Skip to main content

Characterizing the Association Between Antigens and Adjuvants

  • Chapter
  • First Online:
Subunit Vaccine Delivery

Part of the book series: Advances in Delivery Science and Technology ((ADST))

Abstract

Subunit vaccines consist of two principal components exerting a concerted action: Antigen(s) and adjuvant. Adjuvants serve to enhance, accelerate, and prolong the specific immune response towards the desired response to vaccine antigen(s). Combining the antigen(s) with the adjuvant is a crucial aspect of the final adjuvant–antigen formulation. During the development of new subunit vaccines, it is necessary to define and describe the mechanism of association (and de-association) as well as the association efficiency to ensure optimal efficacy, safety, and stability of novel vaccine formulations, also from a regulatory point of view. Current guidelines from regulating agencies thus state that aspects that are critical for the biological properties of the adjuvant-antigen combination (e.g., adsorption, binding characteristics) should be identified and monitored. However, the characterization of the interactions between antigens and adjuvants often possesses a large analytical challenge due to the fact that antigens are usually formulated at rather low concentrations and the interference of adjuvants with many of the available analytical techniques. In this chapter we describe the importance of addressing antigen–adjuvant interactions (association and de-association). In addition, we describe analytical tools currently available for their characterization and present a review of the current knowledge in the literature for aluminum adjuvants and emulsions adjuvants, which are components of marketed vaccines, as well as for lipid vesicles for which we present brief examples from our own research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agopian A, Ronzon F, Sauzeat E et al (2007) Secondary structure analysis of HIV-1-gp41 in solution and adsorbed to aluminum hydroxide by Fourier transform infrared spectroscopy. Biochim Biophys Acta 1774:351–358

    Article  CAS  PubMed  Google Scholar 

  • Alshakhshir R, Regnier F, White JL et al (1994) Effect of protein adsorption on the surface-charge characteristics of aluminum-containing adjuvants. Vaccine 12:472–474

    Article  CAS  Google Scholar 

  • Bai SF, Dong AC (2009) Effects of immobilization onto aluminum hydroxide particles on the thermally induced conformational behavior of three model proteins. Int J Biol Macromol 45:80–85

    Article  CAS  PubMed  Google Scholar 

  • Brito LA, Malyala P, O´Hagan DT (2013) Vaccine adjuvant formulations: a pharmaceutical perspective. Semin Immunol 25:130–145

    Article  CAS  PubMed  Google Scholar 

  • Calabro S, Tritto E, Pezzotti A et al (2013) The adjuvant effect of MF59 is due to the oil-in-water emulsion formulation, none of the individual components induce a comparable adjuvant effect. Vaccine 31:3363–3369

    Article  CAS  PubMed  Google Scholar 

  • Capelle MAH, Brugger P, Arvinte T (2005) Spectroscopic characterization of antibodies adsorbed to aluminium adjuvants: correlation with antibody vaccine immunogenicity. Vaccine 23:1686–1694

    Article  CAS  PubMed  Google Scholar 

  • Chang M, Shi Y, Nail SL et al (2001) Degree of antigen adsorption in the vaccine or interstitial fluid and its effect on the antibody response in rabbits. Vaccine 19:2884–2889

    Article  CAS  PubMed  Google Scholar 

  • Clapp T, Siebert P, Chen DX et al (2011) Vaccines with aluminum-containing adjuvants: optimizing vaccine efficacy and thermal stability. J Pharm Sci 100:388–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • D’Souza AJM, Mar KD, Huang J et al (2013) Rapid deamidation of recombinant protective antigen when adsorbed on aluminum hydroxide gel correlates with reduced potency of vaccine. J Pharm Sci 102:454–461

    Article  PubMed  Google Scholar 

  • Dai GX, Steede NK, Landry SJ (2001) Allocation of helper T-cell epitope immunodominance according to three-dimensional structure in the human immunodeficiency virus type I envelope glycoprotein gp120. J Biol Chem 276:41913–41920

    Article  CAS  PubMed  Google Scholar 

  • Davidsen J, Rosenkrands I, Christensen D et al (2005) Characterization of cationic liposomes based on dimethyldioctadecylammonium and synthetic cord factor from M. tuberculosis (trehalose 6,6’-dibehenate)—novel adjuvant inducing both strong CMI and antibody responses. Biochim Biophys Acta 1718:22–31

    Google Scholar 

  • Dong AC, Jones LS, Kerwin BA et al (2006) Secondary structures of proteins adsorbed onto aluminum hydroxide: infrared spectroscopic analysis of proteins from low solution concentrations. Anal Biochem 351:282–289

    Article  CAS  PubMed  Google Scholar 

  • Dormitzer PR, Ulmer JB, Rappuoli R (2008) Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol 26:659–667

    Article  CAS  PubMed  Google Scholar 

  • Dupuis M, McDonald DM, Ott G (1999) Distribution of adjuvant MF59 and antigen gD2 after intramuscular injection in mice. Vaccine 18:434–439

    Article  CAS  PubMed  Google Scholar 

  • EMEA (2005) Guideline on adjuvants in vaccines for human use. http://www.emea.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003809.pdf. Accessed 2 May 2014

  • Estey T, Vessely C, Randolph TW et al (2009) Evaluation of chemical degradation of a trivalent recombinant protein vaccine against botulinum neurotoxin by LysC peptide mapping and MALDI-TOF mass spectrometry. J Pharm Sci 98:2994–3012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fox CB, Barnes VL, Evers T et al (2013a) Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy. Influenza Other Respir Viruses 7:815–826

    Article  CAS  PubMed  Google Scholar 

  • Fox CB, Kramer RM, Barnes V et al (2013b) Working together: interactions between vaccine antigens and adjuvants. Ther Adv Vaccines 1:7–20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gregoriadis G, McCormack B, Obrenovic M et al (1999) Vaccine entrapment in liposomes. Methods 19:156–162

    Article  CAS  PubMed  Google Scholar 

  • Gupta RK (1998) Aluminum compounds as vaccine adjuvants. Adv Drug Deliv Rev 32:155–172

    Article  CAS  PubMed  Google Scholar 

  • Hamborg M, Jorgensen L, Bojsen AR et al (2013a) Protein antigen adsorption to the DDA/TDB liposomal adjuvant: effect on protein structure, stability, and liposome physicochemical characteristics. Pharm Res 30:140–155

    Article  CAS  PubMed  Google Scholar 

  • Hamborg M, Kramer R, Schante CE et al (2013b) The physical stability of the recombinant tuberculosis fusion antigens H1 and H56. J Pharm Sci 102:3567–3578

    Article  CAS  PubMed  Google Scholar 

  • Hem SL, Hogenesch H (2007) Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev Vaccines 6:685–698

    Article  CAS  PubMed  Google Scholar 

  • Hem SL, Hogenesch H, Middaugh CR et al (2010) Preformulation studies—the next advance in aluminum adjuvant-containing vaccines. Vaccine 28:4868–4870

    Article  CAS  PubMed  Google Scholar 

  • Henriksen-Lacey M, Bramwell VW, Christensen D et al (2010a) Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J Control Release 142:180–186

    Article  CAS  PubMed  Google Scholar 

  • Henriksen-Lacey M, Christensen D, Bramwell VW et al (2010b) Liposomal cationic charge and antigen adsorption are important properties for the efficient deposition of antigen at the injection site and ability of the vaccine to induce a CMI response. J Control Release 145:102–108

    Article  CAS  PubMed  Google Scholar 

  • Henriksen-Lacey M, Korsholm KS, Andersen P et al (2011) Liposomal vaccine delivery systems. Expert Opin Drug Deliv 8:505–519

    Article  CAS  PubMed  Google Scholar 

  • Herzog C, Hartmann K, Kunzi V et al (2009) Eleven years of Inflexal (R) V-a virosomal adjuvanted influenza vaccine. Vaccine 27:4381–4387

    Article  CAS  PubMed  Google Scholar 

  • Husband FA, Garrood MJ, Mackie AR et al (2001) Adsorbed protein secondary and tertiary structures by circular dichroism and infrared spectroscopy with refractive index matched emulsions. J Agric Food Chem 49:859–866

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon CJ, Becker JO, Russell BA et al (2006) Physiochemical and functional characterization of antigen proteins eluted from aluminum hydroxide adjuvant. Vaccine 24:7214–7225

    Article  CAS  PubMed  Google Scholar 

  • Iyer S, Hogenesch H, Hem SL (2003a) Effect of the degree of phosphate substitution in aluminum hydroxide adjuvant on the adsorption of phosphorylated proteins. Pharm Dev Technol 8:81–86

    Article  CAS  PubMed  Google Scholar 

  • Iyer S, Hogenesch H, Hem SL (2003b) Relationship between the degree of antigen adsorption to aluminum hydroxide adjuvant in interstitial fluid and antibody production. Vaccine 21:1219–1223

    Article  CAS  PubMed  Google Scholar 

  • Iyer S, Robinett RSR, Hogenesch H et al (2004) Mechanism of adsorption of hepatitis B surface antigen by aluminum hydroxide adjuvant. Vaccine 22:1475–1479

    Article  CAS  PubMed  Google Scholar 

  • Jones LS, Peek LJ, Power J et al (2005) Effects of adsorption to aluminum salt adjuvants on the structure and stability of model protein antigens. J Biol Chem 280:13406–13414

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen L, Vermehren C, Bjerregaard S et al (2003) Secondary structure alterations in insulin and growth hormone water-in-oil emulsions. Int J Pharm 254:7–10

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen L, van De Weert M, Vermehren C et al (2004) Probing structural changes of proteins incorporated into water-in-oil emulsions. J Pharm Sci 93:1847–1859

    Google Scholar 

  • Kamath AT, Mastelic B, Christensen D et al (2012) Synchronization of dendritic cell activation and antigen exposure is required for the induction of Th1/Th17 responses. J Immunol 188:4828–4837

    Article  CAS  PubMed  Google Scholar 

  • Lai RPJ, Seaman MS, Tonks P et al (2012) Mixed adjuvant formulations reveal a new combination that elicit antibody response comparable to Freund’s adjuvants. PLoS ONE 7:e35083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lindblad EB (2004) Aluminium compounds for use in vaccines. Immunol Cell Biol 82:497–505

    Article  CAS  PubMed  Google Scholar 

  • Lindblad EB, Schonberg NE (2010) Aluminum adjuvants: preparation, application, dosage, and formulation with antigen. Methods Mol Biol 626:41–58

    Article  CAS  PubMed  Google Scholar 

  • Lu FJ, Boutselis I, Borch RF et al (2013) Control of antigen-binding to aluminum adjuvants and the immune response with a novel phosphonate linker. Vaccine 31:4362–4367

    Article  CAS  PubMed  Google Scholar 

  • Miles AP, McClellan HA, Rausch KM et al (2005) Montanide((R)) ISA 720 vaccines: quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations. Vaccine 23:2530–2539

    Article  CAS  PubMed  Google Scholar 

  • Morel S, Didierlaurent A, Bourguignon P et al (2011) Adjuvant System AS03 containing alpha-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 29:2461–2473

    Article  CAS  PubMed  Google Scholar 

  • Mortellaro A, Ricciardi-Castagnoli P (2011) From vaccine practice to vaccine science: the contribution of human immunology to the prevention of infectious disease. Immunol Cell Biol 89:332–339

    Article  PubMed  Google Scholar 

  • Mulder AM, Carragher B, Towne V et al (2012) Toolbox for non-intrusive structural and functional analysis of recombinant VLP based vaccines: a case study with hepatitis B vaccine. PLoS ONE 7:e33235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ott G, Radhakrishnan R, Fang JH et al (2000) The adjuvant MF59: a 10-year perspective. In: O’Hagan (ed) Vaccine adjuvants, vol 42, Methods in molecular medicine. Humana Press Inc., Tayowa, pp 211–228

    Chapter  Google Scholar 

  • Regnier M, Metz B, Tilstra W et al (2012) Structural perturbation of diphtheria toxoid upon adsorption to aluminium hydroxide adjuvant. Vaccine 30:6783–6788

    Article  CAS  PubMed  Google Scholar 

  • Rinella JV, White JL, Hem SL (1998a) Effect of pH on the elution of model antigens from aluminum-containing adjuvants. J Colloid Interface Sci 205:161–165

    Article  CAS  PubMed  Google Scholar 

  • Rinella JV, Workman RF, Hermodson MA et al (1998b) Elutability of proteins from aluminum-containing vaccine adjuvants by treatment with surfactants. J Colloid Interface Sci 197:48–56

    Article  CAS  PubMed  Google Scholar 

  • Seeber SJ, White JL, Hem SL (1991) Solubilization of aluminum-containing adjuvants by constituents of interstitial fluid. J Parenter Sci Technol 45:156–159

    CAS  PubMed  Google Scholar 

  • Thai R, Moine G, Desmadril M et al (2004) Antigen stability controls antigen presentation. J Biol Chem 279:50257–50266

    Article  CAS  PubMed  Google Scholar 

  • Tynan FE, Elhassen D, Purcell AW et al (2005) The immunogenicity of a viral cytotoxic T cell epitope is controlled by its MHC-bound conformation. J Exp Med 202:1249–1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Volkin DB, Middaugh CR (2010) Vaccines as physically and chemically well-defined pharmaceutical dosage forms. Expert Rev Vaccines 9:689–691

    Article  CAS  PubMed  Google Scholar 

  • Wagner L, Verma A, Meade BD et al (2012) Structural and immunological analysis of anthrax recombinant protective antigen adsorbed to aluminum hydroxide adjuvant. Clin Vaccine Immunol 19:1465–1473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilde PJ (2000) Interfaces: their role in foam and emulsion behaviour. Curr Opin Colloid Int 5:176–181

    Article  CAS  Google Scholar 

  • Xue XY, Ding F, Zhang QF et al (2010) Stability and potency of the Plasmodium falciparum MSP1-19/AMA-1 (III) chimeric vaccine candidate with Montanide ISA720 adjuvant. Vaccine 28:3152–3158

    Article  CAS  PubMed  Google Scholar 

  • Yanasarn N, Sloat BR, Cui Z (2011) Negatively charged liposomes show potent adjuvant activity when simply admixed with protein antigens. Mol Pharm 8:1174–1185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng YW, Lai XX, Ipsen H et al (2007a) Structural changes of protein antigens due to adsorption onto and release from aluminium hydroxide using FTIR-ATR. Spectroscopy 21:211–226

    Article  CAS  Google Scholar 

  • Zheng YW, Lai XX, Ipsen H et al (2007b) The structural stability of protein antigens adsorbed by aluminium hydroxide in comparison to the antigens in solutions. Spectroscopy 21:257–268

    Article  CAS  Google Scholar 

  • Zhu DM, McClellan H, Dai WL et al (2011) Long term stability of a recombinant Plasmodium falciparum AMA1 malaria vaccine adjuvanted with Montanide (R) ISA 720 and stabilized with glycine. Vaccine 29:3640–3645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette Hamborg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hamborg, M., Foged, C. (2015). Characterizing the Association Between Antigens and Adjuvants. In: Foged, C., Rades, T., Perrie, Y., Hook, S. (eds) Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1417-3_21

Download citation

Publish with us

Policies and ethics