sites. Undifferentiated tumor cells may also be tricky and panels to initiate classification are provided. Details for producing an adequate cellblock are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Husain AN, Colby TV, Ordonez NG, et al. Guidelines for pathologic diagnosis of malignant mesothelioma: a consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2009;133(8):1317–31.

    PubMed  Google Scholar 

  2. Yaziji H, Battifora H, Barry TS, et al. Evaluation of 12 antibodies for distinguishing epithelioid mesothelioma from adenocarcinoma: identification of a three-antibody immunohistochemical panel with maximal sensitivity and specificity. Mod Pathol. 2006;19(4):514–23.

    CAS  PubMed  Google Scholar 

  3. Jagirdar J. Application of immunohistochemistry to the diagnosis of primary and metastatic carcinoma to the lung. Arch Pathol Lab Med. 2008;132(3):384–96.

    PubMed  Google Scholar 

  4. Mai KT, Perkins DG, Zhang J, Mackenzie CR. ES1, a new lung carcinoma antibody–an immunohistochemical study. Histopathology. 2006;49(5):515–22.

    CAS  PubMed  Google Scholar 

  5. Ueno T, Linder S, Elmberger G. Aspartic proteinase napsin is a useful marker for diagnosis of primary lung adenocarcinoma. Br J Cancer. 2003;88(8):1229–33.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Bahrami A, Truong LD, Ro JY. Undifferentiated tumor: true identity by immunohistochemistry. Arch Pathol Lab Med. 2008;132(3):326–48.

    PubMed  Google Scholar 

  7. Bhargava R, Beriwal S, Dabbs DJ. Mammaglobin vs GCDFP-15: an immunohistologic validation survey for sensitivity and specificity. Am J Clin Pathol. 2007;127(1):103–13.

    CAS  PubMed  Google Scholar 

  8. Han JH, Kang Y, Shin HC, et al. Mammaglobin expression in lymph nodes is an important marker of metastatic breast carcinoma. Arch Pathol Lab Med. 2003;127(10):1330–4.

    CAS  PubMed  Google Scholar 

  9. Sasaki E, Tsunoda N, Hatanaka Y, Mori N, Iwata H, Yatabe Y. Breast-specific expression of MGB1/mammaglobin: an examination of 480 tumors from various organs and clinicopathological analysis of MGB1-positive breast cancers. Mod Pathol. 2007;20(2):208–14.

    CAS  PubMed  Google Scholar 

  10. Hammerich KH, Ayala GE, Wheeler TM. Application of immunohistochemistry to the genitourinary system (prostate, urinary bladder, testis, and kidney). Arch Pathol Lab Med. 2008;132(3):432–40.

    PubMed  Google Scholar 

  11. Gokden N, Gokden M, Phan DC, McKenney JK. The utility of PAX-2 in distinguishing metastatic clear cell renal cell carcinoma from its morphologic mimics: an immunohistochemical study with comparison to renal cell carcinoma marker. Am J Surg Pathol. 2008;32(10):1462–7.

    PubMed  Google Scholar 

  12. Kaufmann O, Volmerig J, Dietel M. Uroplakin III is a highly specific and moderately sensitive immunohistochemical marker for primary and metastatic urothelial carcinomas. Am J Clin Pathol. 2000;113(5):683–7.

    CAS  PubMed  Google Scholar 

  13. Wang HL, Lu DW, Yerian LM, et al. Immunohistochemical distinction between primary adenocarcinoma of the bladder and secondary colorectal adenocarcinoma. Am J Surg Pathol. 2001;25(11):1380–7.

    CAS  PubMed  Google Scholar 

  14. Attanoos RL, Griffin A, Gibbs AR. The use of immunohistochemistry in distinguishing reactive from neoplastic mesothelium. A novel use for desmin and comparative evaluation with epithelial membrane antigen, p53, platelet-derived growth factor-receptor, P-glycoprotein and Bcl-2. Histopathology. 2003;43(3):231–8.

    CAS  PubMed  Google Scholar 

  15. Krismann M, Muller KM, Jaworska M, Johnen G. Pathological anatomy and molecular pathology. Lung Cancer. 2004;45 Suppl 1:S29–33.

    PubMed  Google Scholar 

  16. Kato Y, Tsuta K, Seki K, et al. Immunohistochemical detection of GLUT-1 can discriminate between reactive mesothelium and malignant mesothelioma. Mod Pathol. 2007;20(2):215–20.

