Skip to main content

Psychobiology of Perceived Effort During Physical Tasks

  • Chapter
  • First Online:
Handbook of Biobehavioral Approaches to Self-Regulation

Abstract

Perception of effort is the conscious sensation of the effort exerted during a physical task, and it is one of the subjective experiences that accompany voluntary actions. Perception of effort has an important role in the self-regulation of behavior. In physical tasks requiring endurance, perception of effort is one of the main determinants of pacing and performance and it is one of the barriers that prevent sedentary individuals from adopting an active lifestyle. Furthermore, high perception of effort is one of the main features of the disabling fatigue affecting patients with cancer and other medical conditions. The afferent feedback model postulates that perception of effort arises from sensory signals produced by peripheral receptors (e.g., group III–IV afferents). According to the corollary discharge model, perception of effort arises from corollary discharges of the central motor command to the working muscles (including the respiratory muscles). Current electrophysiological evidence, showing that motor-related brain activity correlates with perception of effort, corroborates the corollary discharge model of perception of effort. Preliminary evidence from neuroimaging studies suggests that the cingulate and insular cortices, and possibly the thalamus and precuneus, are brain areas that might be involved in perception of effort. Future research should focus on targets for interventions aimed at reducing perception of effort. Such interventions might benefit athletes involved in endurance performance, patients suffering from fatigue, and sedentary individuals wishing to adopt a more active lifestyle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann, M., Proctor, L. T., Sebranek, J. J., Pegelow, D. F., & Dempsey, J. A. (2009). Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. The Journal of Physiology, 587(1), 271–283. doi:10.1113/jphysiol.2008.163303.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bain, A. (1868). The senses and the intellect (3rd ed.). London: Longmans, Green, and Co.

    Book  Google Scholar 

  • Bauman, A. E., Reis, R. S., Sallis, J. F., Wells, J. C., Loos, R. J., & Martin, B. W. (2012). Correlates of physical activity: Why are some people physically active and others not? Lancet, 380(9838), 258–271. doi:10.1016/S0140-6736(12)60735-1.

    Article  PubMed  Google Scholar 

  • Bell, C. (1826). On the nervous circle which connects the voluntary muscles with the brain. Philosophical Transactions of the Royal Society of London, 116, 163–173 doi:10.1098/rstl.1826.0016.

    Article  Google Scholar 

  • Berchicci, M., Menotti, F., Macaluso, A., & Di Russo, F. (2013). The neurophysiology of central and peripheral fatigue during sub-maximal lower limb isometric contractions. Frontiers in Human Neuroscience, 7, 135. doi:10.3389/fnhum.2013.00135.

    Article  PubMed  PubMed Central  Google Scholar 

  • Borg, G. A. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2(2), 92–98.

    PubMed  Google Scholar 

  • Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377–381.

    Article  PubMed  Google Scholar 

  • Borg, G. A. (1998). Borg’s perceived exertion and pain scales. Champaign: Human Kinetics.

    Google Scholar 

  • Boutcher, S. H., Fleischer-Curtian, L. A., & Gines, S. D. (1988). The effects of self-presentation on perceived exertion. Journal of Sport & Exercise Psychology, 10, 270–280.

    Google Scholar 

  • Braith, R. W., Wood, C. E., Limacher, M. C., Pollock, M. L., Lowenthal, D. T., Phillips, M. I., & Staples, E. D. (1992). Abnormal neuroendocrine responses during exercise in heart transplant recipients. Circulation, 86(5), 1453–1463. doi:10.1161/01.CIR.86.5.1453.

    Article  PubMed  Google Scholar 

  • Brehm, J. W., & Self, E. A. (1989). The intensity of motivation. Annual Review of Psychology, 40, 109–131. doi:10.1146/annurev.ps.40.020189.000545.

    Article  PubMed  Google Scholar 

  • Burki, N. K., Davenport, P. W., Safdar, F., & Zechman, F. W. (1983). The effects of airway anesthesia on magnitude estimation of added inspiratory resistive and elastic loads. The American Review of Respiratory Disease, 127(1), 2–4.

    PubMed  Google Scholar 

  • Christensen, M. S., Lundbye-Jensen, J., Geertsen, S. S., Petersen, T. H., Paulson, O. B., & Nielsen, J. B. (2007). Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback. Nature Neuroscience, 10(4), 417–419. doi:10.1038/nn1873.

    PubMed  Google Scholar 

  • Crapse, T. B., & Sommer, M. A. (2008). Corollary discharge across the animal kingdom. Nature Reviews Neuroscience, 9(8), 587–600. doi:10.1038/nrn2457.

    Article  PubMed  Google Scholar 

  • Davis, J. K., & Green, J. M. (2009). Caffeine and anaerobic performance: Ergogenic value and mechanisms of action. Sports Medicine, 39(10), 813–832. doi:10.2165/11317770-000000000-00000.

    Article  PubMed  Google Scholar 

  • de Morree, H. M., & Marcora, S. M. (2010). The face of effort: Frowning muscle activity reflects effort during a physical task. Biological Psychology, 85(3), 377–382. doi:10.1016/j.biopsycho.2010.08.009.

    Article  PubMed  Google Scholar 

  • de Morree, H. M., & Marcora, S. M. (2013). Effects of isolated locomotor muscle fatigue on pacing and time trial performance. European Journal of Applied Physiology. doi:10.1007/s00421-013-2673-0.

    Google Scholar 

  • de Morree, H. M., Klein, C., & Marcora, S. M. (2012). Perception of effort reflects central motor command during movement execution. Psychophysiology, 49(9), 1242–1253. doi:10.1111/j.1469-8986.2012.01399.x.

    Article  PubMed  Google Scholar 

  • de Morree, H. M., Klein, C., & Marcora, S. M. (2013). Cortical substrates of the effects of caffeine and time-on-task on perception of effort. Manuscript submitted for publication.

    Google Scholar 

  • Dishman, R. K., Sallis, J. F., & Orenstein, D. R. (1985). The determinants of physical activity and exercise. Public Health Reports, 100(2), 158–171.

    PubMed  PubMed Central  Google Scholar 

  • Doherty, M., & Smith, P. M. (2005). Effects of caffeine ingestion on rating of perceived exertion during and after exercise: A meta-analysis. Scandinavian Journal of Medicine and Science in Sports, 15(2), 69–78. doi:10.1111/j.1600-0838.2005.00445.x.

    Article  PubMed  Google Scholar 

  • Enoka, R. M., & Stuart, D. G. (1992). Neurobiology of muscle fatigue. Journal of Applied Physiology, 72(5), 1631–1648.

    PubMed  Google Scholar 

  • Falvo, M. J., Sirevaag, E. J., Rohrbaugh, J. W., & Earhart, G. M. (2010). Resistance training induces supraspinal adaptations: Evidence from movement-related cortical potentials. European Journal of Applied Physiology, 109(5), 923–933. doi:10.1007/s00421-010-1432-8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernandes, A., Galbo, H., Kjaer, M., Mitchell, J. H., Secher, N. H., & Thomas, S. N. (1990). Cardiovascular and ventilatory responses to dynamic exercise during epidural anaesthesia in man. The Journal of Physiology, 420(1), 281–293.

    PubMed  PubMed Central  Google Scholar 

  • Fontes, E. B., Okano, A. H., De Guio, F., Schabort, E. J., Min, L. L., Basset, F. A., et al. (2013). Brain activity and perceived exertion during cycling exercise: An fMRI study. British Journal of Sports Medicine. (Advance online publication). doi:10.1136/bjsports-2012-091924.

    Google Scholar 

  • Freude, G., & Ullsperger, P. (1987). Changes in Bereitschaftspotential during fatiguing and non-fatiguing hand movements. European Journal of Applied Physiology and Occupational Physiology, 56(1), 105–108. doi:10.1007/BF00696384.

    Article  PubMed  Google Scholar 

  • Gallagher, K. M., Fadel, P. J., Stromstad, M., Ide, K., Smith, S. A., Querry, R. G., et al. (2001). Effects of partial neuromuscular blockade on carotid baroreflex function during exercise in humans. The Journal of Physiology, 533(3), 861–870. doi:10.1111/j.1469-7793.2001.t01-1-00861.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gandevia, S. C. (2001). Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews, 81(4), 1725–1789.

    PubMed  Google Scholar 

  • Gandevia, S. C., & McCloskey, D. I. (1977a). Changes in motor commands, as shown by changes in perceived heaviness, during partial curarization and peripheral anaesthesia in man. The Journal of Physiology, 272(3), 673–689.

    Google Scholar 

  • Gandevia, S. C., & McCloskey, D. I. (1977b). Sensations of heaviness. Brain, 100(2), 345–354. doi:10.1093/brain/100.2.345.

    Article  Google Scholar 

  • Gendolla, G. H. E., Wright, R. A., & Richter, M. (2012). Effort intensity: Some insights from the cardiovascular system. In R. M. Ryan (Ed.), The Oxford handbook of human motivation (pp. 420–438). New York: Oxford University Press.

    Google Scholar 

  • Grazzini, M., Stendardi, L., Gigliotti, F., & Scano, G. (2005). Pathophysiology of exercise dyspnea in healthy subjects and in patients with chronic obstructive pulmonary disease (COPD). Respiratory Medicine, 99(11), 1403–1412. doi:10.1016/j.rmed.2005.03.005.

    Article  PubMed  Google Scholar 

  • Haggard, P. (2008). Human volition: Towards a neuroscience of will. Nature Reviews Neuroscience, 9(12), 934–946. doi:10.1038/nrn2497.

    Article  PubMed  Google Scholar 

  • Hamilton, A. L., Killian, K. J., Summers, E., & Jones, N. L. (1996). Quantification of intensity of sensations during muscular work by normal subjects. Journal of Applied Physiology, 81(3), 1156–1161.

    PubMed  Google Scholar 

  • Hampson, D. B., St Clair Gibson, A., Lambert, M. I., & Noakes, T. D. (2001). The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Medicine, 31(13), 935–952.

    Article  PubMed  Google Scholar 

  • Hardy, C. J., Hall, E. G., & Prestholdt, P. H. (1986). The mediational role of social influence in the perception of exertion. Journal of Sport Psychology, 8(2), 88–104.

    Google Scholar 

  • Ikeda, A., & Shibasaki, H. (2003). Generator mechanisms of Bereitschaftspotentials as studied by epicortical recording in patients with intractable partial epilepsy. In M. Jahanshahi & M. Hallett (Eds.), The Bereitschaftspotential: Movement-related cortical potentials (pp. 45–59). New York: Kluwer/Plenum.

    Chapter  Google Scholar 

  • Jahanshahi, M., & Hallett, M. (2003). The Bereitschaftspotential: What does it measure and where does it come from? In M. Jahanshahi & M. Hallett (Eds.), The Bereitschaftspotential: Movement-related cortical potentials (pp. 1–17). New York: Kluwer/Plenum.

    Chapter  Google Scholar 

  • Jankelowitz, S. K., & Colebatch, J. G. (2005). Movement related potentials in acutely induced weakness and stroke. Experimental Brain Research, 161(1), 104–113. doi:10.1007/s00221-004-2051-6.

    Article  PubMed  Google Scholar 

  • Kaufman, M. P., Hayes, S. G., Adreani, C. M., & Pickar, J. G. (2002). Discharge properties of group III and IV muscle afferents. Advances in Experimental Medicine and Biology, 508, 25–32. doi:10.1007/978-1-4615-0713-04.

    Article  PubMed  Google Scholar 

  • Kjaer, M., Hanel, B., Worm, L., Perko, G., Lewis, S. F., Sahlin, K., et al. (1999). Cardiovascular and neuroendocrine responses to exercise in hypoxia during impaired neural feedback from muscle. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 277(1), R76–R85.

    Google Scholar 

  • Kutas, M., & Federmeier, K. D. (1998). Minding the body. Psychophysiology, 35(2), 135–150. doi:10.1111/1469-8986.3520135.

    Article  PubMed  Google Scholar 

  • Lafargue, G., & Franck, N. (2009). Effort awareness and sense of volition in schizophrenia. Consciousness and Cognition, 18(1), 277–289. doi:10.1016/j.concog.2008.05.004.

    Article  PubMed  Google Scholar 

  • Lafargue, G., & Sirigu, A. (2006). Nature et substratum neurologique du sens de l’effort [The nature of the sense of effort and its neural substrate]. Revue Neurologique, 162(6–7), 703–712.

    Article  PubMed  Google Scholar 

  • Lawrie, S. M., MacHale, S. M., Power, M. J., & Goodwin, G. M. (1997). Is the chronic fatigue syndrome best understood as a primary disturbance of the sense of effort? Psychological Medicine, 27(5), 995–999. doi:10.1017/S0033291797005370.

    Article  PubMed  Google Scholar 

  • Marcora, S. M. (2008). Do we really need a central governor to explain brain regulation of exercise performance? European Journal of Applied Physiology, 104(5), 929–931. doi:10.1007/s00421-008-0818-3.

    Article  PubMed  Google Scholar 

  • Marcora, S. M. (2009). Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart, and lungs. Journal of Applied Physiology, 106(6), 2060–2062. doi:10.1152/japplphysiol.90378.2008.

    Article  PubMed  Google Scholar 

  • Marcora, S. M. (2010a). Counterpoint: Afferent feedback from fatigued locomotor muscles is not an important determinant of endurance exercise performance. Journal of Applied Physiology, 108(2), 454–456. doi:10.1152/japplphysiol.00976.2009a.

    Article  Google Scholar 

  • Marcora, S. M. (2010b). Effort. Perception of. In E. B. Goldstein (Ed.), Encyclopedia of perception (pp. 380–383). Thousand Oaks: Sage.

    Google Scholar 

  • Marcora, S. M., & Staiano, W. (2010). The limit to exercise tolerance in humans: Mind over muscle? European Journal of Applied Physiology, 109(4), 763–770. doi:10.1007/s00421-010-1418-6.

    Article  PubMed  Google Scholar 

  • Marcora, S. M., Bosio, A., & de Morree, H. M. (2008). Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 294(3), R874–R883. doi:10.1152/ajpregu.00678.2007.

    Article  PubMed  Google Scholar 

  • Marcora, S. M., Staiano, W., & Manning, V. (2009). Mental fatigue impairs physical performance in humans. Journal of Applied Physiology, 106(3), 857–864. doi:10.1152/japplphysiol.91324.2008.

    Article  PubMed  Google Scholar 

  • McCloskey, D. I. (1981). Corollary discharges: Motor commands and perception. In V. B. Brooks (Ed.), Handbook of physiology, the nervous system II: Motor control (pp. 1415–1447). Bethesda: American Physiological Society.

    Google Scholar 

  • McCloskey, D. I., Ebeling, P., & Goodwin, G. M. (1974). Estimation of weights and tensions and apparent involvement of a “sense of effort”. Experimental Neurology, 42(1), 220–232. doi:10.1016/0014-4886(74)90019-3.

    Article  PubMed  Google Scholar 

  • McCloskey, D. I., Gandevia, S., Potter, E. K., & Colebatch, J. G. (1983). Muscle sense and effort: Motor commands and judgments about muscular contractions. Advances in Neurology, 39, 151–167.

    PubMed  Google Scholar 

  • Milliken, G. W., Stokic, D. S., & Tarkka, I. M. (1999). Sources of movement-related cortical potentials derived from foot, finger, and mouth movements. Journal of Clinical Neurophysiology, 16(4), 361–372.

    Article  PubMed  Google Scholar 

  • Mitchell, J. H., Reeves D. R., Jr., Rogers, H. B., & Secher, N. H. (1989). Epidural anaesthesia and cardiovascular responses to static exercise in man. The Journal of Physiology, 417(1), 13–24.

    PubMed  PubMed Central  Google Scholar 

  • Morgan, W. P. (1994). Psychological components of effort sense. Medicine and Science in Sports and Exercise, 26(9), 1071–1077.

    Article  PubMed  Google Scholar 

  • Myers, J., Atwood, J. E., Sullivan, M., Forbes, S., Friis, R., Pewen, W., & Froelicher, V. (1987). Perceived exertion and gas exchange after calcium and beta-blockade in atrial fibrillation. Journal of Applied Physiology, 63(1), 97–104.

    PubMed  Google Scholar 

  • Nielsen, J. S., Madsen, K., Jorgensen, L. V., & Sahlin, K. (2005). Effects of lengthening contraction on calcium kinetics and skeletal muscle contractility in humans. Acta Physiologica Scandinavica, 184(3), 203–214. doi:10.1111/j.1365-201X.2005.01449.x.

    Article  PubMed  Google Scholar 

  • Noble, B. J., & Robertson, R. J. (1996). Perceived exertion. Champaign: Human Kinetics.

    Google Scholar 

  • O’Donnell, D. E., Banzett, R. B., Carrieri-Kohlman, V., Casaburi, R., Davenport, P. W., Gandevia, S. C., et al. (2007). Pathophysiology of dyspnea in chronic obstructive pulmonary disease: A roundtable. Proceedings of the American Thoracic Society, 4(2), 145–168. doi:10.1513/pats.200611-159CC.

    Article  PubMed  Google Scholar 

  • Pandolf, K. B. (1983). Advances in the study and application of perceived exertion. Exercise and Sport Sciences Reviews, 11(1), 118–158.

    PubMed  Google Scholar 

  • Poulet, J. F., & Hedwig, B. (2007). New insights into corollary discharges mediated by identified neural pathways. Trends in Neurosciences, 30(1), 14–21. doi:10.1016/j.tins.2006.11.005.

    Article  PubMed  Google Scholar 

  • Preston, J., & Wegner, D. M. (2009). Elbow grease: When action feels like work. In E. Morsella, J. A. Bargh, & P. M. Gollwitzer (Eds.), Oxford handbook of human action (pp. 569–586). Oxford: Oxford University Press.

    Google Scholar 

  • Priori, A., Hallett, M., & Rothwell, J. C. (2009). Repetitive transcranial magnetic stimulation or transcranial direct current stimulation? Brain Stimulation, 2(4), 241–245. doi:10.1016/j.brs.2009.02.004.

    Article  PubMed  Google Scholar 

  • Rektor, I., Louvel, J., & Lamarche, M. (1998). Intracerebral recording of potentials accompanying simple limb movements: A SEEG study in epileptic patients. Electroencephalography and Clinical Neurophysiology, 107(4), 277–286. doi:10.1016/S0013-4694(98)00073-X.

    Article  PubMed  Google Scholar 

  • Robertson, R. J. (1982). Central signals of perceived exertion during dynamic exercise. Medicine and Science in Sports and Exercise, 14(5), 390–396.

    Article  PubMed  Google Scholar 

  • Robertson, R. J., & Noble, B. J. (1997). Perception of physical exertion: Methods, mediators, and applications. Exercise and Sport Sciences Reviews, 25(1), 407–452.

    PubMed  Google Scholar 

  • Ross, H. E. (1995). Weber then and now. Perception, 24(6), 599–602.

    PubMed  Google Scholar 

  • Rossi, S., Pasqualetti, P., Rossini, P. M., Feige, B., Ulivelli, M., Glocker, F. X., et al. (2000). Effects of repetitive transcranial magnetic stimulation on movement-related cortical activity in humans. Cerebral Cortex, 10(8), 802–808. doi:10.1093/cercor/10.8.802.

    Article  PubMed  Google Scholar 

  • Ryan, J. L., Carroll, J. K., Ryan, E. P., Mustian, K. M., Fiscella, K., & Morrow, G. R. (2007). Mechanisms of cancer-related fatigue. The Oncologist, 12(Suppl 1), 22–34.

    Article  PubMed  Google Scholar 

  • Shibasaki, H., & Hallett, M. (2006). What is the Bereitschaftspotential? Clinical Neurophysiology, 117(11), 2341–2356. doi:10.1016/j.clinph.2006.04.025.

    Article  PubMed  Google Scholar 

  • Siemionow, V., Yue, G. H., Ranganathan, V. K., Liu, J. Z., & Sahgal, V. (2000). Relationship between motor activity-related cortical potential and voluntary muscle activation. Experimental Brain Research, 133(3), 303–311. doi:10.1007/s002210000382.

    Article  PubMed  Google Scholar 

  • Siemionow, V., Fang, Y., Calabrese, L., Sahgal, V., & Yue, G. H. (2004). Altered central nervous system signal during motor performance in chronic fatigue syndrome. Clinical Neurophysiology, 115(10), 2372–2381. doi:10.1016/j.clinph.2004.05.012.

    Article  PubMed  Google Scholar 

  • Skurvydas, A., Jascaninas, J., & Zachovajevas, P. (2000). Changes in height of jump, maximal voluntary contraction force and low-frequency fatigue after 100 intermittent or continuous jumps with maximal intensity. Acta Physiologica Scandinavica, 169(1), 55–62. doi:10.1046/j.1365-201x.2000.00692.x.

    Article  PubMed  Google Scholar 

  • Slobounov, S., Hallett, M., & Newell, K. M. (2004). Perceived effort in force production as reflected in motor-related cortical potentials. Clinical Neurophysiology, 115(10), 2391–2402. doi:10.1016/j.clinph.2004.05.021.

    Article  PubMed  Google Scholar 

  • Smirmaul, B. P. (2012). Sense of effort and other unpleasant sensations during exercise: Clarifying concepts and mechanisms. British Journal of Sports Medicine, 46(5), 308–311. doi:10.1136/bjsm.2010.071407.

    Article  Google Scholar 

  • Smith, J. L., Martin, P. G., Gandevia, S. C., & Taylor, J. L. (2007). Sustained contraction at very low forces produces prominent supraspinal fatigue in human elbow flexor muscles. Journal of Applied Physiology, 103(2), 560–568. doi:10.1152/japplphysiol.00220.2007.

    Article  PubMed  Google Scholar 

  • Smith, S. A., Querry, R. G., Fadel, P. J., Gallagher, K. M., Stromstad, M., Ide, K., et al. (2003). Partial blockade of skeletal muscle somatosensory afferents attenuates baroreflex resetting during exercise in humans. The Journal of Physiology, 551(3), 1013–1021. doi:10.1111/j.1469-7793.2003.01013.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Søgaard, K., Gandevia, S. C., Todd, G., Petersen, N. T., & Taylor, J. L. (2006). The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. The Journal of Physiology, 573(2), 511–523. doi:10.1113/jphysiol.2005.103598.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperry, R. W. (1950). Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology, 43(6), 482–489. doi:10.1037/h0055479.

    Article  PubMed  Google Scholar 

  • Tarkka, I. M., & Hallett, M. (1991). The cortical potential related to sensory feedback from voluntary movements shows somatotopic organization of the supplementary motor area. Brain Topography, 3(3), 359–363. doi:10.1007/BF01129638.

    Article  PubMed  Google Scholar 

  • Trost, S. G., Owen, N., Bauman, A. E., Sallis, J. F., & Brown, W. (2002). Correlates of adults’ participation in physical activity: Review and update. Medicine and Science in Sports and Exercise, 34(12), 1996–2001.

    Article  PubMed  Google Scholar 

  • Wallman, K. E., & Sacco, P. (2007). Sense of effort during a fatiguing exercise protocol in chronic fatigue syndrome. Research in Sports Medicine, 15(1), 47–59. doi:10.1080/15438620601184331.

    Article  PubMed  Google Scholar 

  • Williamson, J. W., McColl, R., Mathews, D., Mitchell, J. H., Raven, P. B., & Morgan, W. P. (2001). Hypnotic manipulation of effort sense during dynamic exercise: Cardiovascular responses and brain activation. Journal of Applied Physiology, 90(4), 1392–1399.

    PubMed  Google Scholar 

  • Williamson, J. W., McColl, R., Mathews, D., Mitchell, J. H., Raven, P. B., & Morgan, W. P. (2002). Brain activation by central command during actual and imagined handgrip under hypnosis. Journal of Applied Physiology, 92(3), 1317–1324. doi:10.1152/japplphysiol.00939.2001.

    Article  PubMed  Google Scholar 

  • Wright, R. A. (1996). Brehm’s theory of motivation as a model of effort and cardiovascular response. In P. M. Gollwitzer & J. A. Bargh (Eds.), The psychology of action: Linking cognition and motivation to behavior (pp. 424–453). New York: Guilford.

    Google Scholar 

  • Wright, R. A. (2008). Refining the prediction of effort: Brehm’s distinction between potential motivation and motivation intensity. Social and Personality Psychology Compass, 2(2), 682–701. doi:10.1111/j.1751-9004.2008.00093.x.

    Article  Google Scholar 

  • Zhao, W., Martin, A. D., & Davenport, P. W. (2003). Magnitude estimation of inspiratory resistive loads by double-lung transplant recipients. Journal of Applied Physiology, 94(2), 576–582. doi:10.1152/japplphysiol.00564.2002.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helma M. de Morree PhD .

Editor information

Editors and Affiliations

Conclusion

Conclusion

Despite the long history of research on the sense of effort and the widespread application of RPE in exercise and sport settings, we have only recently begun to understand the psychobiology of perception of effort , based on neurophysiological evidence from EEG and neuroimaging studies . Further research in this area should focus on possible targets for interventions aimed at reducing perception of effort. These might benefit endurance athletes, patients with CFS, and other patient populations suffering from fatigue (such as cancer patients). Moreover, interventions that reduce perception of effort might affect self-regulation of physical activity behavior and could lead to increased physical activity and improved health in sedentary individuals.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Morree, H., Marcora, S. (2015). Psychobiology of Perceived Effort During Physical Tasks. In: Gendolla, G., Tops, M., Koole, S. (eds) Handbook of Biobehavioral Approaches to Self-Regulation. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1236-0_17

Download citation

Publish with us

Policies and ethics