Skip to main content

Augmented Reality for Percutaneous Renal Interventions

  • Chapter
  • First Online:
Advances in Image-Guided Urologic Surgery

Abstract

Optimal access to the renal collecting system or renal parenchyma guarantees a successful operation. The use of augmented reality to navigate the surgeon during endoscopic and percutaneous procedures is increasing. Marker-based iPad-assisted puncture of the renal collecting system shows more benefit for trainees with reduction of radiation exposure. 3D laser-assisted puncture of the renal collecting system using Uro Dyna-CT realised in an ex vivo model enables minimal radiation time. Electromagnetic tracking for puncture of the renal collecting system using a sensor at the tip of the ureteral catheter worked in an in vivo model of a porcine ureter and kidney. Attitude tracking for ultrasound-guided puncture of renal tumours by accelerometer reduces puncture error. Intraoperative navigation is helpful during percutaneous puncture of the collecting system and biopsy of renal tumour using various tracking techniques. Combination of different tracking techniques may further improve this interesting addition to video-assisted surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Michel MS, Trojan L, Rassweiler JJ. Complications in percutaneous nephrolithotomy. Eur Urol. 2007;51:899–906.

    Article  PubMed  Google Scholar 

  2. Alken P, Hutschereiter G, Günther R, Marberger M. Percutaneous stone manipulation. J Urol. 1981;125:463–6.

    CAS  PubMed  Google Scholar 

  3. Rassweiler J, Gumpinger R, Miller K, Hölzermann F, Eisenberger F. Multimodal treatment (Extracorporeal shock wave lithotripsy and endourology) of complicated renal stone disease. Eur Urol. 1986;12:294–304.

    CAS  PubMed  Google Scholar 

  4. Rassweiler JJ, Renner C, Eisenberger F. Management of staghorn calculi analysis after 250 cases. Braz J Urol. 2000;26:463–78.

    Google Scholar 

  5. Desai M. Ultrasonography-guided punctures – with and without puncture guide. J Endourol. 2009;23:1641–3.

    Article  PubMed  Google Scholar 

  6. Frede T, Hatzinger M, Rassweiler J. Ultrasound in endourology. J Endourol. 2001;15:3–16.

    Article  CAS  PubMed  Google Scholar 

  7. Eisenberger F, Gumpinger R, Miller K, Horbaschek H, Sklebitz H. Stereoroentgenology in endourology. Urologe A. 1985;24:342–5.

    CAS  PubMed  Google Scholar 

  8. Chaussy C, Schmiedt E, Jocham D, Brendel W, Forssmann B, Walther V. First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J Urol. 1982;127:417–20.

    CAS  PubMed  Google Scholar 

  9. Fuchs G, Miller K, Rassweiler J, Eisenberger F. Extracorporeal shock wave lithotripsy: one-year experience with the Dornier lithotripter. Eur Urol. 1985;11:145–9.

    CAS  PubMed  Google Scholar 

  10. Rassweiler J, Westhauser A, Bub P, Eisenberger F. Second-generation lithotripters: a comparative study. J Endourol. 1988;2:193–203.

    Article  Google Scholar 

  11. Rassweiler J, Köhrmann KU, Alken P. ESWL, including imaging. Curr Opin Urol. 1992;2:291–9.

    Article  Google Scholar 

  12. Rassweiler J, Henkel TO, Köhrmann KU, Potempa D, Jünemann KP, Alken P. Lithotripter technology: present and future. J Endourol. 1992;6:1–13.

    Article  Google Scholar 

  13. Rassweiler JJ, Knoll T, Köhrmann KU, McAteer JA, Cleveland RO, Bailey MR, Chaussy C. Shock wave technology and application: an update. Eur Urol. 2011;59:784–96.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lazarus J, Williams J. The locator: novel percutaneous nephrolithotomy apparatus to aid collecting system puncture – a preliminary report. J Endourol. 2011;25:747–50.

    Article  PubMed  Google Scholar 

  15. Su LM, Stoianovici D, Jarrett TW, Patriciu A, Roberts WW, Cadeddu JA, Ramakumar S, Solomon SB, Kavoussi LR. Robotic percutaneous access to the kidney: comparison with standard manual access. J Endourol. 2002;16:471–5.

    Article  PubMed  Google Scholar 

  16. Pollok R, Mozer P, Guzzo TJ, Marx J, Matlaga B, Petrisor D, Vigaru B, Badaan S, Stoianovici D, Allaf ME. Prospects in percutaneous ablative targeting: comparison of a computer-assisted navigation system and the AcuBot robotic system. J Endourol. 2010;24:1269–72.

    Article  Google Scholar 

  17. Bale R, Widmann G. Navigated CT-guided interventions. Minim Invasive Surg. 2007;16:196–204.

    Google Scholar 

  18. Ghani KR, Patel U, Anson K. Computed tomography for percutaneous renal access. J Endourol. 2009;23:1633–9.

    Article  PubMed  Google Scholar 

  19. Rodrigues PL, Rodrigues NF, Fonseca J, Lima E, Vilaca JL. Kidney targeting and puncturing during percutaneous nephrolithotomy: recent advances and future perspectives. J Endourol. 2013;27:826–34.

    Article  PubMed  Google Scholar 

  20. Baumhauer M, Feuerstein M, Meinzer HP, Rassweiler J. Navigation in endoscopic soft tissue surgery – perspectives and limitations. J Endourol. 2008;22:751–66.

    Article  PubMed  Google Scholar 

  21. Teber D, Baumhauer M, Guven EO, Rassweiler J. Robotics and imaging in urological surgery. Curr Opin Urol. 2009;19:108–13.

    Article  PubMed  Google Scholar 

  22. Huber J, Wegner I, Meinzer HP, Hallscheidt P, Hadaschick B, Pahernik S, Hohenfellner M. Navigated renal access using electromagnetic tracking: an initial experience. Surg Endosc. 2011;25:1307–12.

    Article  PubMed  Google Scholar 

  23. Wegner I, Teber D, Hadaschick B, Pahernik S, Hohenfellner M, Meinzer H-P, Huber J. Pitfalls of electromagnetic tracking in clinical routine using multiple or adjacent sensors. Int J Med Robot Comput Assist Surg. 2013;9(3):268–73.

    Article  Google Scholar 

  24. Rassweiler JJ, Müller M, Fangerau M, Klein J, Goezen AS, Pereira P, Meinzer HP, Teber D. iPad-assisted percutaneous access to the kidney using marker-based navigation: initial clinical experience. Eur Urol. 2011;61:628–31.

    Article  PubMed  Google Scholar 

  25. Müller M, Rassweiler M-C, Klein J, Seitel A, Gondam M, Baumhauer M, Teber D, Rassweiler JJ, Meinzer H-P, Maier-Hein L. Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int J Comput Assist Radiol Surg. 2013;8(4):663–75.

    Article  PubMed  Google Scholar 

  26. Rodrigues PL, Vilaça JL, Oliveira C, Cicione A, Rassweiler J, Fonseca J, Rodrigues NF, Correia-Pinto J, Lima E. Collecting system percutaneous access using real-time tracking sensors: first pig model in vivo experience. J Urol. 2013;190(5):1932–7.

    Article  PubMed  Google Scholar 

  27. Kroeze SG, Huisman M, Verkoojen HM, van Diest PJ, Ruud Bosch JL, van den Bosch MA. Real time 3D fluoroscopy-guided large core needle biopsy of renal masses: a critical early evaluation according to the IDEAL recommendations. Cardiovasc Intervent Radiol. 2012;35(3):680–5.

    Article  PubMed  Google Scholar 

  28. Ritter M, Rassweiler MC, Häcker A, Michel MS. Laser-guided percutaneous kidney access with the Uro Dyna-CT: first experience of three-dimensional puncture planning with an ex vivo model. World J Urol. 2013;31(5):1147–51.

    Article  CAS  PubMed  Google Scholar 

  29. Rassweiler MC, Ritter M, Michel MS, Häcker A. Influence of endourological devices on 3D reconstruction image quality using Uro-Dyna-CT. World J Urol. 2013;31(5):1291–5.

    Article  PubMed  Google Scholar 

  30. Mozer P, Conort P, Leroy A, Baumann M, Payan Y, Troccaz J, Chartier-Kastler E, Richard F. Aid to percutaneous renal access by virtual projection of the ultrasound puncture tract onto fluoroscopic images. J Endourol. 2007;21:460–5.

    Article  PubMed  Google Scholar 

  31. Petrut B, Hogea M, Schitcu V. Attitude tracking device for improving precision of ultrasound-guided percutaneous procedures. J. Endourol. 2012;26(Suppl):Abstract No. VP-04-08.

    Google Scholar 

  32. Meyer BC, Peter O, Nagel M, Hoheisel M, Frericks BB, Wolf K-J, Wacker FK. Electromagnetic field-based navigation for percutaneous procedures on C-arm CT: experimental evaluation and clinical application. Eur Radiol. 2008;18:2855–64.

    Article  PubMed  Google Scholar 

  33. Braak SJ, van Strijen MJL, van Leersum M, van Es HW, van Heesewijk JPM. Real-time 3D fluoroscopy guidance during needle interventions: technique, accuracy, and feasibility. AJR Am J Roentgenol. 2010;194:W445–51.

    Article  CAS  PubMed  Google Scholar 

  34. Sommer CM, Lemm G, Hohenstein E, Stampfl U, Bellemann N, Teber D, Rassweiler J, Kauczor HU, Radeleff BA, Pereira PL. Bipolar versus multipolar radiofrequency (RF) ablation fort the treatment of renal cell carcinoma: differences in technical and clinical parameters. Int J Hyperthermia. 2013;29:21–9.