    CAS  PubMed  Google Scholar 

  17. Acurio A, Arif Q, Gattuso P, et al. Value of immunohistochemical markers in differentiating benign from malignant mesothelial lesions: United States and Canadian Academy of Pathology annual meeting. Mod Pathol. 2008;21:334A.

    Google Scholar 

  18. Davidson B, Nielsen S, Christensen J, et al. The role of desmin and N-cadherin in effusion cytology: a comparative study using established markers of mesothelial and epithelial cells. Am J Surg Pathol. 2001;25(11):1405–12.

    CAS  PubMed  Google Scholar 

  19. Galateau-Salle F, Brambilla E, Cagle PT, et al. Classification and histologic features of epithelioid mesotheliomas. In: Galateau-Salle F, editor. Pathology of malignant mesothelioma. London, England: Springer; 2006. Accessed 3 May 2010.

    Google Scholar 

  20. Trupiano JK, Geisinger KR, Willingham MC, et al. Diffuse malignant mesothelioma of the peritoneum and pleura, analysis of markers. Mod Pathol. 2004;17(4):476–81.

    PubMed  Google Scholar 

  21. Chu AY, Litzky LA, Pasha TL, Acs G, Zhang PJ. Utility of D2-40, a novel mesothelial marker, in the diagnosis of malignant mesothelioma. Mod Pathol. 2005;18(1):105–10.

    CAS  PubMed  Google Scholar 

  22. Ordonez NG. D2-40 and podoplanin are highly specific and sensitive immunohistochemical markers of epithelioid malignant mesothelioma. Hum Pathol. 2005;36(4):372–80.

    CAS  PubMed  Google Scholar 

  23. Hammar SP. Macroscopic, histologic, histochemical, immunohistochemical, and ultrastructural features of mesothelioma. Ultrastruct Pathol. 2006;30(1):3–17.

    PubMed  Google Scholar 

  24. Carella R, Deleonardi G, D'Errico A, et al. Immunohistochemical panels for differentiating epithelial malignant mesothelioma from lung adenocarcinoma: a study with logistic regression analysis. Am J Surg Pathol. 2001;25(1):43–50.

    CAS  PubMed  Google Scholar 

  25. Johnston WW. Applications of monoclonal antibodies in clinical cytology as exemplified by studies with monoclonal antibody B72.3. The George N. Papanicolaou award lecture. Acta Cytol. 1987;31(5):537–56.

    CAS  PubMed  Google Scholar 

  26. Sun Y, Wu GP, Fang CQ, Liu SL. Diagnostic utility of MOC-31, HBME-1 and MOC-31 mRNA in distinguishing between carcinoma cells and reactive mesothelial cells in pleural effusions. Acta Cytol. 2009;53(6):619–24.

    PubMed  Google Scholar 

  27. Dejmek A, Hjerpe A. Reactivity of six antibodies in effusions of mesothelioma, adenocarcinoma and mesotheliosis: stepwise logistic regression analysis. Cytopathology. 2000;11(1):8–17.

    CAS  PubMed  Google Scholar 

  28. Miedouge M, Rouzaud P, Salama G, et al. Evaluation of seven tumour markers in pleural fluid for the diagnosis of malignant effusions. Br J Cancer. 1999;81(6):1059–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Ichihara T, Nagura H, Nakao A, Sakamoto J, Watanabe T, Takagi H. Immunohistochemcial localization of CA 19-9 and CEA in pancreatic carcinoma and associated diseases. Cancer. 1987;61(2):324–33.

    Google Scholar 

  30. Deniz H, Kibar Y, Guldur ME, Bakir K. Is D2-40 a useful marker for distinguishing malignant mesothelioma from pulmonary adenocarcinoma and benign mesothelial proliferations? Pathol Res Pract. 2009;205(11):749–52.

    CAS  PubMed  Google Scholar 

  31. King JE, Thatcher N, Pickering CA, Hasleton PS. Sensitivity and specificity of immunohistochemical markers used in the diagnosis of epithelioid mesothelioma: a detailed systematic analysis using published data. Histopathology. 2006;48(3):223–32.

    CAS  PubMed  Google Scholar 

  32. Ordonez NG. The immunohistochemical diagnosis of mesothelioma: a comparative study of epithelioid mesothelioma and lung adenocarcinoma. Am J Surg Pathol. 2003;27(8):1031–51.

    PubMed  Google Scholar 

  33. Comin CE, Saieva C, Messerini L. h-caldesmon, calretinin, estrogen receptor, and Ber-EP4: a useful combination of immunohistochemical markers for differentiating epithelioid peritoneal mesothelioma from serous papillary carcinoma of the ovary. Am J Surg Pathol. 2007;31(8):1139–48.

    PubMed  Google Scholar 

  34. Epenetos AA, Canti G, Taylor-Papadimitriou J, Curling M, Bodmer WF. Use of two epithelium-specific monoclonal antibodies for diagnosis of malignancy in serous effusions. Lancet. 1982;320(8306):1004–6.

    Google Scholar 

  35. Fabian CB, Dabbs DJ. Breast carcinoma versus lung adenocarcinoma: the immunohistochemical discrimination of breast carcinoma metastatic in lung. Breast J. 2007;3(3):135–41.

    Google Scholar 

  36. Yang MC, Bannan M, Chiriboga L, et al. Immunohistochemical differential expression in lung and breast cancers. Mod Pathol. 2007;1:334A.

    Google Scholar 

  37. Yang M, Nonaka D. A study of immunohistochemical differential expression in pulmonary and mammary carcinomas. Mod Pathol. 2010;23(5):654–61.

    CAS  PubMed  Google Scholar 

  38. Ordonez NG. The diagnostic utility of immunohistochemistry in distinguishing between epithelioid mesotheliomas and squamous carcinomas of the lung: a comparative study. Mod Pathol. 2006;19(3):417–28.

    PubMed  Google Scholar 

  39. Ordonez N. Value of mesothelin immunostaining in the diagnosis of mesothelioma. Mod Pathol. 2003;16(3):192–7.

    PubMed  Google Scholar 

  40. Sadeghi B, Arvieux C, Glehen O, et al. Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer. 2000;88(2):358–63.

    CAS  PubMed  Google Scholar 

  41. Baker PM, Clement PB, Young RH. Malignant peritoneal mesothelioma in women: a study of 75 cases with emphasis on their morphologic spectrum and differential diagnosis. Am J Clin Pathol. 2005;123(5):724–37.

    PubMed  Google Scholar 

  42. Mittal K, Soslow R, McCluggage WG. Application of immunohistochemistry to gynecologic pathology. Arch Pathol Lab Med. 2008;132(3):402–23.

    PubMed  Google Scholar 

  43. Lagendijk JH, Mullink H, Van Diest PJ, Meijer GA, Meijer CJ. Tracing the origin of adenocarcinomas with unknown primary using immunohistochemistry: differential diagnosis between colonic and ovarian carcinomas as primary sites. Hum Pathol. 1998;29(5):491–7.

    CAS  PubMed  Google Scholar 

  44. Chou YY, Jeng YM, Kao HL, Chen T, Mao TL, Lin MC. Differentiation of ovarian mucinous carcinoma and metastatic colorectal adenocarcinoma by immunostaining with beta-catenin. Histopathology. 2003;43(2):151–6.

    PubMed  Google Scholar 

  45. Groisman GM, Meir A, Sabo E. The value of Cdx2 immunostaining in differentiating primary ovarian carcinomas from colonic carcinomas metastatic to the ovaries. Int J Gynecol Pathol. 2004;23(1):52–7.

    PubMed  Google Scholar 

  46. Lagendijk JH, Mullink H, van Diest PJ, Meijer GA, Meijer CJ. Immunohistochemical differentiation between primary adenocarcinomas of the ovary and ovarian metastases of colonic and breast origin. Comparison between a statistical and an intuitive approach. J Clin Pathol. 1999;52(4):283–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Albarracin CT, Jafri J, Montag AG, Hart J, Kuan SF. Differential expression of MUC2 and MUC5AC mucin genes in primary ovarian and metastatic colonic carcinoma. Hum Pathol. 2000;31(6):672–7.

    CAS  PubMed  Google Scholar 

  48. Zapata M, Cohen C, Siddiqui MT. Immunohistochemical expression of SMAD4, CK19 and CA19-9 in fine needle aspiration samples of pancreatic adenocarcinoma: Utility and potential role. CytoJournal. 2007;4:13.

    PubMed Central  PubMed  Google Scholar 

  49. Chen CC, Raikow RB, Sonmez-Alpan E, Swerdlow SH. Classification of small B-cell lymphoid neoplasms using a paraffin section immunohistochemical panel. Appl Immunohistochem Molecul Morphol. 2000;8(1):1–11.

    Google Scholar 

  50. Torlakovic E, Torlakovic G, Nguyen PL, Brunning RD, Delabie J. The value of anti-pax-5 immunostaining in routinely fixed and paraffin-embedded sections: a novel pan pre-B and B-cell marker. Am J Surg Pathol. 2002;26(10):1343–50.

    PubMed  Google Scholar 

  51. Lewis RE, Cruse JM, Sanders CM, et al. The immunophenotype of pre-TALL/LBL revisited. Exp Mol Pathol. 2006;81(2):162–5.

    CAS  PubMed  Google Scholar 

  52. Nador RG, Cesarman E, Chadburn A, et al. Primary effusion lymphoma: a distinct clinicopathologic entity associated with the Kaposi's sarcoma-associated herpes virus. Blood. 1996;88(2):645–56.

    CAS  PubMed  Google Scholar 

  53. Ely SA, Knowles DM. Expression of CD56/neural cell adhesion molecule correlates with the presence of lytic bone lesions in multiple myeloma and distinguishes myeloma from monoclonal gammopathy of undetermined significance and lymphomas with plasmacytoid differentiation. Am J Pathol. 2002;160(4):1293–9.

    PubMed Central  PubMed  Google Scholar 

  54. Drexler HG, Uphoff CC, Gaidano G, Carbone A. Lymphoma cell lines: in vitro models for the study of HHV-8+ primary effusion lymphomas (body cavity-based lymphomas). Leukemia. 1998;12(10):1507–17.

    CAS  PubMed  Google Scholar 

  55. Ozdemirli M, Fanburg-Smith JC, Hartmann DP, et al. Precursor B-lymphoblastic lymphoma presenting as a solitary bone tumor and mimicking Ewing's sarcoma: a report of four cases and review of the literature. Am J Surg Pathol. 1998;22(7):795–804.

    CAS  PubMed  Google Scholar 

  56. Zhang PJ, Goldblum JR, Pawel BR, Fisher C, Pasha TL, Barr FG. Immunophenotype of desmoplastic small round cell tumors as detected in cases with EWS-WT1 gene fusion product. Mod Pathol. 2003;16(3):229–35.

    PubMed  Google Scholar 

  57. Shipley WR, Hammer RD, Lennington WJ, Macon WR. Paraffin immunohistochemical detection of CD56, a useful maker for neural cell adhesion molecule (NCAM), in normal and neoplastic fixed tissues. App Immunohistochem. 1997;5:87.

    CAS  Google Scholar 

  58. Shin SJ, DeLellis RA, Ying L, Rosen PP. Small cell carcinoma of the breast: a clinicopathologic and immunohistochemical study of nine patients. Am J Surg Pathol. 2000;24(9):1231–8.

    CAS  PubMed  Google Scholar 

  59. Ordonez NG. Value of thyroid transcription factor-1 immunostaining in distinguishing small cell lung carcinomas from other small cell carcinomas. Am J Surg Pathol. 2000;24(9):1217–23.

    CAS  PubMed  Google Scholar 

  60. Erickson LA, Papouchado B, Dimashkieh H, Zhang S, Nakamura N, Lloyd RV. Cdx2 as a marker for neuroendocrine tumors of unknown primary sites. Endocrinol Pathol. 2004;15(3):247–52.

    CAS  Google Scholar 

  61. Thompson LD, Wieneke JA, Miettinen M. Sinonasal tract and nasopharyngeal melanomas: a clinicopathologic study of 115 cases with a proposed staging system. Am J Surg Pathol. 2003; 27(5):594–611.

    PubMed  Google Scholar 

  62. Folpe AL, Hill CE, Parham DM, O'Shea PA, Weiss SW. Immunohistochemical detection of FLI-1 protein expression: a study of 132 round cell tumors with emphasis on CD99-positive mimics of Ewing's sarcoma/primitive neuroectodermal tumor. Am J Surg Pathol. 2000;24(12):1657–62.

    CAS  PubMed  Google Scholar 

  63. Riopel M, Dickman PS, Link MP, Perlman EJ. MIC2 analysis in pediatric lymphomas and leukemias. Hum Pathol. 1994;25(4):396–9.

    CAS  PubMed  Google Scholar 

  64. Zhang PJ, Barcos M, Stewart CC, Block AW, Sait S, Brooks JJ. Immunoreactivity of MIC2 (CD99) in acute myelogenous leukemia and related diseases. Mod Pathol. 2000;13(4):452–8.

    CAS  PubMed  Google Scholar 

  65. Garin-Chesa P, Fellinger EJ, Huvos AG, et al. Immunohistochemical analysis of neural cell adhesion molecules. Differential expression in small round cell tumors of childhood and adolescence. Am J Pathol. 1991;139(2):275–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Khanlari B, Buser A, Lugli A, Tichelli A, Dirnhofer S. The expression pattern of CD56 (N-CAM) in human bone marrow biopsies infiltrated by acute leukemia. Leuk Lymphoma. 2003;44(12):2055–9.

    CAS  PubMed  Google Scholar 

  67. Rossi S, Orvieto E, Furlanetto A, Laurino L, Ninfo V, Dei Tos AP. Utility of the immunohistochemical detection of FLI-1 expression in round cell and vascular neoplasm using a monoclonal antibody. Mod Pathol. 2004;17(5):547–52.

    CAS  PubMed  Google Scholar 

  68. Kumar S, Perlman E, Harris CA, Raffeld M, Tsokos M. Myogenin is a specific marker for rhabdomyosarcoma: an immunohistochemical study in paraffin-embedded tissues. Mod Pathol. 2000;13(9):988–93.

    CAS  PubMed  Google Scholar 

  69. Wirnsberger GH, Becker H, Ziervogel K, Hofler H. Diagnostic immunohistochemistry of neuroblastic tumors. Am J Surg Pathol. 1992;16(1):49–57.

    CAS  PubMed  Google Scholar 

  70. Sebire NJ, Malone M. Myogenin and MyoD1 expression in paediatric rhabdomyosarcomas. J Clin Pathol. 2003;56(6):412–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Wang NP, Marx J, McNutt MA, Rutledge JC, Gown AM. Expression of myogenic regulatory proteins (myogenin and MyoD1) in small blue round cell tumors of childhood. Am J Pathol. 1995;147(6):1799–810.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Cessna MH, Zhou H, Perkins SL, et al. Are myogenin and myoD1 expression specific for rhabdomyosarcoma? A study of 150 cases, with emphasis on spindle cell mimics. Am J Surg Pathol. 2001; 25(9):1150–7.

    CAS  PubMed  Google Scholar 

  73. Carpentieri DF, Nichols K, Chou PM, Matthews M, Pawel B, Huff D. The expression of WT1 in the differentiation of rhabdomyosarcoma from other pediatric small round blue cell tumors. Mod Pathol. 2002;15(10):1080–6.

    CAS  PubMed  Google Scholar 

  74. Hattab EM, Tu PH, Wilson JD, Cheng L. OCT4 immunohistochemistry is superior to placental alkaline phosphatase (PLAP) in the diagnosis of central nervous system germinoma. Am J Surg Pathol. 2005;29(3):368–71.

    PubMed  Google Scholar 

  75. Lau SK, Weiss LM, Chu PG. D2-40 immunohistochemistry in the differential diagnosis of seminoma and embryonal carcinoma: a comparative immunohistochemical study with KIT (CD117) and CD30. Mod Pathol. 2007;20(3):320–5.

    CAS  PubMed  Google Scholar 

  76. Mao TL, Kurman RJ, Huang CC, Lin MC, Shih I. Immunohistochemistry of choriocarcinoma: an aid in differential diagnosis and in elucidating pathogenesis. Am J Surg Pathol. 2007;31(11):1726–32.

    PubMed  Google Scholar 

  77. Shih IM, Kurman RJ. Immunohistochemical localization of inhibin-alpha in the placenta and gestational trophoblastic lesions. Int J Gynecol Pathol. 1999;18(2):144–50.

    CAS  PubMed  Google Scholar 

  78. Stoll LM, Johnson MW, Gabrielson E, Askin F, Clark DP, Ki QK. The utility of Napsin-A in the identification of primary and metastatic lung adenocarcinoma among cytologically poorly differentiated carcinomas. Cancer Cytopathol. 2010;118(6):441–9.

    PubMed  Google Scholar 

  79. Liu H, Shi J, Wilkerson ML, Lin F. Immunohistochemical Evaluation of GATA3 expression in tumors and normal tissues. A useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol. 2012;138:57–64.

    PubMed  Google Scholar 

  80. Woodard AH, Yu J, Dabbs DJ, Beriwal S, Florea AV, Elishaev E, Davison JM, Krasinskas AM, Bhargava R. NY-BR-1 and PAX8 immunoreactivity in breast, gynecologic tract, and other CK7+ carcinomas. Potential use for determining site of origin. Am J Clin Pathol. 2011;136:428–35.

    PubMed  Google Scholar 

  81. Luo MH, Huang YH, Ni YB, Tsang JYS, Chan SK, Shao MM, Tse GM. Expression of mammaglobin and gross cystic disease fluid protein-15 in breast carcinomas. Hum Pathol. 2013;44:1241–50.

    CAS  PubMed  Google Scholar 

  82. Cimino-Mathews A, Subhawong AP, Illei PB, Sharma R, Halushka MK, Vang R, Fetting JH, Park BH, Argani P. GATA3 expression in breast carcinoma: utility in triple-negative, sarcomatoid, and metastatic carcinomas. Hum Pathol. 2013;44:1341–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Huo L, Zhang J, Gilcrease MZ, Gong Y, Wu Y, Zhang H, Resetkova E, Hunt KK, Deavers MT. Gross cystic disease fluid protein-15 and mammaglobin A expression determined by immunohistochemistry is of limited utility in triple-negative breast cancer. Histopathology. 2013;62:267–74.

    PubMed  Google Scholar 

  84. Hagemann IS, Pfeifer JD, Cao D. Mammaglobin expression in gynecologic adenocarcinomas. Hum Pathol. 2013;44:628–35.

    CAS  PubMed  Google Scholar 

  85. Albergaria A, Paredes J, Sousa B, Milanezi F, Carneiro V, Bastos J, Costa S, Vieira D, Lopes N, Lam EW, Lunet N, Schmitt F. Expression of FOXA1 and GATA-3 in breast cancer: the prognostic significance in hormone receptor-negative tumors. Breast Cancer Res. 2009;11(3):R40.

    PubMed Central  PubMed  Google Scholar 

  86. Ademuyiwa FO, Thorat MA, Jain RK, Nakshatri H, Badve S. Expression of Forkhead-box protein A1, a marker of luminal A type breast cancer, parallels low Oncotype DX 21-gene recurrence scores. Mod Pathol. 2010;23:270–5.

    CAS  PubMed  Google Scholar 

  87. Pan Z, Grizzle W, Hameed O. Significant variation of immunohistochemical marker expression in paired primary and metastatic clear cell renal cell carcinoma. Am J Clin Pathol. 2013;140:410–8.

    PubMed  Google Scholar 

  88. Tacha D, Zhou D, Cheng L. Expression of PAX8 in normal and neoplastic tissue. A comprehensive immunohistochemical study. Appl Immunohistochem Mol Morphol. 2011;19(4):293–9.

    CAS  PubMed  Google Scholar 

  89. Lin F, Shi J, Liu H, Zhang J, Zhang PL, Wang HL, Yang XJ, Schuerch C. Immunohistochemical detection of the von Hipple-Lindau gene product (pVHL) in human tissues and tumors. A useful marker for metastatic renal cell carcinoma and clear cell carcinoma of the ovary and uterus. Am J Clin Pathol. 2008;129:592–605.

    CAS  PubMed  Google Scholar 

  90. McGregor DK, Khurana KK, Cao C, Tsao CC, Ayala G, Krishnan B, Ro JY, Lechago J, Truong LD. Diagnosing primary and metastatic renal cell carcinoma. The use of the monoclonal antibody ‘renal cell carcinoma marker’. Am J Surg Pathol. 2001;25(12):1485–92.

    CAS  PubMed  Google Scholar 

  91. Hodges KB, Lopez-Beltran A, Emerson RE, Montironi R, Cheng L. Clinical utility of immunohistochemistry in the diagnoses of urinary bladder neoplasia. Appl Immunohistochem Mol Morphol. 2010;18(5):401–10.

    CAS  PubMed  Google Scholar 

  92. Shi M, Fraire AE, Chu P, Cornejo K, Woda BA, Dresser K, Rock KL, Jiang Z. Oncofetal protein IMP3, a new diagnostic biomarker to distinguish malignant mesothelioma from reactive mesothelial prolifeartion. Am J Surg Pathol. 2011;35(6):878–82.

    PubMed  Google Scholar 

  93. Monaco SE, Shuai Y, Bansal M, Krasinskas AM, Dacic S. The diagnostic utility of p16 FISH and GLUT-1 immunohistochemical analysis in mesothelial proliferations. Am J Clin Pathol. 2011; 135:619–27.

    PubMed  Google Scholar 

  94. Sato A, Torii I, Okamura Y, Yamamoto T, Nishigami T, Kataoka TR, Song M, Hasegawa S, Nakano T, Kamel T, Tsujimura T. Immunocytochemistry of CD146 is useful to discriminate between malignant pleural mesothelioma and reactive mesothelium. Mod Pathol. 2010;23:1458–66.

    CAS  PubMed  Google Scholar 

  95. Hasteh F, Lin GY, Weidner N, Michael CW. The use of immunohistochemistry to distinguish reactive mesothelial cells from malignant mesothelioma in cytologic effusions. Cancer Cytopathol. 2010;118(2):90–6.

    PubMed  Google Scholar 

  96. Kundu UR, Krishnamurthy S. Use of the monoclonal antibody MOC-31 as an immunomarker for detecting metastatic adenocarcinoma in effusion cytology. Cancer Cytopathol. 2011;119(4):272–8.

    PubMed  Google Scholar 

  97. Kim JH, Kim GE, Choi YD, Lee JS, Lee JH, Nam JH, Choi C. Immunocytochemical panel for distinguishing between adenocarcinomas and reactive mesothelial cells in effusion cell blocks. Diagn Cytopathol. 2009;37(4):258–61.

    PubMed  Google Scholar 

  98. Yang M, Nonaka D. A study of immunohistochemical differential expression in pulmonary and mammary carcinoma. Mod Pathol. 2010;23:654–61.

    CAS  PubMed  Google Scholar 

  99. Ordòñez NG. Value of PAX8, PAX2, naspsin A, carbonic anhydrase IX, and claudin-4 immunostaining in distinguishing pleural epithelioid mesothelioma from metastatic renal cell carcinoma. Mod Pathol. 2013;26:1132–43.

    PubMed  Google Scholar 

  100. Werling RW, Yaziji H, Bacchi CE, Gown AM. CDX2, a highly sensitive and specific marker of adenocarcinomas of intestinal origin: an immunohistochemical survey of 476 primary and metastatic carcinomas. Am J Surg Pathol. 2003;27:303–10.

    PubMed  Google Scholar 

  101. Magnusson K, de Wit M, Brennan DJ, Johnson LB, Mcgee SF, Lundberg E, et al. SATB2 in combination with cytokeratin 20 identifies over 95 % of all colorectal carcinomas. Am J Surg Pathol. 2011;35(7):937–48.

    PubMed  Google Scholar 

  102. Han L, Pansare V, Al-Abbadi M, Husain M, Feng J. Combination of MUC5ac and WT-1 immunohistochemistry is useful in distinguishing pancreatic ductal carcinoma from ovarian serous carcinoma in effusion cytology. Diagn Cytopathol. 2010;38(5):333–6.

    PubMed  Google Scholar 

  103. Lee BH, Hecht JL, Pinkus JL, Pinkus GS. WT1, estrogen receptor, and progesterone receptor as markers for breast or ovarian primary sites in metastatic adenocarcinoma to body fluids. Am J Clin Pathol. 2002;117:745–50.

    PubMed  Google Scholar 

  104. Zhao L, Guo M, Sneige N, Gong Y. Value of PAX8 and WT1 immunostaining in confirming the ovarian origin of metastatic carcinoma in serous effusion specimens. Am J Clin Pathol. 2012;137:304–9.

    PubMed  Google Scholar 

  105. McKnight R, Cohen C, Siddiqui MT. Utility of paired box Gene 8 (PAX8) expression in fluid and fine-needle aspiration cytology. Cancer Cytopathol. 2010;118(5):298–302.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven C. Meschter MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meschter, S.C., Silverman, J.F. (2015). Exfoliative Cytology and Effusions. In: Lin, F., Prichard, J. (eds) Handbook of Practical Immunohistochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1578-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1578-1_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1577-4

  • Online ISBN: 978-1-4939-1578-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics