Skip to main content

Use of Intravascular Ultrasound in Interventional Cardiology

  • Chapter
  • First Online:
Imaging Coronary Atherosclerosis

Abstract

For the last 60 years, coronary angiography remains the investigation of choice to evaluate coronary artery disease. Coronary angiography, however, only provides a two-dimensional “luminogram” of a three-dimensional arterial structure. As a result, its interpretation is subjected to interobserver variability and may be compounded by vessel overlapping and tortuosity. Intravascular ultrasound (IVUS), on the other hand, is a catheter-based technique which provides a comprehensive assessment of the entire vessel wall, including the extent and distribution of the atherosclerotic plaque. Owing to its high resolution, IVUS has been used extensively in various clinical and research settings. Some of the IVUS diagnostic applications include assessment of angiographically intermediate lesions particularly in the left main coronary artery. The use of IVUS at times may result in redirection of therapeutic management. IVUS is also extremely valuable in guiding percutaneous revascularisation strategies, especially in the case of left main coronary artery disease. It allows detailed pre-intervention evaluation of the target artery as well as post-intervention assessment of procedural outcome. This information is ultimately critical for the clinician to devise an appropriate procedural strategy to optimise clinical outcome. In atherosclerosis research, IVUS has provided a significant insight into the understanding of the natural history of atherosclerosis. The serial IVUS-measured atheroma change has been widely used as a surrogate end point in various pharmacological clinical trials. The development of new IVUS technology, such as virtual histology IVUS or combined IVUS with near-infrared spectroscopy has allowed further characterisation of atherosclerotic plaque, which may ultimately impact cardiovascular outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mueller RL, Sanborn TA. The history of interventional cardiology: cardiac catheterization, angioplasty, and related interventions. Am Heart J. 1995;129(1):146–72.

    CAS  PubMed  Google Scholar 

  2. Topol EJ, Nissen SE. Our preoccupation with coronary luminology. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation. 1995;92(8):2333–42.

    CAS  PubMed  Google Scholar 

  3. Nissen S. Coronary angiography and intravascular ultrasound. Am J Cardiol. 2001;87(4A):15A–20.

    CAS  PubMed  Google Scholar 

  4. Nicholls SJ, Nissen SE. Invasive imaging modalities and atherosclerosis: the role of intravascular ultrasound. In: Ballantyne CM, editor. Clinical lipidology: a companion to Braunwald’s heart disease. Philadelphia, PA: Saunders Elsevier; 2009. p. 410–9.

    Google Scholar 

  5. Zir LM, et al. Interobserver variability in coronary angiography. Circulation. 1976;53(4):627–32.

    CAS  PubMed  Google Scholar 

  6. Murphy ML, Galbraith JE, de Soyza N. The reliability of coronary angiogram interpretation: an angiographic-pathologic correlation with a comparison of radiographic views. Am Heart J. 1979;97(5):578–84.

    CAS  PubMed  Google Scholar 

  7. Galbraith JE, Murphy ML, de Soyza N. Coronary angiogram interpretation. Interobserver variability. JAMA. 1978;240(19):2053–6.

    CAS  PubMed  Google Scholar 

  8. Roberts WC, Jones AA. Quantitation of coronary arterial narrowing at necropsy in sudden coronary death: analysis of 31 patients and comparison with 25 control subjects. Am J Cardiol. 1979;44(1):39–45.

    CAS  PubMed  Google Scholar 

  9. Arnett EN, et al. Coronary artery narrowing in coronary heart disease: comparison of cineangiographic and necropsy findings. Ann Intern Med. 1979;91(3):350–6.

    CAS  PubMed  Google Scholar 

  10. Puri R, Worthley MI, Nicholls SJ. Intravascular imaging of vulnerable coronary plaque: current and future concepts. Nat Rev Cardiol. 2011;8(3):131–9.

    PubMed  Google Scholar 

  11. Bom N, Lancee CT, Van Egmond FC. An ultrasonic intracardiac scanner. Ultrasonics. 1972;10(2):72–6.

    CAS  PubMed  Google Scholar 

  12. Yock PG, Linker DT, Angelsen BA. Two-dimensional intravascular ultrasound: technical development and initial clinical experience. J Am Soc Echocardiogr. 1989;2(4):296–304.

    CAS  PubMed  Google Scholar 

  13. Roelandt JR, et al. Intravascular real-time, two-dimensional echocardiography. Int J Card Imaging. 1989;4(1):63–7.

    CAS  PubMed  Google Scholar 

  14. Pandian NG, et al. Ultrasound angioscopy: real-time, two-dimensional, intraluminal ultrasound imaging of blood vessels. Am J Cardiol. 1988;62(7):493–4.

    CAS  PubMed  Google Scholar 

  15. Hodgson JM, et al. Clinical percutaneous imaging of coronary anatomy using an over-the-wire ultrasound catheter system. Int J Card Imaging. 1989;4(2–4):187–93.

    CAS  PubMed  Google Scholar 

  16. Nicholls SJ, Andrews J, Moon KW. Exploring the natural history of atherosclerosis with intravascular ultrasound. Expert Rev Cardiovasc Ther. 2007;5(2):295–306.

    PubMed  Google Scholar 

  17. Mintz GS, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37(5):1478–92.

    CAS  PubMed  Google Scholar 

  18. Garcia-Garcia HM, et al. IVUS-based imaging modalities for tissue characterization: similarities and differences. Int J Cardiovasc Imaging. 2011;27(2):215–24.

    PubMed Central  PubMed  Google Scholar 

  19. Gussenhoven WJ, et al. Intravascular echographic assessment of vessel wall characteristics: a correlation with histology. Int J Card Imaging. 1989;4(2–4):105–16.

    CAS  PubMed  Google Scholar 

  20. Nishimura RA, et al. Intravascular ultrasound imaging: in vitro validation and pathologic correlation. J Am Coll Cardiol. 1990;16(1):145–54.

    CAS  PubMed  Google Scholar 

  21. Nissen SE, Yock P. Intravascular ultrasound: novel pathophysiological insights and current clinical applications. Circulation. 2001;103(4):604–16.

    CAS  PubMed  Google Scholar 

  22. McDaniel MC, et al. Contemporary clinical applications of coronary intravascular ultrasound. JACC Cardiovasc Interv. 2011;4(11):1155–67.

    PubMed  Google Scholar 

  23. ten Hoff H, et al. Imaging artifacts in mechanically driven ultrasound catheters. Int J Card Imaging. 1989;4(2–4):195–9.

    PubMed  Google Scholar 

  24. Sipahi I, Nicholls SJ, Tuzcu EM. Intravascular ultrasound in the current percutaneous coronary intervention era. Cardiol Clin. 2006;24(2):163–73. v.

    PubMed  Google Scholar 

  25. Mintz GS, et al. Impact of preintervention intravascular ultrasound imaging on transcatheter treatment strategies in coronary artery disease. Am J Cardiol. 1994;73(7):423–30.

    CAS  PubMed  Google Scholar 

  26. Tobis J, Azarbal B, Slavin L. Assessment of intermediate severity coronary lesions in the catheterization laboratory. J Am Coll Cardiol. 2007;49(8): 839–48.

    PubMed  Google Scholar 

  27. Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol. 2010;55(3):173–85.

    PubMed  Google Scholar 

  28. Kern MJ, et al. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation. 2006;114(12):1321–41.

    PubMed  Google Scholar 

  29. Abizaid A, et al. Clinical, intravascular ultrasound, and quantitative angiographic determinants of the coronary flow reserve before and after percutaneous transluminal coronary angioplasty. Am J Cardiol. 1998;82(4):423–8.

    CAS  PubMed  Google Scholar 

  30. Nishioka T, et al. Clinical validation of intravascular ultrasound imaging for assessment of coronary stenosis severity: comparison with stress myocardial perfusion imaging. J Am Coll Cardiol. 1999;33(7):1870–8.

    CAS  PubMed  Google Scholar 

  31. Abizaid AS, et al. Long-term follow-up after percutaneous transluminal coronary angioplasty was not performed based on intravascular ultrasound findings: importance of lumen dimensions. Circulation. 1999;100(3):256–61.

    CAS  PubMed  Google Scholar 

  32. Koo BK, et al. Optimal intravascular ultrasound criteria and their accuracy for defining the functional significance of intermediate coronary stenoses of different locations. JACC Cardiovasc Interv. 2011;4(7):803–11.

    PubMed  Google Scholar 

  33. Kang SJ, et al. Usefulness of minimal luminal coronary area determined by intravascular ultrasound to predict functional significance in stable and unstable angina pectoris. Am J Cardiol. 2012;109(7):947–53.

    PubMed  Google Scholar 

  34. Ben-Dor I, et al. Intravascular ultrasound lumen area parameters for assessment of physiological ischemia by fractional flow reserve in intermediate coronary artery stenosis. Cardiovasc Revasc Med. 2012;13(3):177–82.

    PubMed  Google Scholar 

  35. Lee CH. Intravascular ultrasound guided percutaneous coronary intervention: a practical approach. J Interv Cardiol. 2012;25(1):86–94.

    PubMed  Google Scholar 

  36. Fisher LD, et al. Reproducibility of coronary arteriographic reading in the coronary artery surgery study (CASS). Cathet Cardiovasc Diagn. 1982;8(6):565–75.

    CAS  PubMed  Google Scholar 

  37. Isner JM, et al. Accuracy of angiographic determination of left main coronary arterial narrowing. Angiographic–histologic correlative analysis in 28 patients. Circulation. 1981;63(5):1056–64.

    CAS  PubMed  Google Scholar 

  38. Jasti V, et al. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation. 2004;110(18):2831–6.

    PubMed  Google Scholar 

  39. de la Torre Hernandez JM, et al. Prospective application of pre-defined intravascular ultrasound criteria for assessment of intermediate left main coronary artery lesions results from the multicenter LITRO study. J Am Coll Cardiol. 2011;58(4):351–8.

    PubMed  Google Scholar 

  40. Fassa AA, et al. Intravascular ultrasound-guided treatment for angiographically indeterminate left main coronary artery disease: a long-term follow-up study. J Am Coll Cardiol. 2005;45(2):204–11.

    PubMed  Google Scholar 

  41. Levine GN, et al. ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58(24):e44–122.

    PubMed  Google Scholar 

  42. Garg S, Serruys PW. Coronary stents: current status. J Am Coll Cardiol. 2010;56(10 Suppl):S1–42.

    CAS  PubMed  Google Scholar 

  43. Kang SJ, et al. Intravascular ultrasound assessment of distal left main bifurcation disease: The importance of the polygon of confluence of the left main, left anterior descending, and left circumflex arteries. Catheter Cardiovasc Interv. 2013;82(5):737–45.

    PubMed  Google Scholar 

  44. Sonoda S, et al. Impact of final stent dimensions on long-term results following sirolimus-eluting stent implantation: serial intravascular ultrasound analysis from the sirius trial. J Am Coll Cardiol. 2004;43(11):1959–63.

    PubMed  Google Scholar 

  45. Sakurai R, et al. Predictors of edge stenosis following sirolimus-eluting stent deployment (a quantitative intravascular ultrasound analysis from the SIRIUS trial). Am J Cardiol. 2005;96(9):1251–3.

    CAS  PubMed  Google Scholar 

  46. Palmerini T, et al. Percutaneous revascularization of left main: role of imaging, techniques, and adjunct pharmacology. Catheter Cardiovasc Interv. 2012;79(6):990–9.

    PubMed  Google Scholar 

  47. Park SJ, et al. Elective stenting of unprotected left main coronary artery stenosis: effect of debulking before stenting and intravascular ultrasound guidance. J Am Coll Cardiol. 2001;38(4):1054–60.

    CAS  PubMed  Google Scholar 

  48. Takagi T, et al. Results and long-term predictors of adverse clinical events after elective percutaneous interventions on unprotected left main coronary artery. Circulation. 2002;106(6):698–702.

    PubMed  Google Scholar 

  49. Anderson HV, et al. A contemporary overview of percutaneous coronary interventions. The American College of Cardiology-National Cardiovascular Data Registry (ACC-NCDR). J Am Coll Cardiol. 2002;39(7):1096–103.

    PubMed  Google Scholar 

  50. Park SJ, et al. Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis. Circ Cardiovasc Interv. 2009;2(3):167–77.

    PubMed  Google Scholar 

  51. Park SJ, et al. Randomized trial of stents versus bypass surgery for left main coronary artery disease. N Engl J Med. 2011;364(18):1718–27.

    CAS  PubMed  Google Scholar 

  52. Kang SJ, et al. Effect of intravascular ultrasound findings on long-term repeat revascularization in patients undergoing drug-eluting stent implantation for severe unprotected left main bifurcation narrowing. Am J Cardiol. 2011;107(3):367–73.

    PubMed  Google Scholar 

  53. Kang SJ, et al. Comprehensive intravascular ultrasound assessment of stent area and its impact on restenosis and adverse cardiac events in 403 patients with unprotected left main disease. Circ Cardiovasc Interv. 2011;4(6):562–9.

    PubMed  Google Scholar 

  54. Laskey WK, et al. Intravascular ultrasonographic assessment of the results of coronary artery stenting. Am Heart J. 1993;125(6):1576–83.

    CAS  PubMed  Google Scholar 

  55. Mintz GS, et al. Intravascular ultrasound evaluation of the effect of rotational atherectomy in obstructive atherosclerotic coronary artery disease. Circulation. 1992;86(5):1383–93.

    CAS  PubMed  Google Scholar 

  56. Potkin BN, et al. Arterial responses to balloon coronary angioplasty: an intravascular ultrasound study. J Am Coll Cardiol. 1992;20(4):942–51.