    Article  PubMed  Google Scholar 

  35. Teber D, Guven S, Simpfendörfer T, Baumhauer M, Guven EO, Yencilek F, Gözen AS, Rassweiler J. Augmented reality: a new tool to improve surgical accuracy during laparoscopic partial nephrectomy? Preliminary in vitro and in vivo results. Eur Urol. 2009;56:332–8.

    Article  PubMed  Google Scholar 

  36. Simpfendörfer T, Baumhauer M, Müller M, Gutt CN, Meinzer HP, Rassweiler JJ, Guven S, Teber D. Augmented reality visualization during laparoscopic radical prostatectomy. J Endourol. 2011;2011(25):1841–5.

    Article  Google Scholar 

  37. Türk C, Knoll T, Petrik A, Sarica K, Skolarikos A, Straub M, Seitz C. EAU-guidelines on urolithiasis 2013. In: Presented at EAU-congress, Milan, Mar 2013.

    Google Scholar 

  38. Parekattil S, Yeung LL, Su LM. Intraoperative tissue characterization and imaging. Urol Clin North Am. 2009;36:213–21.

    Article  PubMed  Google Scholar 

  39. Su L-M, Vagvolgyi BP, Agarwal R, Reiley CE, Taylor RH, Hager GD. Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology. 2009;73:896–900.

    Article  PubMed  Google Scholar 

  40. Ukimura O, Gill IS. Image-fusion, augmented reality and predictive surgical navigation. Urol Clin North Am. 2009;36:115–23.

    Article  PubMed  Google Scholar 

  41. Kindratenko VV. A survey of electromagnetic position tracker calibration techniques. Virtual Reality. 2000;5:169–82.

    Article  Google Scholar 

  42. Chmarra MK, Gimbergen CA, Dankelman J. Systems for tracking minimally invasive surgical instruments. Minim Invasive Ther Allied Technol. 2007;16:320–40.

    Article  Google Scholar 

  43. Teber D, Simpfendörfer T, Guven S, Baumhauer M, Gözen AS, Rassweiler J. In-vitro evaluation of a soft tissue navigation system for laparoscopic prostatectomy. J Endourol. 2010;24:1487–91.

    Article  PubMed  Google Scholar 

  44. Nozaki T, Fujiuchi Y, Komiya A, Fuse H. Efficacy of DynaCT for surgical navigation during complex laparoscopic surgery: an initial experience. Surg Endosc. 2013;27:903–9.

    Article  PubMed  Google Scholar 

  45. Wynberg JB, Borin JF, Vicena JZ, Hannosh V, Salmon SA. Flexible ureteroscopy directed retrograde nephrostomy for percutaneous nephrolithotomy: description of a technique. J Endourol. 2012;26:1268–74.

    Article  PubMed  Google Scholar 

  46. Kawahara T, Ito H, Terao H, Yoshida M, Ogawa T, Uemura H, Kubota Y, Matsuzaki J. Ureteroscopy assisted retrograde nephrostomy: a new technique for percutaneous nephrolithotomy (PCNL). BJU Int. 2011;110:588–90.

    Article  PubMed  Google Scholar 

  47. Young JL, Khanifar E, Narula N, Ortiz-Vanderdys CG, Kolla SB, Pick DL, Sountoulides PG, Kaufmann OG, Osann KE, Huynh VB, Kaplan AG, Andrade LA, Louie MK, McDougall EM, Clayman RV. Optimal freeze cycle length for renal cryotherapy. J Urol. 2011;186:238–88.

    Article  Google Scholar 

  48. Carter TJ, Sermesant M, Cash DM, Barratt DC, Tanner C, Hawkes DJ. Application of soft tissue modelling to image-guided surgery. Med Eng Phys. 2005;27:893–909.

    Article  PubMed  Google Scholar 

  49. Rassweiler J, Baumhauer M, Weickert U, Meinzer HP, Teber D, Su LM, Patel VR. The role of imaging and navigation for natural orifice translumenal endoscopic surgery. J Endourol. 2009;23:793–802.

    Article  PubMed  Google Scholar 

  50. Kim C, Chang D, Petrisor D, Chirikjian G, Han M, Stoianovici D. Ultrasound probe and needle guide calibration for robotic ultrasound scanning and needle targeting. IEEE Trans Biomed Eng. 2013;60:1728–34.

    Article  PubMed  Google Scholar 

  51. De la Rosette JJ, Laguna MP, Rassweiler JJ, Conort P. Training in percutaneous nephrolithotomy – a critical review. Eur Urol. 2008;54:994–1003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Rassweiler MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rassweiler, J. et al. (2015). Augmented Reality for Percutaneous Renal Interventions. In: Liao, J., Su, LM. (eds) Advances in Image-Guided Urologic Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1450-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1450-0_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-1449-4

  • Online ISBN: 978-1-4939-1450-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics