Skip to main content

Emerging Roles of Phospholipase D in Pathophysiological Signaling

  • Chapter
  • First Online:
  • 6331 Accesses

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 10))

Abstract

Phospholipase D (PLD) is a phospholipid-hydrolyzing enzyme that generates phosphatidic acid (PA) as a lipid second messenger by hydrolyzing phosphatidyl choline (PC). Various extracellular signals have been reported to activate PLD, which acts as a key mediator of many cellular functions through the generation of PA and the interactions of PLD and PA with their binding partners. Currently, about 60 PLD-binding partners, including proteins and phospholipids, are known, and PA has been found to interact with about 50 proteins. Although the interactions of binding molecules with PLD and PA are complex and multilayered, the unique interactions between them are important for their unique intracellular functions. Here, we address the interrelationships between PLD and PA and their binding partners in several key signaling pathways, such as the EGFR–ERK signaling axis, nutrient/growth signaling axis, and cytoskeletal reorganization machinery axis. These interrelationships demonstrate dynamic interactions and cooperative regulation, which mediate special intracellular functions. Furthermore, we describe the regulation and functions of PLD in mediating normal and pathological signaling. Additionally, we summarize the roles of PLD as determined in animal studies (Drosophila, zebrafish, and mice) and changes in the PLD expression level in disease states. These findings provide new insight into the functions of PLD under pathophysiological conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jenkins GM, Frohman MA (2005) Phospholipase D: a lipid centric review. Cell Mol Life Sci 62:2305–2316

    CAS  PubMed  Google Scholar 

  2. Park SK, Provost JJ, Bae CD et al (1997) Cloning and characterization of phospholipase D from rat brain. J Biol Chem 272:29263–29271

    CAS  PubMed  Google Scholar 

  3. Colley WC, Sung TC, Roll R et al (1997) Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr Biol 7:191–201

    CAS  PubMed  Google Scholar 

  4. Lopez I, Arnold RS, Lambeth JD (1998) Cloning and initial characterization of a human phospholipase D2 (hPLD2). ADP-ribosylation factor regulates hPLD2. J Biol Chem 273:12846–12852

    CAS  PubMed  Google Scholar 

  5. Frohman MA, Sung TC, Morris AJ (1999) Mammalian phospholipase D structure and regulation. Biochim Biophys Acta 1439:175–186

    CAS  PubMed  Google Scholar 

  6. Exton JH (2002) Regulation of phospholipase D. FEBS Lett 531:58–61

    CAS  PubMed  Google Scholar 

  7. Du G, Altshuller YM, Vitale N et al (2003) Regulation of phospholipase D1 subcellular cycling through coordination of multiple membrane association motifs. J Cell Biol 162:305–315

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Stahelin RV, Ananthanarayanan B, Blatner NR et al (2004) Mechanism of membrane binding of the phospholipase D1 PX domain. J Biol Chem 279:54918–54926

    CAS  PubMed  Google Scholar 

  9. Lee JS, Kim JH, Jang IH et al (2005) Phosphatidylinositol (3,4,5)-trisphosphate specifically interacts with the phox homology domain of phospholipase D1 and stimulates its activity. J Cell Sci 118:4405–4413

    CAS  PubMed  Google Scholar 

  10. Lee CS, Kim IS, Park JB et al (2006) The phox homology domain of phospholipase D activates dynamin GTPase activity and accelerates EGFR endocytosis. Nat Cell Biol 8:477–484

    CAS  PubMed  Google Scholar 

  11. Jeon H, Kwak D, Noh J et al (2011) Phospholipase D2 induces stress fiber formation through mediating nucleotide exchange for RhoA. Cell Signal 23:1320–1326

    CAS  PubMed  Google Scholar 

  12. Hodgkin MN, Masson MR, Powner D et al (2000) Phospholipase D regulation and localisation is dependent upon a phosphatidylinositol 4,5-biphosphate-specific PH domain. Curr Biol 10:43–46

    CAS  PubMed  Google Scholar 

  13. Gomez-Cambronero J (2011) The exquisite regulation of PLD2 by a wealth of interacting proteins: S6K, Grb2, Sos, WASp and Rac2 (and a surprise discovery: PLD2 is a GEF). Cell Signal 23:1885–1895

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Hammond SM, Jenco JM, Nakashima S et al (1997) Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-alpha. J Biol Chem 272:3860–3868

    CAS  PubMed  Google Scholar 

  15. Du G, Altshuller YM, Kim Y et al (2000) Dual requirement for rho and protein kinase C in direct activation of phospholipase D1 through G protein-coupled receptor signaling. Mol Biol Cell 11:4359–4368

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Peng X, Frohman MA (2012) Mammalian phospholipase D physiological and pathological roles. Acta Physiol (Oxf) 204:219–226

    CAS  Google Scholar 

  17. Brown FD, Thompson N, Saqib KM et al (1998) Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation. Curr Biol 8:835–838

    CAS  PubMed  Google Scholar 

  18. Freyberg Z, Sweeney D, Siddhanta A et al (2001) Intracellular localization of phospholipase D1 in mammalian cells. Mol Biol Cell 12:943–955

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Du G, Huang P, Liang BT, Frohman MA (2004) Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis. Mol Biol Cell 15:1024–1030

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Vitale N, Caumont AS, Chasserot-Golaz S et al (2001) Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J 20:2424–2434

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Freyberg Z, Bourgoin S, Shields D (2002) Phospholipase D2 is localized to the rims of the Golgi apparatus in mammalian cells. Mol Biol Cell 13:3930–3942

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Yang JS, Gad H, Lee SY et al (2008) A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nat Cell Biol 10:1146–1153

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Park JB, Lee CS, Jang JH et al (2012) Phospholipase signalling networks in cancer. Nat Rev Cancer 12:782–792

    CAS  PubMed  Google Scholar 

  24. Jang JH, Lee CS, Hwang D, Ryu SH (2012) Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners. Prog Lipid Res 51:71–81

    CAS  PubMed  Google Scholar 

  25. Lee CS, Kim KL, Jang JH et al (2009) The roles of phospholipase D in EGFR signaling. Biochim Biophys Acta 1791:862–868

    CAS  PubMed  Google Scholar 

  26. LaLonde M, Janssens H, Yun S et al (2006) A role for phospholipase D in Drosophila embryonic cellularization. BMC Dev Biol 6:60

    PubMed Central  PubMed  Google Scholar 

  27. Zeng XX, Zheng X, Xiang Y et al (2009) Phospholipase D1 is required for angiogenesis of intersegmental blood vessels in zebrafish. Dev Biol 328:363–376

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Elvers M, Stegner D, Hagedorn I et al (2010) Impaired αIIbβ3 integrin activation and shear-dependent thrombus formation in mice lacking phospholipase D1. Sci Signal 3:ra1

    PubMed Central  PubMed  Google Scholar 

  29. Sun Y, Fang Y, Yoon MS et al (2008) Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl Acad Sci U S A 105:8286–8291

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Wiley HS (2003) Trafficking of the ErbB receptors and its influence on signaling. Exp Cell Res 284:78–88

    CAS  PubMed  Google Scholar 

  31. Yarden Y (2001) The EGFR family and its ligands in human cancer. Signalling mechanisms and therapeutic opportunities. Eur J Cancer 37(suppl 4):S3–S8

    CAS  PubMed  Google Scholar 

  32. Yarden Y, Shilo BZ (2007) SnapShot: EGFR signaling pathway. Cell 131:1018

    PubMed  Google Scholar 

  33. Slaaby R, Jensen T, Hansen HS et al (1998) PLD2 complexes with the EGF receptor and undergoes tyrosine phosphorylation at a single site upon agonist stimulation. J Biol Chem 273:33722–33727

    CAS  PubMed  Google Scholar 

  34. Kaszkin M, Seidler L, Kast R, Kinzel V (1992) Epidermal-growth-factor-induced production of phosphatidylalcohols by HeLa cells and A431 cells through activation of phospholipase D. Biochem J 287:51–57

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Carpio LC, Dziak R (1998) Activation of phospholipase D signaling pathway by epidermal growth factor in osteoblastic cells. J Bone Miner Res 13:1707–1713

    CAS  PubMed  Google Scholar 

  36. Morrison KS, Mackie SC, Palmer RM, Thompson MG (1995) Stimulation of protein and DNA synthesis in mouse C2C12 satellite cells: evidence for phospholipase D-dependent and -independent pathways. J Cell Physiol 165:273–283

    CAS  PubMed  Google Scholar 

  37. Dean NM, Boynton AL (1995) EGF-induced increase in diacylglycerol, choline release, and DNA synthesis is extracellular calcium dependent. J Cell Physiol 164:449–458

    CAS  PubMed  Google Scholar 

  38. Zhang Y, Akhtar RA (1998) Epidermal growth factor stimulates phospholipase D independent of phospholipase C, protein kinase C or phosphatidylinositol-3 kinase activation in immortalized rabbit corneal epithelial cells. Curr Eye Res 17:294–300

    CAS  PubMed  Google Scholar 

  39. Rydzewska G, Morisset J (1995) Activation of pancreatic acinar cell phospholipase D by epidermal, insulin-like, and basic fibroblast growth factors involves tyrosine kinase. Pancreas 10:59–65

    CAS  PubMed  Google Scholar 

  40. Yeo EJ, Exton JH (1995) Stimulation of phospholipase D by epidermal growth factor requires protein kinase C activation in Swiss 3T3 cells. J Biol Chem 270:3980–3988

    CAS  PubMed  Google Scholar 

  41. Voss M, Weernink PA, Haupenthal S et al (1999) Phospholipase D stimulation by receptor tyrosine kinases mediated by protein kinase C and a Ras/Ral signaling cascade. J Biol Chem 274:34691–34698

    CAS  PubMed  Google Scholar 

  42. Hornia A, Lu Z, Sukezane T et al (1999) Antagonistic effects of protein kinase C alpha and delta on both transformation and phospholipase D activity mediated by the epidermal growth factor receptor. Mol Cell Biol 19:7672–7680

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Chen JS, Song JG (2001) Bradykinin induces protein kinase C-dependent activation of phospholipase D in A-431 cells. IUBMB Life 51:49–56

    CAS  PubMed  Google Scholar 

  44. Hess JA, Ross AH, Qiu RG et al (1997) Role of Rho family proteins in phospholipase D activation by growth factors. J Biol Chem 272:1615–1620

    CAS  PubMed  Google Scholar 

  45. Herrman H, McGorry P, Mills J, Singh B (1991) Hidden severe psychiatric morbidity in sentenced prisoners: an Australian study. Am J Psychiatry 148:236–239

    CAS  PubMed  Google Scholar 

  46. Kim SW, Hayashi M, Lo JF et al (2003) ADP-ribosylation factor 4 small GTPase mediates epidermal growth factor receptor-dependent phospholipase D2 activation. J Biol Chem 278:2661–2668

    CAS  PubMed  Google Scholar 

  47. Park JB, Lee CS, Lee HY et al (2004) Regulation of phospholipase D2 by GTP-dependent interaction with dynamin. Adv Enzyme Regul 44:249–264

    CAS  PubMed  Google Scholar 

  48. Cho CH, Lee CS, Chang M et al (2004) Localization of VEGFR-2 and PLD2 in endothelial caveolae is involved in VEGF-induced phosphorylation of MEK and ERK. Am J Physiol Heart Circ Physiol 286:H1881–H1888

    CAS  PubMed  Google Scholar 

  49. Meacci E, Nuti F, Catarzi S et al (2003) Activation of phospholipase D by bradykinin and sphingosine 1-phosphate in A549 human lung adenocarcinoma cells via different GTP-binding proteins and protein kinase C δ signaling pathways. Biochemistry 42:284–292

    CAS  PubMed  Google Scholar 

  50. Kim Y, Han JM, Park JB et al (1999) Phosphorylation and activation of phospholipase D1 by protein kinase C in vivo: determination of multiple phosphorylation sites. Biochemistry 38:10344–10351

    CAS  PubMed  Google Scholar 

  51. Han JM, Kim Y, Lee JS et al (2002) Localization of phospholipase D1 to caveolin-enriched membrane via palmitoylation: implications for epidermal growth factor signaling. Mol Biol Cell 13:3976–3988

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Lee HY, Jung H, Jang IH et al (2008) Cdk5 phosphorylates PLD2 to mediate EGF-dependent insulin secretion. Cell Signal 20:1787–1794

    CAS  PubMed  Google Scholar 

  53. Ahn BH, Kim SY, Kim EH et al (2003) Transmodulation between phospholipase D and c-Src enhances cell proliferation. Mol Cell Biol 23:3103–3115

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Di Fulvio M, Frondorf K, Henkels KM et al (2007) The Grb2/PLD2 interaction is essential for lipase activity, intracellular localization and signaling in response to EGF. J Mol Biol 367:814–824

    PubMed Central  PubMed  Google Scholar 

  55. Jang IH, Lee S, Park JB et al (2003) The direct interaction of phospholipase C-γ1 with phospholipase D2 is important for epidermal growth factor signaling. J Biol Chem 278:18184–18190

    CAS  PubMed  Google Scholar 

  56. Lee HY, Park JB, Jang IH et al (2004) Munc-18-1 inhibits phospholipase D activity by direct interaction in an epidermal growth factor-reversible manner. J Biol Chem 279:16339–16348

    CAS  PubMed  Google Scholar 

  57. Brown HA, Gutowski S, Moomaw CR et al (1993) ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75:1137–1144

    CAS  PubMed  Google Scholar 

  58. Honda A, Nogami M, Yokozeki T et al (1999) Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99:521–532

    CAS  PubMed  Google Scholar 

  59. Zhao C, Du G, Skowronek K et al (2007) Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat Cell Biol 9:706–712

    CAS  PubMed  Google Scholar 

  60. Carpio LC, Dziak R (1998) Phosphatidic acid effects on cytosolic calcium and proliferation in osteoblastic cells. Prostaglandins Leukot Essent Fatty Acids 59:101–109

    CAS  PubMed  Google Scholar 

  61. Lee HY, Yea K, Kim J et al (2008) Epidermal growth factor increases insulin secretion and lowers blood glucose in diabetic mice. J Cell Mol Med 12:1593–1604

    CAS  PubMed  Google Scholar 

  62. Mazie AR, Spix JK, Block ER et al (2006) Epithelial cell motility is triggered by activation of the EGF receptor through phosphatidic acid signaling. J Cell Sci 119:1645–1654

    CAS  PubMed  Google Scholar 

  63. Sugawa N, Ekstrand AJ, James CD, Collins VP (1990) Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas. Proc Natl Acad Sci U S A 87:8602–8606

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Ekstrand AJ, Sugawa N, James CD, Collins VP (1992) Amplified and rearranged epidermal growth factor receptor genes in human glioblastomas reveal deletions of sequences encoding portions of the N- and/or C-terminal tails. Proc Natl Acad Sci U S A 89:4309–4313

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Noh DY, Ahn SJ, Lee RA et al (2000) Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Lett 161:207–214

    CAS  PubMed  Google Scholar 

  66. Saito M, Iwadate M, Higashimoto M et al (2007) Expression of phospholipase D2 in human colorectal carcinoma. Oncol Rep 18:1329–1334

    CAS  PubMed  Google Scholar 

  67. Zhao Y, Ehara H, Akao Y et al (2000) Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochem Biophys Res Commun 278:140–143

    CAS  PubMed  Google Scholar 

  68. Joseph T, Wooden R, Bryant A et al (2001) Transformation of cells overexpressing a tyrosine kinase by phospholipase D1 and D2. Biochem Biophys Res Commun 289:1019–1024

    CAS  PubMed  Google Scholar 

  69. Kang DW, Park MH, Lee YJ et al (2008) Phorbol ester up-regulates phospholipase D1 but not phospholipase D2 expression through a PKC/Ras/ERK/NFκB-dependent pathway and enhances matrix metalloproteinase-9 secretion in colon cancer cells. J Biol Chem 283:4094–4104

    CAS  PubMed  Google Scholar 

  70. Park MH, Ahn BH, Hong YK, Min do S (2009) Overexpression of phospholipase D enhances matrix metalloproteinase-2 expression and glioma cell invasion via protein kinase C and protein kinase A/NF-κB/Sp1-mediated signaling pathways. Carcinogenesis 30:356–365

    Google Scholar 

  71. Laplante M, Sabatini DM (2008) mTOR signaling at a glance. J Cell Sci 122:3589–3594

    Google Scholar 

  72. Sun Y, Chen J (2008) mTOR signaling: PLD takes center stage. Cell Cycle 7:3118–3123

    CAS  PubMed  Google Scholar 

  73. Wang X, Proud CG (2011) mTORC1 signaling: what we still don’t know. J Mol Cell Biol 3:206–220

    CAS  PubMed  Google Scholar 

  74. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    CAS  PubMed  Google Scholar 

  75. Kim DH, Sarbassov DD, Ali SM et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110:163–175

    CAS  PubMed  Google Scholar 

  76. Fingar DC, Salama S, Tsou C et al (2002) Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16:1472–1487

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    CAS  PubMed  Google Scholar 

  78. Long X, Lin Y, Ortiz-Vega S et al (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15:702–713

    CAS  PubMed  Google Scholar 

  79. Kim E, Goraksha-Hicks P, Li L et al (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10:935–945

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Sancak Y, Peterson TR, Shaul YD et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496–1501

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Juhasz G, Hill JH, Yan Y et al (2008) The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J Cell Biol 181:655–666

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Nobukuni T, Joaquin M, Roccio M et al (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A 102:14238–14243

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Long YC, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116:1776–1783

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Foster DA (2009) Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells. Biochim Biophys Acta 1791:949–955

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Fang Y, Vilella-Bach M, Bachmann R et al (2001) Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294:1942–1945

    CAS  PubMed  Google Scholar 

  86. Chen Y, Zheng Y, Foster DA (2003) Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene 22:3937–3942

    CAS  PubMed  Google Scholar 

  87. Toschi A, Lee E, Xu L et al (2009) Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: competition with rapamycin. Mol Cell Biol 29:1411–1420

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Ha SH, Kim DH, Kim IS et al (2006) PLD2 forms a functional complex with mTOR/raptor to transduce mitogenic signals. Cell Signal 18:2283–2291

    CAS  PubMed  Google Scholar 

  89. Roccio M, Bos JL, Zwartkruis FJ (2006) Regulation of the small GTPase Rheb by amino acids. Oncogene 25:657–664

    CAS  PubMed  Google Scholar 

  90. Xu L, Salloum D, Medlin PS et al (2011) Phospholipase D mediates nutrient input to mammalian target of rapamycin complex 1 (mTORC1). J Biol Chem 286:25477–25486

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Luo JQ, Liu X, Frankel P et al (1998) Functional association between Arf and RalA in active phospholipase D complex. Proc Natl Acad Sci U S A 95:3632–3637

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Barnes BR, Zierath JR (2005) Role of AMP-activated protein kinase in the control of glucose homeostasis. Curr Mol Med 5:341–348

    CAS  PubMed  Google Scholar 

  93. Joost HG, Thorens B (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol 18:247–256

    CAS  PubMed  Google Scholar 

  94. Kim JH, Park JM, Yea K et al (2010) Phospholipase D1 mediates AMP-activated protein kinase signaling for glucose uptake. PLoS One 5:e9600

    PubMed Central  PubMed  Google Scholar 

  95. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    CAS  PubMed  Google Scholar 

  96. Lee MN, Ha SH, Kim J et al (2009) Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol 29:3991–4001

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Kim JH, Lee S, Park JB et al (2003) Hydrogen peroxide induces association between glyceraldehyde 3-phosphate dehydrogenase and phospholipase D2 to facilitate phospholipase D2 activation in PC12 cells. J Neurochem 85:1228–1236

    CAS  PubMed  Google Scholar 

  98. Yamada Y, Hamajima N, Kato T et al (2003) Association of a polymorphism of the phospholipase D2 gene with the prevalence of colorectal cancer. J Mol Med (Berl) 81:126–131

    CAS  Google Scholar 

  99. Uchida N, Okamura S, Kuwano H (1999) Phospholipase D activity in human gastric carcinoma. Anticancer Res 19:671–675

    CAS  PubMed  Google Scholar 

  100. Foster DA (2004) Targeting mTOR-mediated survival signals in anticancer therapeutic strategies. Expert Rev Anticancer Ther 4:691–701

    CAS  PubMed  Google Scholar 

  101. de Forges H, Bouissou A, Perez F (2012) Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 44:266–274

    PubMed  Google Scholar 

  102. Berepiki A, Lichius A, Read ND (2011) Actin organization and dynamics in filamentous fungi. Nat Rev Microbiol 9:876–887

    CAS  PubMed  Google Scholar 

  103. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    CAS  PubMed  Google Scholar 

  104. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    CAS  PubMed  Google Scholar 

  105. Kurisu S, Takenawa T (2009) The WASP and WAVE family proteins. Genome Biol 10:226

    PubMed Central  PubMed  Google Scholar 

  106. Rudge SA, Wakelam MJ (2009) Inter-regulatory dynamics of phospholipase D and the actin cytoskeleton. Biochim Biophys Acta 1791:856–861

    CAS  PubMed  Google Scholar 

  107. Chae YC, Kim JH, Kim KL et al (2008) Phospholipase D activity regulates integrin-mediated cell spreading and migration by inducing GTP-Rac translocation to the plasma membrane. Mol Biol Cell 19:3111–3123

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Mahankali M, Henkels KM, Alter G, Gomez-Cambronero J (2012) Identification of the catalytic site of phospholipase D2 (PLD2) newly described guanine nucleotide exchange factor activity. J Biol Chem 287:41417–41431

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Mahankali M, Peng HJ, Henkels KM et al (2011) Phospholipase D2 (PLD2) is a guanine nucleotide exchange factor (GEF) for the GTPase Rac2. Proc Natl Acad Sci U S A 108:19617–19622

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Lee S, Park JB, Kim JH et al (2001) Actin directly interacts with phospholipase D, inhibiting its activity. J Biol Chem 276:28252–28260

    CAS  PubMed  Google Scholar 

  111. Kusner DJ, Barton JA, Wen KK et al (2002) Regulation of phospholipase D activity by actin. Actin exerts bidirectional modulation of Mammalian phospholipase D activity in a polymerization-dependent, isoform-specific manner. J Biol Chem 277:50683–50692

    CAS  PubMed  Google Scholar 

  112. Chae YC, Lee S, Lee HY et al (2005) Inhibition of muscarinic receptor-linked phospholipase D activation by association with tubulin. J Biol Chem 280:3723–3730

    CAS  PubMed  Google Scholar 

  113. Park JB, Kim JH, Kim Y et al (2000) Cardiac phospholipase D2 localizes to sarcolemmal membranes and is inhibited by α-actinin in an ADP-ribosylation factor-reversible manner. J Biol Chem 275:21295–21301

    CAS  PubMed  Google Scholar 

  114. Han L, Stope MB, de Jesus ML et al (2007) Direct stimulation of receptor-controlled phospholipase D1 by phospho-cofilin. EMBO J 26:4189–4202

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Insall R, Muller-Taubenberger A, Machesky L et al (2001) Dynamics of the Dictyostelium Arp2/3 complex in endocytosis, cytokinesis, and chemotaxis. Cell Motil Cytoskeleton 50:115–128

    CAS  PubMed  Google Scholar 

  117. Kantonen S, Hatton N, Mahankali M et al (2011) A novel phospholipase D2-Grb2-WASp heterotrimer regulates leukocyte phagocytosis in a two-step mechanism. Mol Cell Biol 31:4524–4537

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Kanaho Y, Funakoshi Y, Hasegawa H (2009) Phospholipase D signalling and its involvement in neurite outgrowth. Biochim Biophys Acta 1791:898–904

    CAS  PubMed  Google Scholar 

  119. Pilquil C, Dewald J, Cherney A et al (2006) Lipid phosphate phosphatase-1 regulates lysophosphatidate-induced fibroblast migration by controlling phospholipase D2-dependent phosphatidate generation. J Biol Chem 281:38418–38429

    CAS  PubMed  Google Scholar 

  120. Santy LC, Casanova JE (2001) Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J Cell Biol 154:599–610

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Du G, Frohman MA (2009) A lipid-signaled myosin phosphatase surge disperses cortical contractile force early in cell spreading. Mol Biol Cell 20:200–208

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Zheng Y, Rodrik V, Toschi A et al (2006) Phospholipase D couples survival and migration signals in stress response of human cancer cells. J Biol Chem 281:15862–15868

    CAS  PubMed  Google Scholar 

  123. Knoepp SM, Chahal MS, Xie Y et al (2008) Effects of active and inactive phospholipase D2 on signal transduction, adhesion, migration, invasion, and metastasis in EL4 lymphoma cells. Mol Pharmacol 74:574–584

    CAS  PubMed  Google Scholar 

  124. Peng JF, Rhodes PG (2000) Developmental expression of phospholipase D2 mRNA in rat brain. Int J Dev Neurosci 18:585–589

    CAS  PubMed  Google Scholar 

  125. Lee EJ, Min DS, Lee MY et al (2002) Differential expression of phospholipase D1 in the developing retina. Eur J Neurosci 15:1006–1012

    PubMed  Google Scholar 

  126. Moon C, Kim H, Kim S et al (2008) Transient expression of phospholipase D1 during heart development in rats. J Vet Med Sci 70:411–413

    CAS  PubMed  Google Scholar 

  127. Moon C, Jeong J, Shin MK et al (2009) Expression of phospholipase D isozymes in mouse lungs during postnatal development. J Vet Med Sci 71:965–968

    CAS  PubMed  Google Scholar 

  128. Kim S, Kim H, Lee Y et al (2007) The expression and cellular localization of phospholipase D isozymes in the developing mouse testis. J Vet Sci 8:209–212

    PubMed Central  PubMed  Google Scholar 

  129. Jin JK, Kim NH, Lee YJ et al (2006) Phospholipase D1 is up-regulated in the mitochondrial fraction from the brains of Alzheimer’s disease patients. Neurosci Lett 407:263–267

    CAS  PubMed  Google Scholar 

  130. Peng JH, Feng Y, Rhodes PG (2006) Down-regulation of phospholipase D2 mRNA in neonatal rat brainstem and cerebellum after hypoxia-ischemia. Neurochem Res 31:1191–1196

    CAS  PubMed  Google Scholar 

  131. Min do S, Choi JS, Kim HY et al (2007) Ischemic preconditioning upregulates expression of phospholipase D2 in the rat hippocampus. Acta Neuropathol 114:157–162

    Google Scholar 

  132. Chen MC, Paez-Espinosa V, Welsh N, Eizirik DL (2000) Interleukin-1β regulates phospholipase D-1 expression in rat pancreatic beta-cells. Endocrinology 141:2822–2828

    CAS  PubMed  Google Scholar 

  133. LaLonde MM, Janssens H, Rosenbaum E et al (2005) Regulation of phototransduction responsiveness and retinal degeneration by a phospholipase D-generated signaling lipid. J Cell Biol 169:471–479

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Dall’Armi C, Hurtado-Lorenzo A, Tian H et al (2010) The phospholipase D1 pathway modulates macroautophagy. Nat Commun 1:142

    PubMed Central  PubMed  Google Scholar 

  135. Oliveira TG, Chan RB, Tian H et al (2010) Phospholipase d2 ablation ameliorates Alzheimer’s disease-linked synaptic dysfunction and cognitive deficits. J Neurosci 30:16419–16428

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Norton LJ, Zhang Q, Saqib KM et al (2011) PLD1 rather than PLD2 regulates phorbol-ester-, adhesion-dependent and Fc γ-receptor-stimulated ROS production in neutrophils. J Cell Sci 124:1973–1983

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Sato T, Hongu T, Sakamoto M et al (2013) Molecular mechanisms of N-formyl-methionyl-leucyl-phenylalanine-induced superoxide generation and degranulation in mouse neutrophils: phospholipase D is dispensable. Mol Cell Biol 33(1):136–145

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants (No. 2012R1A2A1A03010110 and NRF‑M1AXA002‑2010‑0029764) of National Research Foundation funded by the Ministry of Education Science and Technology of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ho Ryu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, C.S., Ghim, J., Jang, JH., Jeon, H., Suh, PG., Ryu, S.H. (2014). Emerging Roles of Phospholipase D in Pathophysiological Signaling. In: Tappia, P., Dhalla, N. (eds) Phospholipases in Health and Disease. Advances in Biochemistry in Health and Disease, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0464-8_22

Download citation

Publish with us

Policies and ethics