    CAS  PubMed  Google Scholar 

  57. de Lezo Suarez J, et al. Intracoronary ultrasound assessment of directional coronary atherectomy: immediate and follow-up findings. J Am Coll Cardiol. 1993;21(2):298–307.

    Google Scholar 

  58. Costa MA, et al. Three dimensional intravascular ultrasonic assessment of the local mechanism of restenosis after balloon angioplasty. Heart. 2001;85(1):73–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Fuessl RT, Hoepp HW, Sechtem U. Intravascular ultrasonography in the evaluation of results of coronary angioplasty and stenting. Curr Opin Cardiol. 1999;14(6):471–9.

    CAS  PubMed  Google Scholar 

  60. Costa MA, Simon DI. Molecular basis of restenosis and drug-eluting stents. Circulation. 2005;111(17):2257–73.

    PubMed  Google Scholar 

  61. Hoffmann R, et al. Patterns and mechanisms of in-stent restenosis. A serial intravascular ultrasound study. Circulation. 1996;94(6):1247–54.

    CAS  PubMed  Google Scholar 

  62. Mintz GS, et al. Intravascular ultrasound to discern device-specific effects and mechanisms of restenosis. Am J Cardiol. 1996;78(3A):18–22.

    CAS  PubMed  Google Scholar 

  63. Orford JL, Lerman A, Holmes DR. Routine intravascular ultrasound guidance of percutaneous coronary intervention: a critical reappraisal. J Am Coll Cardiol. 2004;43(8):1335–42.

    PubMed  Google Scholar 

  64. Nakamura S, et al. Intracoronary ultrasound observations during stent implantation. Circulation. 1994;89(5):2026–34.

    CAS  PubMed  Google Scholar 

  65. Colombo A, et al. Intracoronary stenting without anticoagulation accomplished with intravascular ultrasound guidance. Circulation. 1995;91(6):1676–88.

    CAS  PubMed  Google Scholar 

  66. Stone GW, et al. Improved procedural results of coronary angioplasty with intravascular ultrasound-guided balloon sizing: the CLOUT Pilot Trial. Clinical Outcomes With Ultrasound Trial (CLOUT) Investigators. Circulation. 1997;95(8):2044–52.

    CAS  PubMed  Google Scholar 

  67. Frey AW, et al. Ultrasound-guided strategy for provisional stenting with focal balloon combination catheter: results from the randomized Strategy for Intracoronary Ultrasound-guided PTCA and Stenting (SIPS) trial. Circulation. 2000;102(20):2497–502.

    CAS  PubMed  Google Scholar 

  68. Schiele F, et al. Intravascular ultrasound-guided balloon angioplasty compared with stent: immediate and 6-month results of the multicenter, randomized Balloon Equivalent to Stent Study (BEST). Circulation. 2003;107(4):545–51.

    PubMed  Google Scholar 

  69. de Jaegere P, et al. Intravascular ultrasound-guided optimized stent deployment. Immediate and 6 months clinical and angiographic results from the Multicenter Ultrasound Stenting in Coronaries Study (MUSIC Study). Eur Heart J. 1998;19(8):1214–23.

    PubMed  Google Scholar 

  70. Fitzgerald PJ, et al. Final results of the Can Routine Ultrasound Influence Stent Expansion (CRUISE) study. Circulation. 2000;102(5):523–30.

    CAS  PubMed  Google Scholar 

  71. Kasaoka S, et al. Angiographic and intravascular ultrasound predictors of in-stent restenosis. J Am Coll Cardiol. 1998;32(6):1630–5.

    CAS  PubMed  Google Scholar 

  72. Russo RJ, et al. A randomized controlled trial of angiography versus intravascular ultrasound-directed bare-metal coronary stent placement (the AVID Trial). Circ Cardiovasc Interv. 2009;2(2):113–23.

    PubMed  Google Scholar 

  73. Mudra H, et al. Randomized comparison of coronary stent implantation under ultrasound or angiographic guidance to reduce stent restenosis (OPTICUS Study). Circulation. 2001;104(12):1343–9.

    CAS  PubMed  Google Scholar 

  74. Oemrawsingh PV, et al. Intravascular ultrasound guidance improves angiographic and clinical outcome of stent implantation for long coronary artery stenoses: final results of a randomized comparison with angiographic guidance (TULIP Study). Circulation. 2003;107(1):62–7.

    PubMed  Google Scholar 

  75. Schiele F, et al. Impact of intravascular ultrasound guidance in stent deployment on 6-month restenosis rate: a multicenter, randomized study comparing two strategies—with and without intravascular ultrasound guidance. RESIST Study Group. REStenosis after Ivus guided STentin. J Am Coll Cardiol. 1998;32(2):320–8.

    CAS  PubMed  Google Scholar 

  76. Moussa I, et al. Does the specific intravascular ultrasound criterion used to optimize stent expansion have an impact on the probability of stent restenosis? Am J Cardiol. 1999;83(7):1012–7.

    CAS  PubMed  Google Scholar 

  77. Hoffmann R, et al. Intravascular ultrasound predictors of angiographic restenosis in lesions treated with Palmaz-Schatz stents. J Am Coll Cardiol. 1998;31(1):43–9.

    CAS  PubMed  Google Scholar 

  78. de Feyter PJ, et al. Reference chart derived from post-stent-implantation intravascular ultrasound predictors of 6-month expected restenosis on quantitative coronary angiography. Circulation. 1999;100(17):1777–83.

    PubMed  Google Scholar 

  79. Uren NG, et al. Predictors and outcomes of stent thrombosis: an intravascular ultrasound registry. Eur Heart J. 2002;23(2):124–32.

    PubMed  Google Scholar 

  80. Moussa I, et al. Subacute stent thrombosis in the era of intravascular ultrasound-guided coronary stenting without anticoagulation: frequency, predictors and clinical outcome. J Am Coll Cardiol. 1997;29(1):6–12.

    CAS  PubMed  Google Scholar 

  81. Parise H, et al. Meta-analysis of randomized studies comparing intravascular ultrasound versus angiographic guidance of percutaneous coronary intervention in pre-drug-eluting stent era. Am J Cardiol. 2011;107(3):374–82.

    PubMed  Google Scholar 

  82. Abizaid A, et al. Sirolimus-eluting stents inhibit neointimal hyperplasia in diabetic patients. Insights from the RAVEL Trial. Eur Heart J. 2004;25(2):107–12.

    CAS  PubMed  Google Scholar 

  83. Colombo A, et al. Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation. 2003;108(7):788–94.

    CAS  PubMed  Google Scholar 

  84. Serruys PW, et al. Intravascular ultrasound findings in the multicenter, randomized, double-blind RAVEL (RAndomized study with the sirolimus-eluting VElocity balloon-expandable stent in the treatment of patients with de novo native coronary artery Lesions) trial. Circulation. 2002;106(7):798–803.

    CAS  PubMed  Google Scholar 

  85. Silber S, et al. Final 5-year results of the TAXUS II trial: a randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for de novo coronary artery lesions. Circulation. 2009;120(15):1498–504.

    CAS  PubMed  Google Scholar 

  86. Burke SE, et al. Neointimal formation after balloon-induced vascular injury in Yucatan minipigs is reduced by oral rapamycin. J Cardiovasc Pharmacol. 1999;33(6):829–35.

    CAS  PubMed  Google Scholar 

  87. Poon M, et al. Rapamycin inhibits vascular smooth muscle cell migration. J Clin Invest. 1996;98(10):2277–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Serruys PW, Daemen J. Are drug-eluting stents associated with a higher rate of late thrombosis than bare metal stents? Late stent thrombosis: a nuisance in both bare metal and drug-eluting stents. Circulation. 2007;115(11):1433–9. discussion 1439.

    PubMed  Google Scholar 

  89. Fujii K, et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol. 2005;45(7):995–8.

    CAS  PubMed  Google Scholar 

  90. Liu X, et al. A volumetric intravascular ultrasound comparison of early drug-eluting stent thrombosis versus restenosis. JACC Cardiovasc Interv. 2009; 2(5):428–34.

    PubMed  Google Scholar 

  91. Okabe T, et al. Intravascular ultrasound parameters associated with stent thrombosis after drug-eluting stent deployment. Am J Cardiol. 2007;100(4):615–20.

    CAS  PubMed  Google Scholar 

  92. Alfonso F, et al. Intravascular ultrasound findings during episodes of drug-eluting stent thrombosis. J Am Coll Cardiol. 2007;50(21):2095–7.

    PubMed  Google Scholar 

  93. Takebayashi H, et al. Intravascular ultrasound assessment of lesions with target vessel failure after sirolimus-eluting stent implantation. Am J Cardiol. 2005;95(4):498–502.

    CAS  PubMed  Google Scholar 

  94. Vautrin E, et al. Very late stent thrombosis after drug eluting stent: management therapy guided by intravascular ultrasound imaging. Int J Cardiol. 2012;154(3):349–51.

    PubMed  Google Scholar 

  95. Cheneau E, et al. Predictors of subacute stent thrombosis: results of a systematic intravascular ultrasound study. Circulation. 2003;108(1):43–7.

    PubMed  Google Scholar 

  96. Mintz GS. Features and parameters of drug-eluting stent deployment discoverable by intravascular ultrasound. Am J Cardiol. 2007;100(8B):26M–35.

    CAS  PubMed  Google Scholar 

  97. Mintz GS. What to do about late incomplete stent apposition? Circulation. 2007;115(18):2379–81.

    PubMed  Google Scholar 

  98. Cook S, et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation. 2007;115(18):2426–34.

    CAS  PubMed  Google Scholar 

  99. Siqueira DA, et al. Late incomplete apposition after drug-eluting stent implantation: incidence and potential for adverse clinical outcomes. Eur Heart J. 2007;28(11):1304–9.

    PubMed  Google Scholar 

  100. Jimenez-Quevedo P, et al. Vascular effects of sirolimus-eluting versus bare-metal stents in diabetic patients: three-dimensional ultrasound results of the Diabetes and Sirolimus-Eluting Stent (DIABETES) Trial. J Am Coll Cardiol. 2006;47(11):2172–9.

    CAS  PubMed  Google Scholar 

  101. Ako J, et al. Late incomplete stent apposition after sirolimus-eluting stent implantation: a serial intravascular ultrasound analysis. J Am Coll Cardiol. 2005;46(6):1002–5.

    CAS  PubMed  Google Scholar 

  102. Kimura M, et al. Outcome after acute incomplete sirolimus-eluting stent apposition as assessed by serial intravascular ultrasound. Am J Cardiol. 2006;98(4):436–42.

    CAS  PubMed  Google Scholar 

  103. Degertekin M, et al. Long-term follow-up of incomplete stent apposition in patients who received sirolimus-eluting stent for de novo coronary lesions: an intravascular ultrasound analysis. Circulation. 2003;108(22):2747–50.

    PubMed  Google Scholar 

  104. Cook S, et al. Impact of incomplete stent apposition on long-term clinical outcome after drug-eluting stent implantation. Eur Heart J. 2012;33(11):1334–43.

    PubMed  Google Scholar 

  105. Roy P, et al. The potential clinical utility of intravascular ultrasound guidance in patients undergoing percutaneous coronary intervention with drug-eluting stents. Eur Heart J. 2008;29(15):1851–7.

    CAS  PubMed  Google Scholar 

  106. Claessen BE, et al. Impact of intravascular ultrasound imaging on early and late clinical outcomes following percutaneous coronary intervention with drug-eluting stents. JACC Cardiovasc Interv. 2011;4(9):974–81.

    PubMed  Google Scholar 

  107. Hur SH, et al. Impact of intravascular ultrasound-guided percutaneous coronary intervention on long-term clinical outcomes in a real world population. Catheter Cardiovasc Interv. 2013;81(3):407–16.

    PubMed  Google Scholar 

  108. Colombo A. AVIO: a prospective, randomized trial of intravascular-ultrasound guided compared to angiography guided stent implantation in complex coronary lesions. in transcatheter cardiovascular therapeutics. 2010. Washington DC, USA.

    Google Scholar 

  109. Hausmann D, et al. The safety of intracoronary ultrasound. A multicenter survey of 2207 examinations. Circulation. 1995;91(3):623–30.

    CAS  PubMed  Google Scholar 

  110. Batkoff BW, Linker DT. Safety of intracoronary ultrasound: data from a Multicenter European Registry. Cathet Cardiovasc Diagn. 1996;38(3):238–41.

    CAS  PubMed  Google Scholar 

  111. Bose D, von Birgelen C, Erbel R. Intravascular ultrasound for the evaluation of therapies targeting coronary atherosclerosis. J Am Coll Cardiol. 2007;49(9):925–32.

    PubMed  Google Scholar 

  112. Ramasubbu K, et al. Repeated intravascular ultrasound imaging in cardiac transplant recipients does not accelerate transplant coronary artery disease. J Am Coll Cardiol. 2003;41(10):1739–43.

    PubMed  Google Scholar 

  113. Guedes A, et al. Long-term safety of intravascular ultrasound in nontransplant, nonintervened, atherosclerotic coronary arteries. J Am Coll Cardiol. 2005;45(4):559–64.

    PubMed  Google Scholar 

  114. Friedewald VE, et al. The editor’s roundtable: atherosclerosis regression. Am J Cardiol. 2008;101(7):967–74.

    PubMed  Google Scholar 

  115. Varnava AM, Mills PG, Davies MJ. Relationship between coronary artery remodeling and plaque vulnerability. Circulation. 2002;105(8):939–43.

    PubMed  Google Scholar 

  116. Kolodgie FD, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med. 2003;349(24):2316–25.

    CAS  PubMed  Google Scholar 

  117. Galis ZS, Lessner SM. Will the real plaque vasculature please stand up? Why we need to distinguish the vasa plaquorum from the vasa vasorum. Trends Cardiovasc Med. 2009;19(3):87–94.

    PubMed  Google Scholar 

  118. Nair A, et al. Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation. 2002;106(17):2200–6.

    PubMed  Google Scholar 

  119. Kawasaki M, et al. In vivo quantitative tissue characterization of human coronary arterial plaques by use of integrated backscatter intravascular ultrasound and comparison with angioscopic findings. Circulation. 2002;105(21):2487–92.

    PubMed  Google Scholar 

  120. Kawasaki M, et al. Noninvasive quantitative tissue characterization and two-dimensional color-coded map of human atherosclerotic lesions using ultrasound integrated backscatter: comparison between histology and integrated backscatter images. J Am Coll Cardiol. 2001;38(2):486–92.

    CAS  PubMed  Google Scholar 

  121. Nasu K, et al. Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J Am Coll Cardiol. 2006;47(12):2405–12.

    PubMed  Google Scholar 

  122. Garcia-Garcia HM, et al. Tissue characterisation using intravascular radiofrequency data analysis: recommendations for acquisition, analysis, interpretation and reporting. EuroIntervention. 2009;5(2):177–89.

    PubMed  Google Scholar 

  123. Rodriguez-Granillo GA, et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J Am Coll Cardiol. 2005;46(11):2038–42.

    PubMed  Google Scholar 

  124. Hong MK, et al. Comparison of virtual histology to intravascular ultrasound of culprit coronary lesions in acute coronary syndrome and target coronary lesions in stable angina pectoris. Am J Cardiol. 2007;100(6):953–9.

    PubMed  Google Scholar 

  125. Nakamura T, et al. Plaque characteristics of the coronary segment proximal to the culprit lesion in stable and unstable patients. Clin Cardiol. 2009;32(8):E9–12.

    PubMed  Google Scholar 

  126. Yamagishi M, et al. Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol. 2000;35(1):106–11.

    CAS  PubMed  Google Scholar 

  127. Stone GW, et al. A prospective natural-history study of coronary atherosclerosis. N Engl J Med. 2011;364(3):226–35.

    CAS  PubMed  Google Scholar 

  128. Kubo T, et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J Am Coll Cardiol. 2010;55(15):1590–7.

    CAS  PubMed  Google Scholar 

  129. Choi SH, et al. Emerging approaches for imaging vulnerable plaques in patients. Curr Opin Biotechnol. 2007;18(1):73–82.

    CAS  PubMed  Google Scholar 

  130. Carlier SG, et al. Imaging of atherosclerosis. Elastography. J Cardiovasc Risk. 2002;9(5):237–45.

    PubMed  Google Scholar 

  131. Suh WM, et al. Intravascular detection of the vulnerable plaque. Circ Cardiovasc Imaging. 2011;4(2):169–78.

    PubMed  Google Scholar 

  132. Vavuranakis M, et al. A new method for assessment of plaque vulnerability based on vasa vasorum imaging, by using contrast-enhanced intravascular ultrasound and differential image analysis. Int J Cardiol. 2008;130(1):23–9.

    PubMed  Google Scholar 

  133. Vavuranakis M, et al. Contrast-enhanced intravascular ultrasound: combining morphology with activity-based assessment of plaque vulnerability. Expert Rev Cardiovasc Ther. 2007;5(5):917–25.

    PubMed  Google Scholar 

  134. Carlier S, et al. Vasa vasorum imaging: a new window to the clinical detection of vulnerable atherosclerotic plaques. Curr Atheroscler Rep. 2005;7(2):164–9.

    PubMed  Google Scholar 

  135. Doyley MM, et al. Advancing intravascular ultrasonic palpation toward clinical applications. Ultrasound Med Biol. 2001;27(11):1471–80.

    CAS  PubMed  Google Scholar 

  136. Staub D, et al. Contrast-enhanced ultrasound imaging of the vasa vasorum: from early atherosclerosis to the identification of unstable plaques. JACC Cardiovasc Imaging. 2010;3(7):761–71.

    PubMed  Google Scholar 

  137. von Birgelen C, et al. Relationship between cardiovascular risk as predicted by established risk scores versus plaque progression as measured by serial intravascular ultrasound in left main coronary arteries. Circulation. 2004;110(12):1579–85.

    Google Scholar 

  138. Nicholls SJ, et al. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J Am Coll Cardiol. 2010;55(21):2399–407.

    PubMed  Google Scholar 

  139. Tardif JC, et al. Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation. 2004;110(21):3372–7.

    CAS  PubMed  Google Scholar 

  140. Serruys PW, et al. Effects of the direct lipoprotein-associated phospholipase A(2) inhibitor darapladib on human coronary atherosclerotic plaque. Circulation. 2008;118(11):1172–82.

    CAS  PubMed  Google Scholar 

  141. Nissen SE, et al. Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA. 2008;299(13): 1547–60.

    CAS  PubMed  Google Scholar 

  142. Nissen SE, et al. Effect of torcetrapib on the progression of coronary atherosclerosis. N Engl J Med. 2007;356(13):1304–16.

    CAS  PubMed  Google Scholar 

  143. Nissen SE, et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003;290(17):2292–300.

    CAS  PubMed  Google Scholar 

  144. Nissen SE, et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N Engl J Med. 2006;354(12):1253–63.

    CAS  PubMed  Google Scholar 

  145. Nissen SE, et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial. JAMA. 2006;295(13):1556–65.

    CAS  PubMed  Google Scholar 

  146. Nissen SE, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA. 2008;299(13):1561–73.

    CAS  PubMed  Google Scholar 

  147. Nissen SE, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA. 2004;291(9):1071–80.

    CAS  PubMed  Google Scholar 

  148. Nicholls SJ, et al. Effect of two intensive statin regimens on progression of coronary disease. N Engl J Med. 2011;365(22):2078–87.

    CAS  PubMed  Google Scholar 

  149. Nissen SE, et al. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA. 2004;292(18):2217–25.

    CAS  PubMed  Google Scholar 

  150. Nasu K, et al. Effect of fluvastatin on progression of coronary atherosclerotic plaque evaluated by virtual histology intravascular ultrasound. JACC Cardiovasc Interv. 2009;2(7):689–96.

    PubMed  Google Scholar 

  151. Hirohata A, et al. Impact of olmesartan on progression of coronary atherosclerosis a serial volumetric intravascular ultrasound analysis from the OLIVUS (impact of OLmesarten on progression of coronary atherosclerosis: evaluation by intravascular ultrasound) trial. J Am Coll Cardiol. 2010;55(10):976–82.

    CAS  PubMed  Google Scholar 

  152. Nozue T, et al. Statin treatment for coronary artery plaque composition based on intravascular ultrasound radiofrequency data analysis. Am Heart J. 2012;163(2):191–9e1.

    CAS  PubMed  Google Scholar 

  153. Li X, et al. High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe. Appl Phys Lett. 2010;97(13):133702.

    PubMed Central  PubMed  Google Scholar 

  154. Maehara A, Mintz GS, Weissman NJ. Advances in intravascular imaging. Circ Cardiovasc Interv. 2009;2(5):482–90.

    PubMed  Google Scholar 

  155. Bezerra HG, et al. Intracoronary optical coherence tomography: a comprehensive review clinical and research applications. JACC Cardiovasc Interv. 2009;2(11):1035–46.

    PubMed  Google Scholar 

  156. Garg S, et al. First use in patients of a combined near infra-red spectroscopy and intra-vascular ultrasound catheter to identify composition and structure of coronary plaque. EuroIntervention. 2010;5(6):755–6.

    PubMed  Google Scholar 

  157. Schultz CJ, et al. First-in-man clinical use of combined near-infrared spectroscopy and intravascular ultrasound: a potential key to predict distal embolization and no-reflow? J Am Coll Cardiol. 2010;56(4):314.

    PubMed  Google Scholar 

  158. Gardner CM, et al. Detection of lipid core coronary plaques in autopsy specimens with a novel catheter-based near-infrared spectroscopy system. JACC Cardiovasc Imaging. 2008;1(5):638–48.

    PubMed  Google Scholar 

  159. Moreno PR, et al. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation. 2002;105(8):923–7.

    PubMed  Google Scholar 

  160. Halcox JP, et al. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106(6):653–8.

    PubMed  Google Scholar 

  161. Schachinger V, Britten MB, Zeiher AM. Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation. 2000;101(16):1899–906.

    CAS  PubMed  Google Scholar 

  162. Al Suwaidi J, et al. Association between obesity and coronary atherosclerosis and vascular remodeling. Am J Cardiol. 2001;88(11):1300–3.

    CAS  PubMed  Google Scholar 

  163. Puri R, et al. Coronary beta2-adrenoreceptors mediate endothelium-dependent vasoreactivity in humans: novel insights from an in vivo intravascular ultrasound study. Eur Heart J. 2012;33(4):495–504.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel L. Sidharta MBBS, BMedSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sidharta, S.L., Worthley, M., Worthley, S. (2014). Use of Intravascular Ultrasound in Interventional Cardiology. In: Nicholls, S., Crowe, T. (eds) Imaging Coronary Atherosclerosis. Contemporary Cardiology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0572-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0572-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-0571-3

  • Online ISBN: 978-1-4939-0572-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics