Skip to main content

Development of Pilosebaceous Unit-Targeted Drug Products

  • Chapter
  • First Online:

Abstract

The present chapter outlines the rationale, advances, methods, and product development processes of pilosebaceous unit (PSU)-targeted topical drug products. Since the anatomic structure of the pilosebaceous unit provides a possible pathway for targeted drug delivery into hair follicles and sebaceous glands, significant progress has been made in the area of PSU-targeted drug delivery over past 20 years. Discovery of new chemical entities (NCEs) targeting the PSU is being explored in part because the physical/chemical properties of NCEs are not ameniable for transepidermal penetration. As a formulation approach, micro-/nanoparticulate systems, micro-/nanovesicular systems, and excipients enhancing follicular delivery have been widely investigated for PSU-targeted drug delivery. Several dermal products with these micro-/nanostructures are commercialized for possible enhancement of follicular delivery. Product development process pathways are illustrated using a stage-dependent approach. Considering the complexity, rate of success, cost, and time, product development strategy for NCEs are significantly different from that for an existing drug molecule. The methods for the characterization, testing, quality control of dermal products, and in vitro and in vivo models for nonclinical development are also summarized in the present chapter. Despite substantial advances in the science and technology, it is still challenging to develop commercial prescription (Rx) products based on PSU-targeted mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Downing DT, Stewart ME, Strauss JS. Changes in sebum secretion and the sebaceous gland. Dermatol Clin 1986;4(3):419–23.

    CAS  PubMed  Google Scholar 

  2. Rosenthal M. Biological role and practical uses of squalene and scalene. In: Libowe I, Wells F, editors. Cosmetics and the skin. New York: Reinhold Publishing Corporation; 1964.

    Google Scholar 

  3. Walters KA, Roberts MS. The structure and function of skin. In: Walters KA, editor. Dermatological and transdermal formulations. New York: Marcel Dekker; 2002. pp. 1–39.

    Google Scholar 

  4. Downing DT, Strauss JS. On the mechanism of sebaceous secretion. Arch Dermatol Res. 1982;272(3–4):343–9.

    CAS  PubMed  Google Scholar 

  5. Greene RS, Downing DT, Pochi PE, et al. Anatomical variation in the amount and composition of human skin surface lipid. J Invest Dermatol. 1970;54(3):240–7.

    CAS  PubMed  Google Scholar 

  6. Scheuplein RJ. Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J Invest Dermatol. 1967;48(1):79–88.

    CAS  PubMed  Google Scholar 

  7. Woodburne R. Essentials of human anatomy. New York: Oxford University Press; 1965.

    Google Scholar 

  8. Whiting D. Histology of normal hair. In: Hordinsky M, Sawaya M, Scher R, editors. Atlas of hair and nails. Philadelphia: Churchill Livingstone; 2000. pp. 918.

    Google Scholar 

  9. Barry BW. Drug delivery routes in skin: a novel approach. Adv Drug Deliv Rev. 2002;54(Suppl 1):S31–40.

    CAS  PubMed  Google Scholar 

  10. Lauer AC, Lieb LM, Ramachandran C, et al. Transfollicular drug delivery. Pharm Res. 1995;12(2):179–86.

    CAS  PubMed  Google Scholar 

  11. Mitchell LH, Johnson TR, Lu GW, et al. Rational design of a topical androgen receptor antagonist for the suppression of sebum production with properties suitable for follicular delivery. J Med Chem. 2010;53(11):4422–7.

    CAS  PubMed  Google Scholar 

  12. Touitou E, Godin B, Weiss C. Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Dev Res. 2000;50(3/4):406–15.

    CAS  Google Scholar 

  13. Tata S, Weiner N, Flynn G. Relative influence of ethanol and propylene glycol cosolvents on deposition of minoxidil into the skin. J Pharm Sci. 1994;83(10):1508–10.

    CAS  PubMed  Google Scholar 

  14. Sumian CC, Pitre FB, Gauthier BE, et al. A new method to improve penetration depth of dyes into the follicular duct: potential application for laser hair removal. J Am Acad Dermatol. 1999; 41(2 Pt 1):172–5.

    CAS  PubMed  Google Scholar 

  15. Schaefer H, Watts F, Brod J, et al. Follicular penetration. In: Scott R, Guy R, Hadgraft J, editors. Prediction of percutaneous penetration: methods, measurements, modelling. Proceedings of the conference held in April, 1989 IBC Technical Services; 1989, pp. 163–73.

    Google Scholar 

  16. Motwani MR, Rhein LD, Zatz JL. Deposition of salicyclic acid into hamster sebaceous glands. J Cosmet Sci. 2004;55(6):519–31.

    CAS  PubMed  Google Scholar 

  17. Lieb LM, Ramachandran C, Egbaria K, et al. Topical delivery enhancement with multilamellar liposomes into pilosebaceous units: I. In vitro evaluation using fluorescent techniques with the hamster ear model. J Invest Dermatol. 1992;99(1):108–13.

    CAS  PubMed  Google Scholar 

  18. Lademann J, Weigmann HJ, Rickmeyer C, et al. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol. 1999;12(5):247–56.

    CAS  PubMed  Google Scholar 

  19. Bamba FL, Wepierre J. Role of the appendageal pathway in the percutaneous absorption of pyridostigmine bromide in various vehicles. Eur J Drug Metab Pharmacokinet. 1993;18(4):339–48.

    CAS  PubMed  Google Scholar 

  20. Rolland A, Wagner N, Chatelus A., et al. Site-specific drug delivery to pilosebaceous structures using polymeric microspheres. Pharm Res. 1993;10(12):1738–44.

    CAS  PubMed  Google Scholar 

  21. Toll R, Jacobi U, Richter H, et al. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol. 2004;123(1):168–76.

    CAS  PubMed  Google Scholar 

  22. Mordon S, Sumian C, Devoisselle JM. Site-specific methylene blue delivery to pilosebaceous structures using highly porous nylon microspheres: an experimental evaluation. Lasers Surg Med. 2003;33(2):119–25.

    PubMed  Google Scholar 

  23. Turner NG, Guy RH. Visualization and quantitation of iontophoretic pathways using confocal microscopy. J Investig Dermatol Symp Proc. 1998;3(2):136–42.

    CAS  PubMed  Google Scholar 

  24. Pena LE. Topical pharmaceutical compositions of drugs susceptible to oxidative or hydrolytic degradation. WO9407478A1. 1994.

    Google Scholar 

  25. Gupta M, Agrawal U, Vyas SP. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin Drug Deliv. 2012;9(7):783–804.

    CAS  PubMed  Google Scholar 

  26. Musthaba M, Baboota S, Athar TMD, et al. Patented herbal formulations and their therapeutic applications. Recent Pat Drug Deliv Formul. 2010;4(3):231–44.

    CAS  PubMed  Google Scholar 

  27. Prabhu P, Patravale V, Joshi M. Nanocarriers for effective topical delivery of anti-infectives. Curr Nanosci. 2012;8(4):491–503.

    CAS  Google Scholar 

  28. Muller RH, Petersen RD, Hommoss A, et al. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Delivery Rev. 2007;59(6):522–30.

    CAS  Google Scholar 

  29. Papakostas D, Rancan F, Sterry W, et al. Nanoparticles in dermatology. Arch Dermatol Res. 2011;303(8):533–50.

    CAS  PubMed  Google Scholar 

  30. Dokka S, Cooper S, Kelly S, et al. Compositions and methods for topical delivery of oligonucleotides. US Patent 8,168,600. 2012.

    Google Scholar 

  31. Friedman D. Hair follicle targeting compositions. WO2011095970A1. 2011.

    Google Scholar 

  32. Fritz O, Fritz U, Wojcik R, et al. Loadable polymeric microparticles for therapeutic use in alopecia and methods of preparing and using the same. US20090110731A1. 2009.

    Google Scholar 

  33. Harris TJ, Chen AA. Compositions and methods for targeted thermomodulation. WO2012027728A2. 2012.

    Google Scholar 

  34. Lishko V, Li L. Method to deliver compositions conferring resistance to alopecia to hair follicles. US5753263A. 1998.

    Google Scholar 

  35. Oh DK, Lee KY. Methods for preparing nanoliposome encapsulating proteins and protein-encapsulated nanoliposome. WO2006109936A1. 2006.

    Google Scholar 

  36. Lin CC, Kuo TY, Lin YJ. Composition comprising human stem cell growth factor for treatment of hair graying and balding. US7524505. 2007.

    Google Scholar 

  37. Shefer A, Shefer SD. Compositions and method for targeted controlled delivery of active ingredients and sensory markers onto hair, skin, and fabric. US6979440. 2005.

    Google Scholar 

  38. Paithankar D, Blomgren R, Anderson RR, et al. Compositions and methods comprising energy absorbing materials for follicular delivery. WO2013158278A1. 2013.

    Google Scholar 

  39. Li L, Baranov E. Skin vibrational method for topical targeted delivery of beneficial agents into hair follicles. US Patent 6,080,127. 2000.

    Google Scholar 

  40. El Maghraby GM, Williams AC, Barry BW. Skin hydration and possible shunt route penetration in controlled estradiol delivery from ultradeformable and standard liposomes. J Pharm Pharmacol. 2001;53(10):1311–22.

    CAS  PubMed  Google Scholar 

  41. Flynn G. Cutaneous and transdermal delivery. In: Banker G, Rhodes C, Editors. Modern pharmaceutics. 3rd ed. New York: Marcel Dekker; 1996. pp. 262–9.

    Google Scholar 

  42. Lu GW, Valiveti S, Spence J, et al. Comparison of artificial sebum with human and hamster sebum samples. In J Pharm. 2009;367(1–2):37–43.

    CAS  PubMed  Google Scholar 

  43. Valiveti S, Wesley J, Lu GW. Investigation of drug partition property in artificial sebum. Int J Pharm. 2008;346(1–2):10–16.

    CAS  PubMed  Google Scholar 

  44. Valiveti S, Lu GW. Diffusion properties of model compounds in artificial sebum. Int J Pharm. 2007;345(1–2):88–94.

    CAS  PubMed  Google Scholar 

  45. Trauer S, Lademann J, Knorr F, et al. Development of an in vitro modified skin absorption test for the investigation of the follicular penetration pathway of caffeine. Skin Pharmacol Physiol. 2010;23(6):320–7.

    CAS  PubMed  Google Scholar 

  46. Roberts MS, Cross SE, Pellett MA. Skin transport. In: Walters KA, Editor. Dermatological and transdermal formulations. 119th ed. New York Marcel Dekker; 2002. pp. 89–195.

    Google Scholar 

  47. Meidan VM. Methods for quantifying intrafollicular drug delivery: a critical appraisal. Expert Opin Drug Delivery. 2010;7(9):1095–108.

    CAS  Google Scholar 

  48. Teichmann A, Jacobi U, Ossadnik M, et al. Differential stripping: determination of the amount of topically applied substances penetrated into the hair follicles. J Invest Dermatol. 2005;125(2):264–9.

    CAS  PubMed  Google Scholar 

  49. Grams YY, Whitehead L, Cornwell P, et al. Time and depth resolved visualization of the diffusion of a lipophilic dye into the hair follicle of fresh unfixed human scalp skin. J Controlled Release. 2004;98(3):367–78.

    CAS  Google Scholar 

  50. Bhatia G, Zhou Y, Banga AK. Adapalene microemulsion for transfollicular drug delivery. J Pharm Sci. 2013;102(8):2622–31.

    CAS  PubMed  Google Scholar 

  51. Lee WR, Shen SC, Al-Suwayeh SA, et al. Skin permeation of small-molecule drugs, macromolecules, and nanoparticles mediated by a fractional carbon dioxide laser: the role of hair follicles. Pharm Res. 2013;30(3):792–802.

    CAS  PubMed  Google Scholar 

  52. Grice JE, Ciotti S, Weiner N, et al. Relative uptake of minoxidil into appendages and stratum corneum and permeation through human skin in Vitro. J Pharm Sci. 2010;99(2):712–8.

    CAS  PubMed  Google Scholar 

  53. Patzelt A, Richter H, Buettemeyer R, et al. Differential stripping demonstrates a significant reduction of the hair follicle reservoir in Vitro compared to in vivo. Eur J Pharm Biopharm. 2008;70(1):234–8.

    CAS  PubMed  Google Scholar 

  54. Frum Y, Eccleston GM, Meidan VM. In-Vitro permeation of drugs into porcine hair follicles: is it quantitatively equivalent to permeation into human hair follicles? J Pharm Pharmacol. 2008;60(2):145–51.

    CAS  PubMed  Google Scholar 

  55. Meidan VM, Bonner MC, Michniak BB. Transfollicular drug delivery—is it a reality? Int J Pharm. 2005;306(1–2):1–14.

    CAS  PubMed  Google Scholar 

  56. Bronaugh RL, Hood HL, Kraeling MEK, et al. Determination of percutaneous absorption by in vitro techniques. In: Bronaugh RL, Maibach HI, editors. 21 ed. New York: Marcel Dekker; 2002. pp. 157–61.

    Google Scholar 

  57. Franz TJ, Lehman PA, Pochi P, et al. The hamster flank organ model: is it relevant to man? J Invest Dermatol. 1989;93(4):475–9.

    CAS  PubMed  Google Scholar 

  58. Weissmann A, Bowden J, Beryn F, et al. Morphometric studies of the hamster flank organ: an improved model to evaluate pharmacologic effects on sebaceous glands. J Invest Dermatol. 1984;82(5):522–5.

    CAS  PubMed  Google Scholar 

  59. Uno H. The stumptailed macaque as a model for baldness: effects of minoxidil. Int J Cosmet Sci. 1986;8(2):63–71.

    CAS  PubMed  Google Scholar 

  60. Plewig G, Luderschmidt C. Hamster ear model for sebaceous glands. J Invest Dermatol. 1977;68(4):171–6.

    CAS  PubMed  Google Scholar 

  61. Mcelwee KJ, Rushton DH, Trachy R, et al. Topical FK506: a potent immunotherapy for alopecia areata? Studies using the dundee experimental bald rat model. Br J Dermatol. 1997;137(4):491–7.

    CAS  PubMed  Google Scholar 

  62. Oliver RF, Jahoda CA, Horne KA, et al. The DEBR rat model for alopecia areata. J Invest Dermatol. 1991;96(5):97 S.

    Google Scholar 

  63. Sun J, Silva KA, McElwee KJ, et al. The C3 H/HeJ mouse and DEBR rat models for alopecia areata: review of preclinical drug screening approaches and results. Exp Dermatol. 2008;17(10):793–805.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Allec J, Chatelus A, Wagner N. Skin distribution and pharmaceutical aspects of adapalene gel. J Am Acad Dermatol. 1997; 36(6 Pt 2):S119–125.

    CAS  PubMed  Google Scholar 

  65. Madheswaran T, Baskaran R, Thapa RK, et al. Design and In Vitro evaluation of finasteride-loaded liquid crystalline nanoparticles for topical delivery. AAPS PharmSciTech. 2013;14(1):45–52

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Parhi R Suresh P. Production of solid lipid nanoparticles-drug loading and release mechanism. J Chem Pharm Res. 2010;2(1):211–27.

    CAS  Google Scholar 

  67. Puglia C Bonina F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opin Drug Delivery. 2012;9(4):429–41.

    CAS  Google Scholar 

  68. Kim BD, Na K, Choi HK. Preparation and characterization of solid lipid nanoparticles (SLN) made of cacao butter and curdlan. Eur J Pharm Sci. 2005;24(2–3):199–205.

    CAS  PubMed  Google Scholar 

  69. Uner M. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. Pharmazie. 2006;61(5):375–86.

    CAS  PubMed  Google Scholar 

  70. Lademann J, Richter H, Schanzer S, et al. Penetration and storage of particles in human skin: perspectives and safety aspects. Eur J Pharm Biopharm. 2011;77(3):465–8.

    CAS  PubMed  Google Scholar 

  71. Liang XW, Xu ZP, Grice J, et al. Penetration of nanoparticles into human skin. Curr Pharm Des. 2013;19(35):6353–66.

    CAS  PubMed  Google Scholar 

  72. Prow TW, Grice JE, Lin LL, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Delivery Rev. 2011;63(6):470–91.

    CAS  Google Scholar 

  73. Robertson TA, Sanchez WY, Roberts MS. Are commercially available nanoparticles safe when applied to the skin? J Biomed Nanotechnol. 2010;6(5):452–68.

    CAS  PubMed  Google Scholar 

  74. Wang F, Chen Y, Benson HAE. Formulation of nano and micro PLGA particles of the model peptide insulin: preparation, characterization, stability and deposition in human skin. Open Drug Deliv J. 2008;2:1–9.

    Google Scholar 

  75. Pitaksuteepong T, Somsiri A, Waranuch N. Targeted transfollicular delivery of artocarpin extract from artocarpus incisus by means of microparticles. Eur J Pharm Biopharm. 2007;67(3):639–45.

    CAS  PubMed  Google Scholar 

  76. Morgen M, Lu GW, Du D, et al. Targeted delivery of a poorly water-soluble compound to hair follicles using polymeric nanoparticle suspensions. Int J Pharm. 2011;416(1):314–22.

    CAS  PubMed  Google Scholar 

  77. Mittal A, Raber AS, Schaefer UF, et al. Non-Invasive delivery of nanoparticles to hair follicles: a perspective for transcutaneous immunization. Vaccine. 2013;31(34):3442–51.

    CAS  PubMed  Google Scholar 

  78. Bachhav YG, Mondon K, Kalia YN, et al. Novel micelle formulations to increase cutaneous bioavailability of azole antifungals. J Controlled Release. 2011;153(2):126–32.

    CAS  Google Scholar 

  79. Lin YK, Al-Suwayeh SA, Leu YL, et al. Squalene-containing nanostructured lipid carriers promote percutaneous absorption and hair follicle targeting of diphencyprone for treating alopecia areata. Pharm Res. 2013;30(2):435–46.

    CAS  PubMed  Google Scholar 

  80. Muenster U, Nakamura C, Haberland A, et al. RU 58841-myristate—prodrug development for topical treatment of acne and androgenetic alopecia. Pharmazie. 2005;60(1):8–12.

    CAS  Google Scholar 

  81. du Plessis J, Egbaria K, Ramachandran C, et al. Topical delivery of liposomally encapsulated gamma-interferon. Antiviral Res. 1992;18(3–4):259–65.

    PubMed  Google Scholar 

  82. Li L Hoffmann RM. Topical liposome delivery of molecules to hair follicles in mice. J Dermatol Sci. 1997;14(2):101–8.

    PubMed  Google Scholar 

  83. Tabbakhian M, Tavakoli N, Jaafari MR, et al. Enhancement of follicular delivery of finasteride by liposomes and niosomes. Int J Pharm. 2006;323(1–2):1–10.

    CAS  PubMed  Google Scholar 

  84. Kong M, Chen XG, Kweon DK, et al. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydr Polym. 2011;86(2):837–43.

    CAS  Google Scholar 

  85. Wu H, Ramachandran C, Weiner ND, et al. Topical transport of hydrophilic compounds using water-in-oil nanoemulsions. Int J Pharm. 2001;220(1–2):63–75.

    CAS  PubMed  Google Scholar 

  86. Teichmann A, Heuschkel S, Jacobi U, et al. Comparison of stratum corneum penetration and localization of a lipophilic model drug applied in an o/w microemulsion and an amphiphilic cream. Eur J Pharm Biopharm. 2007;67(3):699–706.

    CAS  PubMed  Google Scholar 

  87. Blume-Peytavi U, Massoudy L, Patzelt A, et al. Follicular and percutaneous penetration pathways of topically applied minoxidil foam. Eur J Pharm Biopharm. 2010;76(3):450–3.

    CAS  PubMed  Google Scholar 

  88. Abdel-Mottaleb MMA, Neumann D, Lamprecht A. Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur J Pharm Biopharm. 2011;79(1):36–42.

    CAS  PubMed  Google Scholar 

  89. Han I, Kim M, Kim J. Enhanced transfollicular delivery of adriamycin with a liposome and iontophoresis. Exp Dermatol. 2004;13(2):86–92.

    CAS  PubMed  Google Scholar 

  90. Fang JY, Sung KC, Lin HH et al. Transdermal iontophoretic delivery of enoxacin from various liposome-encapsulated formulations. J Controlled Release. 1999;60(1):1–10.

    CAS  Google Scholar 

  91. Gomaa YA, Garland MJ, McInnes FJ, et al. Microneedle/Nanoencapsulation-mediated transdermal delivery: mechanistic insights. Eur J Pharm Biopharm. 2013. doi:10.1016/j.ejpb.2013.01.026.

    Google Scholar 

  92. Zhang W, Ding B, Tang R, et al. Combination of microneedles with PLGA nanoparticles as a potential strategy for topical drug delivery. Curr Nanosci. 2011;7(4):545–51.

    CAS  Google Scholar 

  93. Zhang Z, Tsai PC, Ramezanli T, et al. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev: Nanomed Nanobiotechnol. 2013;5(3):205–18.

    Google Scholar 

  94. Alvarez-Roman R, Naik A, Kalia YN, et al. Skin penetration and distribution of polymeric nanoparticles. J Controlled Release. 2004;99(1):53–62.

    CAS  Google Scholar 

  95. Lademann J, Richter H, Teichmann A, et al. Nanoparticles—an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66(2):159–64.

    CAS  PubMed  Google Scholar 

  96. Rancan F, Papakostas D, Hadam S, et al. Investigation of Polylactic Acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res. 2009;26(8):2027–36.

    CAS  PubMed  Google Scholar 

  97. Patzelt A, Richter H, Knorr F, et al. Selective follicular targeting by modification of the particle sizes. J Control Release. 2011;150(1):45–8.

    CAS  PubMed  Google Scholar 

  98. Shim J, Seok KH, Park W, et al. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J Control Release. 2004;97(3):477–84.

    CAS  PubMed  Google Scholar 

  99. Vogt A, Combadiere B, Hadam S, et al. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a + Cells after transcutaneous application on human skin. J Invest Dermatol. 2006;126(6):1316–22.

    CAS  PubMed  Google Scholar 

  100. Mahe B, Vogt A, Liard C, et al. Nanoparticle-based targeting of vaccine compounds to skin antigen-presenting cells by hair follicles and their transport in mice. J Invest Dermatol. 2009;129(5):1156–64.

    CAS  PubMed  Google Scholar 

  101. Wu X, Griffin P, Price GJ, et al. Preparation and in Vitro evaluation of topical formulations based on polystyrene-poly-2-hydroxyl methacrylate nanoparticles. Mol Pharmaceutics. 2009;6(5):1449–56.

    CAS  Google Scholar 

  102. Wu X, Biatry B, Cazeneuve C, et al. Drug delivery to the skin from sub-micron polymeric particle formulations: influence of particle size and polymer hydrophobicity. Pharm Res. 2009;26(8):1995–2001.

    CAS  PubMed  Google Scholar 

  103. Tsujimoto H, Hara K, Bando Y, et al. Evaluation of the permeability of hair growing ingredient encapsulated plga nanospheres to hair follicles and their hair growing effects. Fragrance J. 2007;35(12):55–62.

    CAS  Google Scholar 

  104. Dubey A, Prabhu P, Kamath JV. Nano structured lipid carriers: a novel topical drug delivery system. Int J Pharm Tech Res. 2012;4(2):705–14.

    CAS  Google Scholar 

  105. Castro GA, Orefice RL, Vilela JMC, et al. Development of a new solid lipid nanoparticle formulation containing retinoic acid for topical treatment of acne. J Microencapsulation. 2007;24(5):395–407.

    CAS  PubMed  Google Scholar 

  106. Pilcer G, Sebti T, Amighi K. Formulation and characterization of lipid-coated tobramycin particles for dry powder inhalation. Pharm Res. 2006;23(5):931–40.

    CAS  PubMed  Google Scholar 

  107. Chen H, Xiao L, Du D, et al. A facile construction strategy of stable lipid nanoparticles for drug delivery using a hydrogel-thickened microemulsion system. Nanotechnology. 2010;21(1). doi: 10.1088/0957–4484/21/1/015101.

    Google Scholar 

  108. Abdelbary G, Fahmy RH. Diazepam-loaded solid lipid nanoparticles: design and characterization. AAPS PharmSciTech. 2009;10(1):211–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. du Plessis J, Ramachandran C, Weiner N, et al. The influence of particle size of liposomes on the deposition of drug into skin. Int J Pharm. 1994;103(3):277–82.

    Google Scholar 

  110. Desai PR, Shah PP, Hayden P, et al. Investigation of follicular and non-follicular pathways for polyarginine and oleic acid-modified nanoparticles. Pharm Res. 2013;30(4):1037–49.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Lim SJ Kim CK. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int J Pharm. 2002;243(1–2):135–46.

    CAS  PubMed  Google Scholar 

  112. Ridolfi DM, Marcato PD, Justo GZ, et al. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids Surf B 2012;93:36–40.

    CAS  Google Scholar 

  113. Urban-Morlan Z, Ganem-Rondero A, Melgoza-Contreras LM, et al. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method. Int J Nanomed. 2010;5:611–20.

    CAS  Google Scholar 

  114. Alvarez-Roman R, Naik A, Kalia YN, et al. Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res. 2004;21(10):1818–25.

    CAS  PubMed  Google Scholar 

  115. Mak WC, Richter H, Patzelt A, et al. Drug delivery into the skin by degradable particles. Eur J Pharm Biopharm. 2011;79(1):23–27.

    CAS  PubMed  Google Scholar 

  116. Levy MY, Schutze W, Fuhrer C, et al. Characterization of diazepam submicron emulsion interface: role of oleic acid. J Microencapsul. 1994;11(1):79–92.

    CAS  PubMed  Google Scholar 

  117. Souto EB, Mehnert W, Muller RH. Polymorphic behavior of compritol 888 ATO As bulk lipid and as SLN and NLC. J Microencapsul. 2006;23(4):417–33.

    CAS  PubMed  Google Scholar 

  118. Caldorera-Moore M, Guimard N, Shi L, et al. Designer nanoparticles: incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv. 2010;7(4):479–95.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Baviskar DT, Amritkar AS, Chaudhari HS, et al. Modulation of drug release from nanocarriers loaded with a poorly water soluble drug (Flurbiprofen) comprising natural waxes. Pharmazie 2012;67(8):701–5.

    CAS  PubMed  Google Scholar 

  120. Freitas C, Muller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur J Pharm Biopharm. 1999;47(2):125–32.

    CAS  PubMed  Google Scholar 

  121. Freitas C, Muller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN) dispersions. Int J Pharm. 1998;168(2):221–9.

    CAS  Google Scholar 

  122. Teeranachaideekul V, Muller R, Junyaprasert V. Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC)-effects of formulation parameters on physicochemical stability. Int J Pharm. 2007;340(1–2):198–206.

    CAS  PubMed  Google Scholar 

  123. Ridolfi DM, Marcato PD, Machado D, et al. In vitro cytotoxicity assays of solid lipid nanoparticles in epithelial and dermal cells. J Phys Conf Ser. 2011;304:012032-1-012032/4.

    Google Scholar 

  124. Shah PP, Desai PR, Patel AR, et al. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drug. Biomaterials. 2012;33(5):1607–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Bhaskar K, Anbu J, Ravichandiran V, et al. Lipid nanoparticles for transdermal delivery of flurbiprofen: formulation, in vitro, ex vivo and in vivo studies. Lipids Health Dis. 2009;8. doi:10.1186/1476-511X-8-6.

    Google Scholar 

  126. Souto EB, Muller R. The use of SLN and NLC as topical particulate carriers for imidazole antifungal agents. Pharmazie 2006;61(5):431–7.

    CAS  PubMed  Google Scholar 

  127. ICH. M3(R2) guidance on non-clinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals. Federal Register. 2010.

    Google Scholar 

  128. Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9(3):203–14.

    CAS  PubMed  Google Scholar 

  129. Mukherjee S, Date A, Patravale V, et al. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Interv Aging. 2006;1(4):327–48.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. ICH. Q8(R2) pharmaceutical development. Federal Register. 2009.

    Google Scholar 

  131. ICH. Q1A(R2) stability testing of new drug substances and products. Fed Regist. 2003;68:65717–18.

    Google Scholar 

  132. USP <1151> Pharmaceutical dosage forms. United States Pharmacopeia (USP 36) 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Wei Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lu, G., Warner, K., Wang, F. (2014). Development of Pilosebaceous Unit-Targeted Drug Products. In: Shah, V., Maibach, H., Jenner, J. (eds) Topical Drug Bioavailability, Bioequivalence, and Penetration. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1289-6_12

Download citation

Publish with us

Policies and ethics