Skip to main content

Electrochemical Sensors: Practical Approaches

  • Chapter
  • First Online:
Book cover Environmental Analysis by Electrochemical Sensors and Biosensors

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The design and manufacturing of sensors is an important issue for both fields, sensors research and application. For commercialization sensors need to be of constant, reproducible quality and characteristics which are of particular interest for mass-produced one-shot sensors. Apart from these requirements a sufficiently long shelf-lifetime is necessary in order to guarantee the logistic supply with the devices. Sensors research starts usually with laboratory-made or commercially available simple electrodes which are tailored and modified according to the needs and intentions. An important aspect is the miniaturization of sensing devices, which can be achieved by either a diminishing of the dimension of macrosensors or by new concepts of placing micro- and nanosized systems directly on semiconductors and integrating them in the electronic circuits on chips, such as SoC (system on a chip, lab on a chip) and μTAS (micro total analytical system) approaches. In such cases, combination with microsystems and micromachines, also known as MEMS or MOEMS (micro-electro-mechanical systems, micro-optoelectro-mechanical systems), allows the realization of mechanical tasks in more complex analytical approaches, such as pumping, and valve-splitting, in a single microsized chip. Thus, also theoretical considerations concerning micro- and ultramicro-electrodes gain increasing importance. In the chapter here a brief overview is given on the basic transducers and on preparation techniques to create electrochemical sensors. Due to the huge amount of literature in this field, only characteristic examples and review articles are cited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang J (2002) On-chip enzymatic assays. Electrophoresis 23(5):713–718

    CAS  Google Scholar 

  2. Korvink JG, Paul O (2005) MEMS – a practical guide to design, analysis and applications. William Andrew, Burlington, MA

    Google Scholar 

  3. Geschke O, Klank H, Tellemann P (2008) Microsystem engineering of lab-on-a-chip devices, 2nd edn. Wiley-VCH, New York, NY

    Google Scholar 

  4. Bond AM (1994) Past, present and future contributions of microelectrodes to analytical studies employing voltammetric detection. Analyst 119(11):R1–R21

    CAS  Google Scholar 

  5. Aoki K (1993) Theory of ultramicroelectrodes. Electroanalysis 5(8):627–639

    CAS  Google Scholar 

  6. Penar J (1995) Application of the rotating disk and rotating ring-disk electrodes for studies of the kinetics and of mechanism of electrode reactions. Theoretical basis. Annales Universitatis Mariae Curie Sklodowska AA Chemia 46–47:119–172, Volume Date 1991–1992

    Google Scholar 

  7. Deslouis C, Tribollet B (1992) Flow modulation techniques in electrochemistry. Adv Electrochem Sci Eng 2:205–264

    CAS  Google Scholar 

  8. Albery WJ, Hitchman ML (1971) Ring-disk electrodes, 1st edn. Clarendon, Oxford, Oxford Science Research Papers

    Google Scholar 

  9. Adams RN (1958) Carbon paste electrodes. Anal Chem 30:1576

    CAS  Google Scholar 

  10. Adams RN (1963) Carbon paste electrodes. A review. Rev Polarogr 11:71–78

    CAS  Google Scholar 

  11. Svancara I, Kalcher K, Walcarius A, Vytras K (2012) Electroanalysis with carbon paste electrodes. CRC Press, Francis & Taylor, Boca Raton, FL, 666 pp

    Google Scholar 

  12. Kalcher K (1990) Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis 2:419–433

    CAS  Google Scholar 

  13. Kalcher K, Wang J, Kauffmann J-M, Svancara I, Vytras K, Neuhold C, Zhongping Y (1995) Sensors based on carbon paste in electrochemical analysis: a review with particular emphasis on the period 1990-1993. Electroanalysis 7:5–22

    CAS  Google Scholar 

  14. Gordon L (1995) Carbon paste electrodes modified with enzymes, tissues and cells. Electroanalysis 7:23–45

    Google Scholar 

  15. Kalcher K, Svancara I, Metelka R, Vytras K, Walcarius A (2006) Heterogeneous carbon electrochemical sensors. In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of sensors, vol 4. American Scientific Publishers, Stevenson Ranch, CA, pp 283–430

    Google Scholar 

  16. Svancara I, Vytras K, Kalcher K, Walcarius A, Wang J (2009) Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis 21:7–28

    CAS  Google Scholar 

  17. Merkoci A, Alegret S (2007) G5raphite-epoxy electrodes for stripping analysis. Compr Anal Chem 49:143–161

    CAS  Google Scholar 

  18. Diewald W, Kalcher K, Neuhold C, Svancara I, Cai X (1994) Voltammetric behaviour of thallium(III) at a solid heterogeneous carbon electrode using ion pair formation. Analyst 119:299–304

    CAS  Google Scholar 

  19. Compagnone D, Schweicher P, Kauffmann J-M, Guilbault GG (1998) Sub-micromolar detection of hydrogen peroxide at a peroxidise/tetramethylbenzidine solid carbon paste electrode. Anal Lett 31(7):1107–1120

    CAS  Google Scholar 

  20. Heyrovsky J (1922) Elektrolysa rtutovou kapkovou kathodou. Chem List 16:256–264

    Google Scholar 

  21. Josypcuk B, Fojta M, Yosypchuk O (2013) Thiolate monolayers formed on different amalgam electrodes. Part II: properties and application. J Electroanal Chem 694:84–93

    CAS  Google Scholar 

  22. Piech R (2013) Sensitive voltammetric determination of titanium(IV) in catalytic adsorptive mandelic acid-chlorate(V) system on renewable silver amalgam film electrode. Electroanalysis 25(3):716–722

    CAS  Google Scholar 

  23. Guzsvany V, Petrovic J, Krstic J, Papp Z, Putek M, Bjelica L, Bobrowski A, Abramovic B (2013) Renewable silver-amalgam film electrode for voltammetric monitoring of solar photodegradation of imidacloprid in the presence of Fe/TiO2 and TiO2 catalysts. J Electroanal Chem 699:33–39

    CAS  Google Scholar 

  24. Brycht M, Vajdle O, Zbiljic J, Papp Z, Guzsvany V, Skrzypek S (2012) Renewable silver-amalgam film electrode for direct cathodic SWV determination of clothianidin, nitenpyram and thiacloprid neonicotinoid insecticides reducible in a fairly negative potential range. Int J Electrochem Sci 7(11):10652–10665

    CAS  Google Scholar 

  25. Guziejewsk D, Brycht M, Skrzypek S, Nosal-Wiercinska A, Ciesielski W (2012) Voltammetric determination of acibenzolar-s-methyl using a renewable silver amalgam film electrode. Electroanalysis 24(12):2303–2308

    Google Scholar 

  26. Putek M, Guzsvany V, Tasic B, Zarebski J, Bobrowski A (2012) Renewable silver-amalgam film electrode for rapid square-wave voltammetric determination of thiamethoxam insecticide in selected samples. Electroanalysis 24(12):2258–2266

    CAS  Google Scholar 

  27. Bas B, Bugajna A, Jakubowska M, Niewiara E (2012) Normal pulse voltammetric determination of subnanomolar concentrations of chromium(VI) with continuous wavelet transformation. Electroanalysis 24(11):2157–2164

    CAS  Google Scholar 

  28. Bas B, Jakubowska M, Gorski Ł (2011) Application of renewable silver amalgam annular band electrode to voltammetric determination of vitamins C, B1 and B2. Talanta 84(4):1032–1037

    CAS  Google Scholar 

  29. Piech R, Bas B (2011) Sensitive voltammetric determination of gallium in aluminum materials using renewable mercury film silver based electrode. Int J Environ Anal Chem 91(5):410–420

    CAS  Google Scholar 

  30. Bas B, Bas S (2010) Rapidly renewable silver amalgam annular band electrode for voltammetry and polarography. Electrochem Commun 12(6):816–819

    CAS  Google Scholar 

  31. Piech R, Bas B, Niewiara E, Kubiak WW (2008) Renewable copper and silver amalgam film electrodes of prolonged application for the determination of elemental sulfur using stripping voltammetry. Electroanalysis 20(7):809–815

    CAS  Google Scholar 

  32. Danhel A, Yosypchuk B, Vyskocil V, Zima J, Barek J (2011) A novel paste electrode based on a silver solid amalgam and an organic pasting liquid. J Electroanal Chem 656(1–2):218–222

    CAS  Google Scholar 

  33. Kemula W, Zawadowska J (1980) New model of the hanging mercury drop electrode and its application in aqueous and non-aqueous media. Fresenius’ Z Anal Chem 300:39–43

    CAS  Google Scholar 

  34. Montenegro MI, Queiros MA, Daschbach JL (1991) Microelectrodes: theory and applications, vol 197, NATO science series E: applied sciences. Springer Science + Business Media, Dordrecht, Softcover Reprint

    Google Scholar 

  35. Fleischmann M, Pons S, Rolison DR, Schmidt PP (1987) Ultramicroelectrodes. Datatech Systems Inc., Morganton, NC

    Google Scholar 

  36. Prudenziati M, Hormadaly J (2012) Technologies for printed films, vol 26, Woodhead publishing series in electronic and optical materials: printed films. Woodhead Publishing Limited, Cambridge, UK, pp 3–29

    Google Scholar 

  37. Honeychurch KC (2012) Screen-printed electrochemical sensors and biosensors for monitoring metal pollutants. Insci J 2(1):1–51

    CAS  Google Scholar 

  38. Gonzalez-Macia L, Morrin A, Smyth MR, Killard AJ (2010) Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst 135(5):845–867

    CAS  Google Scholar 

  39. Zen J-M, Kumar AS (2006) Screen-printed electrochemical sensor. In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of sensors, vol 9. American Scientific Publishers, Stevenson Ranch, CA, pp 33–52

    Google Scholar 

  40. Huang X-J, O’Mahony AM, Compton RG (2009) Microelectrode arrays for electrochemistry: approaches to fabrication. Small 5(7):776–788

    CAS  Google Scholar 

  41. Hart JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM (2007) Screen-printed electrochemical (bio)sensors in biomedical, environmental and industrial applications. Compr Anal Chem 49:497–557

    CAS  Google Scholar 

  42. Tudorache M, Bala C (2007) Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Anal Bioanal Chem 388:565–578

    CAS  Google Scholar 

  43. Galan-Vidal CA, Paez-Hernandez ME (2005) Screen-printing electrochemical sensors for environmental studies. In: Palomar M (ed) Applications of analytical chemistry in environmental research. Research Signpost, Trivandrum, pp 23–36

    Google Scholar 

  44. Hart JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM (2004) Recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses. Anal Lett 37(5):789–830

    CAS  Google Scholar 

  45. Honeychurch KC, Hart JP (2003) Screen-printed electrochemical sensors for monitoring metal pollutants. Trends Anal Chem 22(7):456–469

    CAS  Google Scholar 

  46. Pilloton R, Mela J, Marradini L (1999) Screen printed electrochemical biosensors on ceramic and polymeric substrates. Advances in science and technology: solid state chemical and biochemical sensors, vol. 26, pp. 501-507.

    Google Scholar 

  47. Bouchard RJ (1999) Thick film technology: an historical perspective, vol 100, Ceramic transactions: dielectric ceramic materials. Wiley, Rochester, NY, pp 429–442

    Google Scholar 

  48. Hart JP, Wring SA (1994) Screen-printed voltammetric and amperometric electrochemical sensors for decentralized testing. Electroanalysis 6(8):617–624

    CAS  Google Scholar 

  49. Loffredo F, De Girolamo Del Mauro A, Burrasca G, La Ferrara V, Quercia L, Massera E, Di Francia G, Della Sala D (2009) Ink-jet printing technique in polymer/carbon black sensing device fabrication. Sens Actuators B B143(1):421–429

    CAS  Google Scholar 

  50. Teichler A, Perelaer J, Schubert US (2013) Ink-jet printing of organic electronics - comparison of deposition techniques and state-of-the-art developments. J Mater Chem C Mater Opt Elect Dev 1(10):1910–1925

    CAS  Google Scholar 

  51. Lopez FV, Diez A, Odriozola A (2007) Inkjet printing of conductive and resistive coatings. Int Polym Process 22(1):27–32

    CAS  Google Scholar 

  52. Suzuki K, Smith BW (eds) (2007) Microlithography: science and technology, 2nd edn. Taylor & Francis, New York, NY

    Google Scholar 

  53. Naulleau P (2012) Optical lithography. In: Cabrini S, Kawata S (eds) Nanofabrication handbook. CRC Press Taylor & Francis, New York, NY, pp 127–139

    Google Scholar 

  54. Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    CAS  Google Scholar 

  55. Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105(4):1171–1196

    CAS  Google Scholar 

  56. Chou SY, Krauss PR, Renstrom PJ (1996) Imprint lithography with 25-nanometer resolution. Science 272:85–87

    CAS  Google Scholar 

  57. Sotomayor Torres CM, Zankovych S, Seekamp J, Kam AP, Clavijo Cedeno C, Hoffmann T, Ahopelto J, Reuther F, Pfeiffer K, Bleidiessel G (2003) Nanoimprint lithography: an alternative nanofabrication approach. Mater Sci Eng C 23(1–2):23–31

    Google Scholar 

  58. Lu Y, Huang JY, Wang C, Sun S, Lou J (2010) Cold welding of ultrathin gold nanowires. Nat Nanotechnol 5:213–224

    Google Scholar 

  59. Alois A, Rinaldi R (2012) Nanotechnology for diagnostic and sensing: soft and advanced imaging/sensing approaches to analyze biomolecules, vol 10, Springer series on chemical sensors and biosensors: optical nano- and microsystems for bioanalytics. Springer, New York, NY, pp 83–99

    Google Scholar 

  60. Martinez E, Samitier J (2011) Soft lithography and variants. In: Del Campo A, Arzt E (eds) Generating micro- and nanopatterns on polymeric materials. Wiley-VCH, Weinheim, pp 57–68

    Google Scholar 

  61. Duan X, Reinhoudt DN, Huskens J (2011) Soft lithography for patterning self-assembling systems. In: Samori P, Cacialli F (eds) Functional supramolecular architectures, vol 1. Wiley, New York, NY, pp 343–369

    Google Scholar 

  62. Wolfe DB, Qin D, Whitesides GM (2010) Rapid prototyping of microstructures by soft lithography for biotechnology, vol 583, Methods in molecular biology: microengineering in biotechnology. Humana Press, Totowa, NJ, pp 81–107

    Google Scholar 

  63. Mele E, Pisignano D (2009) Nanobiotechnology: soft lithography, vol 47, Progress in molecular and subcellular biology: biosilica in evolution, morphogenesis, and nanobiotechnology. Springer, Berlin, pp 341–358

    Google Scholar 

  64. Svancara I, Prior C, Hocevar SB, Wang J (2010) A decade with bismuth-based electrodes in electroanalysis. Electroanalysis 22:1405–1420

    CAS  Google Scholar 

  65. Pauliukaite R, Metelka R, Svancara I, Krolicka A, Bobrowski A, Norkus E, Kalcher K, Vytras K (2004) Screen-printed carbon electrodes bulk-modified with Bi2O3 or Sb2O3 for trace determination of some heavy metals. Sci Pap Univ Pardubice A10:47–58

    Google Scholar 

  66. Bobrowski A, Kalcher K, Kurowska K (2009) Microscopic and electrochemical characterization of lead film electrode applied in adsorptive stripping analysis. Electrochim Acta 54:7214–7221

    CAS  Google Scholar 

  67. Boyer A, Kalcher K, Pietsch R (1990) Voltammetric behavior of perborate on Prussian blue modified carbon paste electrodes. Electroanalysis 2:155–161

    CAS  Google Scholar 

  68. Schachl K, Alemu H, Kalcher K, Jezkova J, Svancara I, Vytras K (1997) Flow-injection determination of hydrogen peroxide using a carbon paste electrode modified with a manganese dioxide film. Anal Lett 30:2655–2673

    CAS  Google Scholar 

  69. Schab-Balcerzak E (ed) (2011) Electropolymerization. InTech Open, Rijeka, Croatia, Open access book

    Google Scholar 

  70. Li H-L, Zhang X-G (2012) Electropolymerization at metal surfaces. In: Somasundaran P (ed) Encyclopedia of surface and colloid science, 2nd edn. CRC Press, Taylor & Francis, Boca Raton, FL, pp 2385–2401

    Google Scholar 

  71. Harris PJF (2011) Carbon nanotube science: synthesis, properties and applications. Cambridge University Press, Cambridge

    Google Scholar 

  72. Vorotyntsev MA, Zinovyeva VA, Konev DV (2010) Mechanisms of electropolymerization and redox activity: fundamental aspects. In: Cosnier S, Karyakin A (eds) Electropolymerization. InTech Open, Rijeka, Croatia, pp 27–50

    Google Scholar 

  73. Nicolas M (2008) Fabrication of superhydrophobic surfaces by electropolymerization of thiophene and pyrrole derivatives. J Adhes Sci Technol 22(3–4):365–377

    CAS  Google Scholar 

  74. Advincula R, Xia C, Onishi K, Tarenekar P, Deng S, Baba A, Knoll W (2002) Conjugated polymer network ultrathin films by electropolymerization of precursor polymers: polymer design, characterization strategies, and devices. Polym Prepr 43(2):514–515

    CAS  Google Scholar 

  75. Sabouraud G, Sadki S, Brodie N (2000) The mechanisms of pyrrole electropolymerization. Chem Soc Rev 29(5):283–293

    CAS  Google Scholar 

  76. Imisides MD, John R, Riley PJ, Wallace GG (1991) The use of electropolymerization to produce new sensing surfaces: a review emphasizing electrodeposition of heteroaromatic compounds. Electroanalysis 3(9):879–889

    CAS  Google Scholar 

  77. Adamcova Z, Dempirova L (1989) Film-forming electropolymerization. Prog Org Coat 16(4):295–320

    CAS  Google Scholar 

  78. Jansson U, Lewin E (2013) Sputter deposition of transition-metal carbide films - a critical review from a chemical perspective. Thin Solid Films 536:1–24

    CAS  Google Scholar 

  79. Kelly PJ, Arnell RD (2000) Magnetron sputtering: a review of recent developments and applications. Vacuum 56:159–172

    CAS  Google Scholar 

  80. Vasudev MC, Anderson KD, Bunning TJ, Tsukruk VV, Naik RR (2013) Exploration of plasma-enhanced chemical vapor deposition as a method for thin-film fabrication with biological applications. ACS Appl Mater Interfaces 5(10):3983–3994

    CAS  Google Scholar 

  81. Jourdain V, Bichara C (2013) Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon 58:2–39

    CAS  Google Scholar 

  82. Nguyen JJ, Turano S, Ready WJ (2012) The synthesis of carbon nanotubes grown on metal substrates. Nanosci Nanotechnol Lett 4(12):1123–1131

    CAS  Google Scholar 

  83. Lubej M, Plazl I (2012) Theoretical descriptions of carbon nanotubes synthesis in a chemical vapor deposition reactor. Chem Biochem Eng Q 26(3):277–284

    CAS  Google Scholar 

  84. Ayre GN, Uchino T, Mazumder B, Hector AL, Smith DC, Ashburn P, de Groot CH, Hutchison JL (2010) Chemical vapour deposition of CNTs using structural nanoparticle catalysts. In: Marulanda JM (ed) Carbon nanotubes, 1st edn. InTech Open, Rijeka, Croatia, pp 19–38, online book

    Google Scholar 

  85. Robertson J, Zhong G, Esconjauregui S, Zhang C, Fouquet M, Hofmann S (2012) Chemical vapor deposition of carbon nanotube forests. Phys Stat Sol B Bas Sol State Phys 249(12):2315–2322

    CAS  Google Scholar 

  86. Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 46(10):2329–2339

    CAS  Google Scholar 

  87. Chen X, Chen G (2011) Fabrication and application of Ti/BDD for wastewater treatment. In: Brillas E, Martinez-Huitle CA (eds) Synthetic diamond films, 1st edn. Wiley, Weinheim, pp 353–371

    Google Scholar 

  88. Luong JHT, Male KB, Glennon JD (2009) Boron-doped diamond electrode: synthesis, characterization, functionalization and analytical applications. Analyst 134(10):1965–1979

    CAS  Google Scholar 

  89. Pinault M-A, Barjon J, Kociniewski T, Jomard F, Chevallier J (2007) The n-type doping of diamond: present status and pending questions. Phys B Condens Matter 401–402:51–56

    Google Scholar 

  90. Nebel CE, Rezek B, Shin D, Uetsuka H, Yang N (2007) Diamond for bio-sensor applications. J Phys D Appl Phys 40(20):6443–6466

    CAS  Google Scholar 

  91. Kraft A (2007) Doped diamond electrodes. New trends and developments. Jahrbuch Oberflaechentechnik 63:85–95

    CAS  Google Scholar 

  92. Goto T (2012) Chemical vapor deposition of structural ceramics and composites. In: Bansal NP, Boccaccini AR (eds) Ceramics and composites processing methods, 1st edn. Wiley, Hoboken, NJ, pp 271–312

    Google Scholar 

  93. Bekermann D, Barreca D, Gasparotto A, Maccato C (2012) Multi-component oxide nanosystems by chemical vapor deposition and related routes: challenges and perspectives. CrystEngComm 14(20):6347–6358

    CAS  Google Scholar 

  94. Jackson TJ, Palmer SB (1994) Oxide superconductor and magnetic metal thin film deposition by pulsed laser ablation: a review. J Phys D Appl Phys 27:1581

    CAS  Google Scholar 

  95. Izumi T (2007) Metal organic deposition of YBCO films; high Ic and long-length results. In: Paranthaman MP, Selvamanickam V (eds) Flux pinning and ac loss studies on YBCO coated conductors, 1st edn. Nova Publishers, Hauppauge, NY, pp 153–169

    Google Scholar 

  96. Miikkulainen V, Leskela M, Ritala M, Puurunen RL (2013) Crystallinity of inorganic films grown by atomic layer deposition: overview and general trends. J Appl Phys 113(2):021301/1–021301/101

    CAS  Google Scholar 

  97. Lee BH, Yoon B, Abdulagatov AI, Hall RA, George SM (2013) Growth and properties of hybrid organic-inorganic metalcone films using molecular layer deposition techniques. Adv Func Mater 23(5):532–546

    CAS  Google Scholar 

  98. Pinna N, Knez M (eds) (2011) Atomic layer deposition of nanostructured materials, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  99. Pulsipher A, Yousaf MN (2011) Self-assembled monolayers as dynamic model substrates for cell biology, vol 240, Advances in polymer science: bioactive surfaces. Springer, Berlin, pp 103–134

    Google Scholar 

  100. Koepsel JT, Murphy WL (2012) Patterned self-assembled monolayers: efficient, chemically defined tools for cell biology. ChemBioChem 13(12):1717–1724

    CAS  Google Scholar 

  101. Hudalla GA, Murphy WL (2011) Chemically well-defined self-assembled monolayers for cell culture: toward mimicking the natural ECM. Soft Matter 7(20):9561–9571

    CAS  Google Scholar 

  102. Prashar D (2012) Self assembled monolayers - a review. Int J ChemTech Res 4(1):258–265

    CAS  Google Scholar 

  103. Hagelberg F (2011) Self-assembled monolayers. In: Sattler KD (ed) Handbook of nanophysics, vol 5, 1st edn. CRC Press, Boca Raton, FL, pp 17/1–17/20

    Google Scholar 

  104. Jamison AC, Chinwangso P, Lee TR (2011) Self-assembled monolayers: the development of functional nanoscale films. In: Knoll W, Advincula RC (eds) Functional polymer films, vol 1, 1st edn. Wiley-VCH, Weinheim, pp 151–217

    Google Scholar 

  105. Mandler D, Kraus-Ophir S (2011) Self-assembled monolayers (SAMs) for electrochemical sensing. J Solid State Electrochem 15(7–8):1535–1558

    CAS  Google Scholar 

  106. Weddemann A, Ennen I, Regtmeier A, Albon C, Wolff A, Eckstaedt K, Mill N, Peter MK-H, Mattay J, Plattner C, Sewald N, Hütten A (2010) Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors. Beilstein J Nanotechnol 1:75–93

    CAS  Google Scholar 

  107. Samanta D, Sarkar A (2011) Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications. Chem Soc Rev 40(5):567–2592

    CAS  Google Scholar 

  108. Azzaroni O, Salvarezza RC (2012) Chemisorbed self-assembled monolayers. In: Gale PA, Steed JW (eds) Supramolecular chemistry: from molecules to nanomaterials, vol 7, 1st edn. Wiley, London, pp 3445–3461

    Google Scholar 

  109. Pensa E, Cortes E, Corthey G, Carro P, Vericat C, Fonticelli MH, Benitez G, Rubert AAA, Salvarezza RC (2012) The chemistry of the sulfur-gold interface: in search of a unified model. Acc Chem Res 45(8):1183–1192

    CAS  Google Scholar 

  110. Pieters G, Prins LJ (2012) Catalytic self-assembled monolayers on gold nanoparticles. New J Chem 36(10):1931–1939

    CAS  Google Scholar 

  111. Jadhav SA (2011) Self-assembled monolayers (SAMs) of carboxylic acids: an overview. Cent Eur J Chem 9(3):369–378

    CAS  Google Scholar 

  112. Gooding JJ, Ciampi S (2011) The molecular level modification of surfaces: from self-assembled monolayers to complex molecular assemblies. Chem Soc Rev 40(5):2704–2718

    CAS  Google Scholar 

  113. Srisombat L, Jamison AC, Lee TR (2011) Stability: a key issue for self-assembled monolayers on gold as thin-film coatings and nanoparticle protectants. Colloids Surf A Physicochem Eng Asp 390(1–3):1–19

    CAS  Google Scholar 

  114. Chinwangso P, Jamison AC, Lee TR (2011) Multidentate adsorbates for self-assembled monolayer films. Acc Chem Res 44(7):511–519

    CAS  Google Scholar 

  115. Ammam M (2013) Polyoxometalates: formation, structures, principal properties, main deposition methods and application in sensing. J Mater Chem A Mater Energ Sust 1(21):6291–6312

    CAS  Google Scholar 

  116. Yakhmi JV, Saxena V, Aswal DK (2012) Conducting polymer sensors, actuators and field-effect transistors. In: Banerjee S, Tyagi AK (eds) Functional materials: preparation, processing and applications, 1st edn. Elsevier, Amsterdam, pp 61–110

    Google Scholar 

  117. Giancane G, Valli L (2012) State of art in porphyrin Langmuir-Blodgett films as chemical sensors. Adv Colloid Interface Sci 171–172:17–35

    Google Scholar 

  118. Singh A, Debnath AK, Aswal DK, Joshi A, Samanta S, Saxena V, Gupta SK, Yakhmi JV (2010) Organic semiconductor films for chemiresistor sensors. In: Aswal DK, Yakhmi JV (eds) Molecular and organic electronics devices, 1st edn. Nova Science Pub Inc., Hauppauge, NY, pp 367–402

    Google Scholar 

  119. Pavinatto FJ, Caseli L, Oliveira ON Jr (2010) Chitosan in nanostructured thin films. Biomacromolecules 11(8):1897–1908

    CAS  Google Scholar 

  120. Ram MK, Yavuz O, Aldissi M (2010) Conducting polymer nanocomposite membrane as chemical sensors. In: Ram MK, Bhethanabotla VR (eds) Sensors for chemical and biological applications, 1st edn. CRC Press, Boca Raton, FL, pp 43–72

    Google Scholar 

  121. Pastorino L, Erokhina S (2011) Protein thin films: sensing elements for sensors. In: Lim T-K (ed) Nanosensors, 1st edn. CRC Press, Boca Raton, FL, pp 97–168

    Google Scholar 

  122. Seshan K (2012) Handbook of thin film deposition, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  123. Sato K, Takahashi S, Anzai J (2012) Layer-by-layer thin films and microcapsules for biosensors and controlled release. Anal Sci 28(10):929–938

    CAS  Google Scholar 

  124. Oliveira ON Jr, Aoki PHB, Pavinatto FJ, Constantino CJL (2012) Controlled architectures in LbL films for sensing and biosensing. In: Decher G, Schlenoff JB (eds) Multilayer thin films, vol 2, 2nd edn. Wiley, Weinheim, pp 951–983

    Google Scholar 

  125. Ariga K, Ji Q, Hill JP (2012) Novel multilayer thin films: hierarchic layer-by-layer (Hi-LbL) assemblies. In: Decher G, Schlenoff JB (eds) Multilayer thin films, vol 1, 2nd edn. Wiley, Weinheim, pp 69–81

    Google Scholar 

  126. Du N, Zhang H, Yang D (2012) One-dimensional hybrid nanostructures: synthesis via layer-by-layer assembly and applications. Nanoscale 4(18):5517–5526

    CAS  Google Scholar 

  127. Ariga K, Ji Q, McShane MJ, Lvov YM, Vinu A, Hill JP (2012) Inorganic nanoarchitectonics for biological applications. Chem Mater 24(5):728–737

    CAS  Google Scholar 

  128. Takahashi S, Sato K, Anzai J (2012) Layer-by-layer construction of protein architectures through avidin-biotin and lectin-sugar interactions for biosensor applications. Anal Bioanal Chem 402(5):1749–1758

    CAS  Google Scholar 

  129. Zhou M, Dong S (2011) Bioelectrochemical interface engineering: toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors. Acc Chem Res 44(11):1232–1243

    CAS  Google Scholar 

  130. de Villiers MM, Otto DP, Strydom SJ, Lvov YM (2011) Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv Drug Deliv Rev 63(9):701–715

    Google Scholar 

  131. Evtugyn GA, Hianik T (2011) Layer-by-layer polyelectrolyte assembles involving DNA as a platform for DNA sensors. Curr Anal Chem 7(1):8–34

    CAS  Google Scholar 

  132. Kotov N (2011) Tunable nanocomposites: combining properties for ultrastrong materials and environmental sensors to neural implants. PMSE Prepr 104:178

    Google Scholar 

  133. Aurobind SV, Amirthalingam KP, Gomathi H (2006) Sol-gel based surface modification of electrodes for electro analysis. Adv Colloid Interface Sci 121(1–3):1–7

    CAS  Google Scholar 

  134. Livage J (2004) Basic principles of sol-gel chemistry. In: Aegerter MA, Mennig M (eds) Sol-gel technologies for glass producers and users. Kluwer Academic Publishers, Boston, MA, pp 3–14

    Google Scholar 

  135. Mentruit MP, Palomino GT, Arean CO (2001) The alkoxide sol-gel route to high-surface-area metal oxides. Trend Inorg Chem 7:1–14

    CAS  Google Scholar 

  136. Francis LF (1999) Sol-gel methods for oxide coatings, vol 13, Materials engineering: intermetallic and ceramic coatings. CRC Press, Boca Raton, FL, pp 31–82

    Google Scholar 

  137. Livage J (1998) Smart thin films via the sol-gel route. In: Prasad PN (ed) Science and technology of polymers and advanced materials: emerging technologies and business opportunities. Plenum Press, New York, NY, pp 649–662, Proceedings of the International Conference on Frontiers of Polymers and Advanced Materials, 4th, Cairo

    Google Scholar 

  138. Han Y-L (2013) Aerogel materials for aerospace. In: Zhang S, Zhao D (eds) Aerospace materials handbook, 1st edn. CRC Press, Boca Raton, FL, pp 699–743

    Google Scholar 

  139. Riffat SB, Qiu G (2013) A review of state-of-the-art aerogel applications in buildings. Int J Low Carbon Tech 8(1):1–6

    CAS  Google Scholar 

  140. Tian HY, Buckley CE, Paskevicius M, Sheppard DA (2013) Hydrogen storage in carbon aerogels. In: Terranova ML, Orlanducci S, Rossi M (eds) Carbon nanomaterials for gas adsorption, 1st edn. Pan Stanford Publishing, Singapore, pp 131–160

    Google Scholar 

  141. Aegerter MA, Leventis N, Koebel MM (eds) (2011) Aerogels handbook, 1st edn. Springer, New York, NY

    Google Scholar 

  142. Gerlach G, Arndt KF (eds) (2012) Hydrogel sensors and actuators: engineering and technology, vol 6, 1st edn, Springer series on chemical sensors and biosensors. Springer, New York, NY

    Google Scholar 

  143. Luh XJ, Scherman OA (eds) (2013) Polymeric and self assembled hydrogels: from fundamentals understanding to applications, 1st edn. RSC Publishing, Cambridge

    Google Scholar 

  144. Stein DB (ed) (2010) Handbook of hydrogels: properties, preparation & applications, 1st edn. Nova Science Pub, Inc., Hauppauge, NY

    Google Scholar 

  145. Hapiot F, Menuel S, Monflier E (2013) Thermoresponsive hydrogels in catalysis. ACS Catal 3(5):1006–1010

    CAS  Google Scholar 

  146. Passauer L (2012) Highly swellable lignin hydrogels: novel materials with interesting properties, vol 1107, ACS symposium series: functional materials from renewable sources. ACS, Washington, DC, pp 211–228

    Google Scholar 

  147. Fujiwara T (2012) Thermo-responsive gels: biodegradable hydrogels from enantiomeric copolymers of poly(lactide) and poly(ethylene glycol), vol 1114, ACS symposium series: degradable polymers and materials. ACS, Washington, DC, pp 287–311

    Google Scholar 

  148. Lyon LA, Serpe MJ (eds) (2012) Hydrogel micro and nanoparticles, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  149. Zhang H, Zhang F, Wu J (2013) Physically crosslinked hydrogels from polysaccharides prepared by freeze-thaw technique. React Funct Polym 73(7):923–928

    CAS  Google Scholar 

  150. Buenger D, Topuz F, Groll J (2012) Hydrogels in sensing applications. Prog Polym Sci 37(12):1678–1719

    CAS  Google Scholar 

  151. Roy N, Saha N, Jelinkova L, Saha P, Saha T (2012) Smart hydrogels. Plasty a Kaucuk 49(3–4):73–80

    CAS  Google Scholar 

  152. Appel EA, del Barrio J, Loh X, Jun S, Oren A (2012) Supramolecular polymeric hydrogels. Chem Soc Rev 41(18):6195–6214

    CAS  Google Scholar 

  153. Uliniuc A, Popa M, Hamaide T, Dobromir M (2012) New approaches in hydrogel synthesis-click chemistry: a review. Cell Chem Technol 46(1–2):1–11

    CAS  Google Scholar 

  154. Hu J, Zhang G, Liu S (2012) Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels. Chem Soc Rev 41(18):5933–5949

    CAS  Google Scholar 

  155. Egawa Y, Seki T, Takahashi S, Anzai J (2011) Electrochemical and optical sugar sensors based on phenylboronic acid and its derivatives. Mater Sci Eng C Mater Biol Appl 31(7):1257–1264

    CAS  Google Scholar 

  156. Liu J (2011) Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Matter 7(15):6757–6767

    CAS  Google Scholar 

  157. Khaleque T, Abu-Salih S, Saunders JR, Moussa W (2011) Experimental methods of actuation, characterization and prototyping of hydrogels for BioMEMS/NEMS applications. J Nanosci Nanotechnol 11(3):2470–2479

    CAS  Google Scholar 

  158. Yang Q, Adrus N, Tomicki F, Ulbricht M (2011) Composites of functional polymeric hydrogels and porous membranes. J Mater Chem 21(9):2783–2811

    CAS  Google Scholar 

  159. Minko S (2010) Stimuli-responsive thin hydrogel films and membranes. Smart polymer systems 2010, 1st International Conference, Atlanta, GA, May 5–6, 2010

    Google Scholar 

  160. Ikeda M, Ochi R, Hamachi I (2010) Supramolecular hydrogel-based protein and chemosensor array. Lab Chip 10(24):3325–3334

    CAS  Google Scholar 

  161. Lin D, Che J (2010) Hydrogel-modified bio-electrodes. Huaxue Jinzhan 22(6):1195–1202

    CAS  Google Scholar 

  162. Ju XJ, Chu LY (2009) Temperature-sensitive hydrogels with molecule-recognition properties. Handbook of Hydrogels. Nova Science Pub, Inc., Hauppauge, NY, pp 649–662

    Google Scholar 

  163. Richter A (2009) Hydrogels for actuators, vol 6, Springer series on chemical sensors and biosensors: hydrogel sensors and actuators. Springer, New York, NY, pp 221–248

    Google Scholar 

  164. Urban GA, Weiss T (2009) Hydrogels for biosensors, vol 6, Springer series on chemical sensors and biosensors: hydrogel sensors and actuators. Springer, New York, NY, pp 197–220

    Google Scholar 

  165. Bianco P (2002) Protein modified- and membrane electrodes: strategies for the development of biomolecular sensors. Rev Mol Biotechnol 82(4):393–409

    CAS  Google Scholar 

  166. Lobo-Castanon MJ, Alvarez-Crespo SL, Alvarez-Gonzalez MI, Saidman SB, Miranda-Ordieres AJ, Tunon-Blanco P (1998) Biosensors based on carbon paste electrodes using immobilized dehydrogenase enzymes. an overview and trends. Sci Pap Univ Pardubice Ser A Fac Chem Tech 3:17–29

    Google Scholar 

  167. Zhiwei Z, Helong J (2010). Enzyme-based electrochemical biosensors, biosensors. In: Serra PA (ed.), ISBN: 978-953-7619-99-2, InTech, available from: http://www.intechopen.com/books/biosensors/enzyme-based-electrochemical-biosensors

  168. Chen LY, Gu BX, Zhu GP, Wu YF, Liu SQ, Xu CX (2008) Electron transfer properties and electrocatalytic behavior of tyrosinase on ZnO nanorod. J Electroanal Chem 617:7–13

    CAS  Google Scholar 

  169. Lu XB, Zhang HJ, Ni YW, Zhang Q, Chen JP (2008) Porous nanosheet-based ZnO microspheres for the construction of direct electrochemical biosensors. Biosens Bioelectron 24:93–98

    CAS  Google Scholar 

  170. Umar A, Rahman MM, Al-Hajry A, Hahn YB (2009) Highly-sensitive cholesterol biosensor based on well-crystallized flower-shaped ZnO nanostructures. Talanta 78:284–289

    CAS  Google Scholar 

  171. Umar A, Rahman MM, Kim SH, Hahn YB (2008) ZnO nanonails: synthesis and their application as glucose biosensor. J Nanosci Nanotechnol 8:3216–3221

    CAS  Google Scholar 

  172. Umar A, Rahman MM, Vaseem M, Hahn YB (2009) Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem Commun 11:118–121

    CAS  Google Scholar 

  173. Wang JX, Sun XW, Wei A, Lei Y, Cai XP, Li CM, Dong ZL (2006) Zinc oxide nanocomb biosensor for glucose detection. Appl Phys Lett 88:233106

    Google Scholar 

  174. Wang YT, Yu L, Zhu ZQ, Zhang J, Zhu JZ (2009) Novel uric acid sensor based on enzyme electrode modified by ZnO nanoparticles and multiwall carbon nanotubes. Anal Lett 42:775–789

    CAS  Google Scholar 

  175. Weber J, Jeedigunta S, Kumar A (2008) Fabrication and characterization of ZnO nanowire arrays with an investigation into electrochemical sensing capabilities. J Nanomater 2008:638523

    Google Scholar 

  176. Wei A, Sun XW, Wang JX, Lei Y, Cai XP, Li CM, Dong ZL, Huang W (2006) Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl Phys Lett 89:123902

    Google Scholar 

  177. Zhang FF, Wang XL, Ai SY, Sun ZD, Wan Q, Zhu ZQ, Xian YZ, Jin LT, Yamamoto K (2004) Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal Chim Acta 519:155–160

    CAS  Google Scholar 

  178. Caruso F, Niikura K, Furlong DN, Okahata Y (1997) Assembly of alternating polyelectrolyte and protein multilayer films for immune sensing. Langmuir 13:3427–3433

    CAS  Google Scholar 

  179. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831–835

    Google Scholar 

  180. Du D, Chen SZ, Cai J, Zhang AD (2008) Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface. Talanta 74:766–772

    CAS  Google Scholar 

  181. He JA, Samuelson L, Li L, Kumar J, Tripathi SK (1998) Oriented bacteriorhodopsin/polycation multilayers by electrostatic layer-by-layer assembly. Langmuir 14:1674–1679

    CAS  Google Scholar 

  182. Lvov Y, Decher G, Moehwald H (1993) Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9:481–486

    CAS  Google Scholar 

  183. Yang WW, Wang JX, Zhao S, Sun YY, Sun CQ (2006) Multilayered construction of glucose oxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Electrochem Commun 8:665–672

    CAS  Google Scholar 

  184. Mendes RK, Carvalhal RF, Kubota LT (2008) Effects of different self-assembled monolayers on enzymeimmobilization procedures in peroxidase-based biosensor development. J Electroanal Chem 612(2):164–172

    CAS  Google Scholar 

  185. Ferretti S, Paynter S, Russell DA, Sapsford KE, Richardson DJ (2000) Self-assembled monolayers: a versatile tool for the formulation of bio-surfaces. TrAC Trends Anal Chem 19(9):530–540

    CAS  Google Scholar 

  186. Lin Y, Yantasee W, Wang J (2005) Carbon nanotubes (CNTs) for the development of electrochemical biosensors. Front Biosci 10(1):492–505

    CAS  Google Scholar 

  187. Karra S, Zhang M, Gorski W (2013) Electrochemistry and current control in surface films based on silica-azure redox nanoparticles, carbon nanotubes, enzymes, and polyelectrolytes. Anal Chem 85(2):1208–1214

    CAS  Google Scholar 

  188. Noroozifar M, Khorasani-Motlagh M, Tavakkoli H (2013) Electrochemical determination of ascorbic acid using modified glassy carbon electrode by multiwall carbon nanotube-nafion in chloroacetic acid media. Asian J Chem 25(1):119–124

    CAS  Google Scholar 

  189. Marzuki N, Abu Bakar F, Salleh AB, Heng LY, Yusof NA, Siddiquee S (2012) Electrochemical biosensor immobilization of formaldehyde dehydrogenase with nafion for determination of formaldehyde from Indian mackerel (Rastrelliger kanagurta) fish. Curr Anal Chem 8(4):534–542

    CAS  Google Scholar 

  190. Rather JA, Pilehvar S, De Wael K (2013) A biosensor fabricated by incorporation of a redox mediator into a carbon nanotube/nafion composite for tyrosinase immobilization: detection of matairesinol, an endocrine disruptor. Analyst 138(1):204–210

    CAS  Google Scholar 

  191. Ruan C, Li T, Ju X, Liu H, Lou J, Gao W, Sun W (2012) Nafion-ZrO2 nanoparticle-ionic liquid nanobiocomposite for the direct electrochemistry of myoglobin. J Solid State Electrochem 16(11):3661–3666

    CAS  Google Scholar 

  192. Atta NF, Galal A, Azab SM (2012) Novel sensor based on carbon paste/nafion modified with gold nanoparticles for the determination of glutathione. Anal Bioanal Chem 404(6–7):1661–1672

    CAS  Google Scholar 

  193. Marzuki NI, Abu Bakar F, Salleh AB, Heng LY, Yusof NA, Siddiquee S (2012) Development of electrochemical biosensor for formaldehyde determination based on immobilized enzyme. Int J Electrochem Sci 7(7):6070–6083

    CAS  Google Scholar 

  194. Teles FRR, Fonseca LP (2008) Applications of polymers for biomolecule immobilization in electrochemical biosensors. Mater Sci Eng C Biomim Supramol Syst 28:1530–1543

    CAS  Google Scholar 

  195. William RH (1993) Biosensors based on polymer networks formed gamma irradiation crosslinking. Appl Biochem Biotechnol 41(1–2):87–97

    Google Scholar 

  196. Gade VK, Shirale DJ, Gaikwad PD, Savale PA, Kakde KP, Kharat HJ, Shirsat MD (2006) Immobilization of GOD on electrochemically synthesized Ppy-PVS composite film by cross-linking via glutaraldehyde for determination of glucose. React Funct Polym 66:1420–1426

    CAS  Google Scholar 

  197. Sassolas A, Blum LJ, Leca-Bouvier BD (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30(3):489–511

    CAS  Google Scholar 

  198. Gao Y, Fu X, Wu D (2008) Immobilization method of enzyme in biosensor. Shandong Huagong 37(4):21–22

    CAS  Google Scholar 

  199. Wang J (2006) Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron 21(10):1887–1892

    CAS  Google Scholar 

  200. Khezrian S, Salimi A, Teymourian H, Hallaj R (2013) Label-free electrochemical IgE aptasensor based on covalent attachment of aptamer onto multiwalled carbon nanotubes/ionic liquid/chitosan nanocomposite modified electrode. Biosens Bioelectron 43:218–225

    CAS  Google Scholar 

  201. Kim JH, Jin J-H, Lee J-Y, Park EJ, Min NK (2012) Covalent attachment of biomacromolecules to plasma-patterned and functionalized carbon nanotube-based devices for electrochemical biosensing. Bioconjug Chem 23(10):2078–2086

    CAS  Google Scholar 

  202. Matsumura H, Ortiz R, Ludwig R, Igarashi K, Samejima M, Gorton L (2012) Direct electrochemistry of phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes. Langmuir 28(29):10925–10933

    CAS  Google Scholar 

  203. Yusof NA (2012) Electrochemical DNA biosensor based on poly(allylamine hydrochloride) modified screen printed electrode. Asian J Chem 24(2):518–522

    CAS  Google Scholar 

  204. Dursun F, Ozoner SK, Demirci A, Gorur M, Yilmaz F, Erhan E (2012) Vinylferrocene copolymers based biosensors for phenol derivatives. J Chem Technol Biotechnol 87(1):95–104

    CAS  Google Scholar 

  205. Santiago-Rodriguez L, Mendez J, Flores-Fernandez GM, Pagan M, Rodriguez-Martinez JA, Cabrera CR, Griebenow K (2011) Enhanced stability of a nanostructured cytochrome c biosensor by PEGylation. J Electroanal Chem 663(1):1–7

    CAS  Google Scholar 

  206. Uygun ZO, Sezgintuerk MK (2011) A novel, ultra sensible biosensor built by layer-by-layer covalent attachment of a receptor for diagnosis of tumor growth. Anal Chim Acta 706(2):343–348

    CAS  Google Scholar 

  207. Makowski MS, Zemlyanov DY, Lindsey JA, Bernhard JC, Hagen EM, Chan BK, Petersohn AA, Medow MR, Wendel LE, Chen D (2011) Covalent attachment of a peptide to the surface of gallium nitride. Surf Sci 605(15–16):1466–1475

    CAS  Google Scholar 

  208. Sun Y, Ren Q, Qin Y, Shang Z (2011) Amino-functionalization of multi-wall carbon nanotubes and their used in electrochemical glucose sensors. Huaxue Yanjiu Yu Yingyong 23(2):165–172

    CAS  Google Scholar 

  209. Kim BC, Zhao X, Ahn H-K, Kim JH, Lee H-J, Kim KW, Nair S, Hsiao E, Jia H, Oh M-K (2011) Highly stable enzyme precipitate coatings and their electrochemical applications. Biosens Bioelectron 26(5):1980–1986

    CAS  Google Scholar 

  210. Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021

    CAS  Google Scholar 

  211. Palomo JM (2013) Click-chemistry in biocatalysis. Curr Org Chem 17(7):691–700

    CAS  Google Scholar 

  212. Wu M, Zhang H, Wang Z, Shen S, Le XC, Li X-F (2013) “One-pot” fabrication of clickable monoliths for enzyme reactors. Chem Commun 49(14):1407–1409

    CAS  Google Scholar 

  213. Celebi B, Bayraktar A, Tuncel A (2012) Synthesis of a monolithic, micro-immobilized enzyme reactor via click-chemistry. Anal Bioanal Chem 403(9):2655–2663

    CAS  Google Scholar 

  214. Hayat A, Marty J-L, Radi A-E (2012) Novel amperometric hydrogen peroxide biosensor based on horseradish peroxidase azide covalently immbilized on ethynyl-modified screen-printed carbon electrode via click chemistry. Electroanalysis 24(6):1446–1452

    CAS  Google Scholar 

  215. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30(3):512–523

    CAS  Google Scholar 

  216. Chen Y, Wu M, Wang K, Chen B, Yao S, Zou H, Nie L (2011) Vinyl functionalized silica hybrid monolith-based trypsin microreactor for on line digestion and separation via thiol-ene “click” strategy. J Chromatogr A 1218(44):7982–7988

    CAS  Google Scholar 

  217. Ran Q, Peng R, Liang C, Ye S, Xian Y, Zhang W, Jin L (2011) Direct electrochemistry of horseradish peroxidase immobilized on electrografted 4-ethynylphenyl film via click chemistry. Anal Chim Acta 697(1–2):27–31

    CAS  Google Scholar 

  218. Ran Q, Peng R, Liang C, Ye S, Xian Y, Zhang W, Jin L (2011) Covalent immobilization of horseradish peroxidase via click chemistry and its direct electrochemistry. Talanta 83(5):1381–1385

    CAS  Google Scholar 

  219. Xie T, Wang A, Huang L, Li H, Chen Z, Wang Q, Yin X (2009) Recent advance in the support and technology used in enzyme immobilization. Afr J Biotechnol 8(19):4724–4733

    CAS  Google Scholar 

  220. Gole A, Murphy CJ (2008) Azide-derivatized gold nanorods: functional materials for “click” chemistry. Langmuir 24(1):266–272

    CAS  Google Scholar 

  221. Shoichet MS, Yuan Y, Shi M, Wosnick, Jordan (2007) Method of biomolecule immobilization on polymers using click-type chemistry. PCT Int. Appl. (2007), WO 2007003054 A1 20070111

    Google Scholar 

  222. Canalle LA, Vong T, Adams P, Hans HM, van Delft FL, Raats Jos MH, Chirivi Renato GS, van Hest Jan CM (2011) Clickable enzyme-linked immunosorbent assay. Biomacromolecules 12(10):3692–3697

    CAS  Google Scholar 

  223. Heineman WR, Seliskar CJ, Morris LK, Bryan SA (2012) Proceedings of SPIE, 8545, Optical materials and biomaterials in security and defence systems technology IX, 26–27 September 2012, Edinburgh, UK, ISBN: 854509/1-854509/13

    Google Scholar 

  224. Wan Y, Xu H, Su Y, Zhu X, Song S, Fan C (2013) A surface-initiated enzymatic polymerization strategy for electrochemical DNA sensors. Biosens Bioelectron 41:526–531

    CAS  Google Scholar 

  225. Mehenni H (2012) Development of an avidin sensor based on the poly(methoxy amino-β-styryl terthiophene)-coated glassy carbon electrode. Can J Chem 90(3):271–277

    CAS  Google Scholar 

  226. Mehenni H, Dao LH (2012) Towards the development of a direct electrochemical biodetector of avidin based on the poly(chloro amino-β-styryl terthiophene)-coated glassy carbon electrode. Aust J Chem 65(4):395–401

    CAS  Google Scholar 

  227. Kuramitz H, Mawatari Y, Ikeuchi M, Kutomi O, Hata N, Taguchi S, Sugawara K (2012) Multiplexed assay for proteins based on sequestration electrochemistry using the protein binding electroactive magnetic microbeads. Anal Sci 28(1):77–81

    CAS  Google Scholar 

  228. Hong C, Yuan R, Chai Y, Zhuo Y, Yang X (2012) A strategy for signal amplification using an amperometric enzyme immunosensor based on HRP modified platinum nanoparticles. J Electroanal Chem 664:20–25

    CAS  Google Scholar 

  229. Deng T, Cao Z, Shen G (2011) A novel electrochemical impedance biosensor based on plasma-polymerized films for detection of biotin, vol 239–242, Advanced materials research: Pt. 2, Advanced materials. Trans Tech, Switzerland, pp 1653–1656

    Google Scholar 

  230. Chung D-J, Kim K-C, Choi S-H (2011) Electrochemical DNA biosensor based on avidin-biotin conjugation for influenza virus (type A) detection. Appl Surf Sci 257(22):9390–9396

    CAS  Google Scholar 

  231. Timalsina YP, Branen J, Aston DE, Noren K, Corti G, Schumacher RM, David N (2011) Alternating current impedance spectroscopic analysis of biofunctionalized vertically-aligned silica nanospring surface for biosensor applications. J Appl Phys 110(1):014901/1–014901/8

    CAS  Google Scholar 

  232. Olowu RA, Ndangili PM, Baleg AA, Ikpo CO, Njomo N, Baker P, Iwuoha E (2011) Spectroelectrochemical dynamics of dendritic poly(propyleneimine)-polythiophene star copolymer aptameric 17β-estradiol biosensor. Int J Electrochem Sci 6(5):1686–1708

    CAS  Google Scholar 

  233. Dubuisson E, Chibane A, Grangeat P, Mailley P (2009) Electrochemical DNA-hybridisation detection via enzymatic amplification at microelectrode array modified with polypyrrole-oligonucleotide films. Sens Lett 7(5):880–887

    CAS  Google Scholar 

  234. Haddad R, Cosnier S, Maaref A, Holzinger M (2009) Non-covalent biofunctionalization of single-walled carbon nanotubes via biotin attachment by π-stacking interactions and pyrrole polymerization. Analyst 134(12):2412–2418

    CAS  Google Scholar 

  235. Kuramitz H, Piruska A, Halsall HB, Seliskar CJ, Heineman WR (2008) Simultaneous multiselective spectroelectrochemical sensing of the interaction between protein and its ligand using the redox dye nile blue as a label. Anal Chem 80(24):9642–9648

    CAS  Google Scholar 

  236. Suprun E, Shumyantseva V, Bulko T, Rachmetova S, Rad’ko S, Bodoev N, Archakov A (2008) Au-nanoparticles as an electrochemical sensing platform for aptamer-thrombin interaction. Biosens Bioelectron 24(4):825–830

    CAS  Google Scholar 

  237. Shiddiky MJA, Rahman MA, Cheol CS, Shim YB (2008) Fabrication of disposable sensors for biomolecule detection using hydrazine electrocatalyst. Anal Biochem 379(2):170–175

    CAS  Google Scholar 

  238. Fang L, Lue Z, Wei H, Wang E (2008) Quantitative electrochemiluminescence detection of proteins: avidin-based sensor and tris(2,2′-bipyridine) ruthenium(II) label. Biosens Bioelectron 23(11):1645–1651

    CAS  Google Scholar 

  239. Huang X, Du D, Gong X, Cai J, Tu H, Xu X, Zhang A (2008) Composite assembly of silver nanoparticles with avidin and biotinylated AChE on gold for the pesticidal electrochemical sensing. Electroanalysis 20(4):402–409

    CAS  Google Scholar 

  240. Wang B, Du X, Zheng J, Jin B (2005) Electrochemical sensor based on immobilization of single stranded deoxyribonucleic acid on Pt electrode surface by avidin-biotin system. Fenxi Huaxue 33(6):789–792

    CAS  Google Scholar 

  241. Hoshi T, Hiwatashi Y, Anzai JI (2004) Electrochemical deposition of avidin with ascorbate oxidase on the surface of platinum electrodes for amperometric glucose sensors. ITE Lett Batt New Technol Med 5(6):552–555

    CAS  Google Scholar 

  242. Kizek R, Vacek J, Trnkova L, Klejdus B, Kuban V (2003) Electrochemical biosensors in agricultural and environment. Chem List 97(10):1003–1006

    CAS  Google Scholar 

  243. Hoshi T, Anzai JI, Osa T (1994) Electrochemical deposition of avidin on the surface of a platinum electrode for enzyme sensor applications. Anal Chim Acta 289(3):321–327

    CAS  Google Scholar 

  244. Anzai JI, Hoshi T, Osa T (1993) Electrochemical preparation of active avidin films for enzyme sensor applications. Chem Lett 7:1231–1234

    Google Scholar 

  245. Iqbal N, Lieberzeit PA (2012) Artificial receptors for mass-sensitive sensors: targeting analytes from surfaces, nanoparticles, and bioanalytes by molecular imprinting. In: Li S (ed) Molecularly imprinted sensors: overview and applications, 1st edn. Elsevier, Amsterdam, pp 195–235

    Google Scholar 

  246. Tan J, Yan XP (2012) Discrimination of analytes with fluorescent molecular imprinting sensor arrays. In: Li S (ed) Molecularly Imprinted sensors: overview and applications, 1st edn. Elsevier, Amsterdam, pp 161–173

    Google Scholar 

  247. Salian VD, Byrne ME (2013) Living radical polymerization and molecular imprinting: improving polymer morphology in imprinted polymers. Macromol Mater Eng 298(4):379–390

    CAS  Google Scholar 

  248. Sharma PS, D’Souza F, Kutner W (2012) Molecular imprinting for selective chemical sensing of hazardous compounds and drugs of abuse. TrAC Trends Anal Chem 34:59–77

    CAS  Google Scholar 

  249. Diaz-Diaz G, Antuna-Jimenez D, Carmen B-LM, Jesus L-CM, Miranda-Ordieres AJ, Tunon-Blanco P (2012) New materials for analytical biomimetic assays based on affinity and catalytic receptors prepared by molecular imprinting. TrAC Trends Anal Chem 33:68–80

    CAS  Google Scholar 

  250. Sharma PS, Pietrzyk-Le A, D’Souza F, Kutner W (2012) Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal Bioanal Chem 402(10):3177–3204

    CAS  Google Scholar 

  251. Wu X (2012) Molecular imprinting for anion recognition in aqueous media. Microchim Acta 176(1–2):23–47

    CAS  Google Scholar 

  252. Zhang Y, Shimizu KD (2011) Molecular imprinting and sensor development. In: Wang B, Anslyn EV (eds) Chemosensors: principles, strategies and applications, 1st edn. Wiley, Hoboken, NJ, pp 107–120

    Google Scholar 

  253. Balamurugan S, Spivak DA (2011) Molecular imprinting in monolayer surfaces. J Mol Recognit 24(6):915–929

    CAS  Google Scholar 

  254. Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40(5):2922–2942

    CAS  Google Scholar 

  255. Verheyen E, Schillemans JP, van Wijk M, Demeniex M-A, Hennink WE, van Nostrum CF (2011) Challenges for the effective molecular imprinting of proteins. Biomaterials 32(11):3008–3020

    CAS  Google Scholar 

  256. Li S, Li W, Tiwari A, Prabaharan M (2010) Molecular imprinting: a biomimetic tool for highly selective separation, sensing and catalysis. In: Li S, Tiwari A, Prabaharan M, Aryal A (eds) Smart polymer materials for biomedical applications, 1st edn. Nova, Hauppauge, NY, pp 1–16

    Google Scholar 

  257. Flavin K, Resmini M (2010) Molecular imprinting with nanomaterials. In: Geckeler KE, Nishide H (eds) Advanced nanomaterials, vol 2, 1st edn. Wiley-VCH, Weinheim, pp 651–675

    Google Scholar 

  258. Wu X, Shimizu KD (2008) Molecular imprinting for sensor applications. In: Rotello VM, Thayumanavan S (eds) Molecular recognition and polymers: control of polymer structure and self-assembly, 1st edn. Wiley, Weinheim, pp 395–429

    Google Scholar 

  259. Gupta R, Kumar A (2008) Molecular imprinting in sol-gel matrix. Biotechnol Adv 26(6):533–547

    CAS  Google Scholar 

  260. Zoski CG (ed) (2007) Handbook of electrochemistry, 1st edn. Wiley, Weinheim

    Google Scholar 

  261. Smyth MR, Vos JG (eds) (1992) Analytical voltammetry, Wilson & Wilson’s comprehensive analytical chemistry, vol XXVII, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  262. Bagotsky VS (2006) Fundamentals of electrochemistry, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  263. Monk PMS (2001) Fundamentals of electroanalytical chemistry, 1st edn. Wiley-VCH, Weinheim

    Google Scholar 

  264. Bard AJ, Parson R, Jordan J (1985) Standard potentials in aqueous solution, 1st edn. Marcel Dekker, New York, NY

    Google Scholar 

  265. Ruzicka J, Hansen EH (1988) Flow injection analysis, 2nd edn. Wiley, New York

    Google Scholar 

  266. Trojanovicz M (ed) (2008) Advances in flow analysis, 1st edn. Wiley, Weinheim

    Google Scholar 

  267. Kolev S, McKelvie ID (eds) (2008) Advances in flow injection analysis and related techniques, 1st edn, Comprehensive analytical chemistry: Wilson & Wilson’s comprehensive analytical chemistry. Elsevier, Amsterdam

    Google Scholar 

  268. Skeggs LT Jr (1957) An automatic method for colorimetric analysis. Am J Clin Pathol 28(3):311–322

    CAS  Google Scholar 

  269. Ruzicka J, Marshall GD (1990) Sequential injection: a new concept for chemical sensors, process analysis and laboratory assays. Anal Chim Acta 237:329–343

    CAS  Google Scholar 

  270. Economou A (2005) Sequential-injection analysis (SIA): a useful tool for on-line sample-handling and pre-treatment. TrAC Trends Anal Chem 24(5):416–425

    CAS  Google Scholar 

  271. Luque de Castro MD, Ruiz-Jimenez J, Perez-Seradilla JA (2008) Lab-on-Valve: a useful tool in biochemical analysis. TrAC Trends Anal Chem 27(2):118–126

    CAS  Google Scholar 

  272. Wang J (1992) Injection analysis – from flow injection analysis to batch-injection analysis. Microchem J 45:219–224

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Kalcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Samphao, A., Kalcher, K. (2014). Electrochemical Sensors: Practical Approaches. In: Moretto, L., Kalcher, K. (eds) Environmental Analysis by Electrochemical Sensors and Biosensors. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0676-5_18

Download citation

Publish with us

Policies and ethics