Skip to main content

Primary Lithium Air Batteries

  • Chapter
  • First Online:
The Lithium Air Battery

Abstract

Lithium air batteries exhibit much higher energy density than most other conventional energy-storage systems. Although there are significant barriers that need to be overcome before the commercialization of primary lithium air batteries, these barriers are less difficult to be solved than those in the rechargeable lithium air batteries. The key to realize the potential of primary lithium air batteries is a balanced design for the full batteries. This includes a balance between the mesopore structure and the macropore structures of the air electrode, a balance between oxygen solubility and polarity of the electrolyte, a balance between oxygen-diffusion rate and water penetration rate of the protective membrane, and a balance between energy density and power density of the batteries. Because of many similarities between primary and rechargeable lithium air batteries, success in primary lithium air batteries can also largely help the development of rechargeable lithium air batteries, which have great potential to be used in the next-generation energy-storage systems beyond lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143:1–5

    Article  Google Scholar 

  2. Abraham KM, Jiang Z (1996) Solid polymer electrolyte-based oxygen batteries. US Patent 5,510,209, April 1996

    Google Scholar 

  3. Visco SJ et al (2004) Lithium fuel cells. In: Proceedings of the 12th international meeting on lithium batteries. The Electrochemical Society, Nara, Japan, 27 June to 2 July 2004, Abstract No. 396

    Google Scholar 

  4. Kuboki T et al (2005) Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources 146:766–769

    Article  Google Scholar 

  5. Kinoshita K (1992) Electrochemical oxygen technology. The Electrochemical Society series. Wiley, New York, p 431

    Google Scholar 

  6. Read J (2006) Ether-based electrolytes for the lithium/oxygen organic electrolyte battery. J Electrochem Soc 153:A96–A100

    Article  Google Scholar 

  7. Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149:A1190–A1195

    Article  Google Scholar 

  8. Zheng JP et al (2008) Theoretical energy density of Li-air batteries. J Electrochem Soc 155:A432–A437

    Article  Google Scholar 

  9. Zhang JG et al (2010) Ambient operation of Li-air batteries. J Power Sources 195:4332–4337

    Article  Google Scholar 

  10. Xiao J (2010) Optimization of air electrode for Li-air batteries. J Electrochem Soc 157:A487–A492

    Article  Google Scholar 

  11. Korovin N (2006) Metal-air batteries with carbonaceous air electrodes and nonmetallic catalysts. In: Barsukov IV et al (eds) New carbon based materials for electrochemical energy storage systems: batteries, supercapacitors and fuel cells. IOS Press, Amsterdam, pp 137–149

    Chapter  Google Scholar 

  12. Lan CJ, Chi YF, Chin TS (2008) Bamboo-carbon as a novel carbon-support/electrocatalyst of air cathodes. ECS Trans 3:51–65

    Article  Google Scholar 

  13. Zhang SS, Foster D, Read J (2010) Discharge characteristic of a non-aqueous electrolyte Li/O-2 battery. J Power Sources 195:1235–1240

    Article  Google Scholar 

  14. Energizer (2004) Application manual: zinc air (ZN/O2). http://data.energizer.com/PDFs/zincair_appman.pdf. Accessed 10 May 2012

  15. Zhang XG (2008) Novel anode for high power zinc-air batteries. ECS Trans 3:1–11

    Article  Google Scholar 

  16. Electric Fuel Battery Corporation (EFB) (2010) About zinc air. http://www.efbpower.com/aboutza.html. Accessed 10 May 2012

  17. Reynolds TA, Brose DJ, Golovin MN (1999) Membrane for selective transport of oxygen over water vapor and metal-air electrochemical cell including said membrane. AER Energy Resources, US Patent 5,985,475, 16 Nov 1999

    Google Scholar 

  18. Littauer EL, Tsai KC (1997) Corrosion of lithium in alkaline-solution. J Electrochem Soc 124:850–855

    Article  Google Scholar 

  19. Ye H, Xu JJ (2008) Polymer electrolytes based on ionic liquids and their application to solid-state thin-film Li-oxygen batteries. ECS Trans 3:73–81

    Article  Google Scholar 

  20. Kumar B et al (2010) A solid-state, rechargeable, long cycle life lithium-air battery. J Electrochem Soc 157:A50–A54

    Article  Google Scholar 

  21. Visco SJ et al (2007) Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture. PolyPlus Battery Company. US Patent 7,282,295, 16 Oct 2007

    Google Scholar 

  22. Beattie SD, Manolescu DM, Blair SL (2009) High-capacity lithium-air cathodes. J Electrochem Soc 156:A44–A47

    Article  Google Scholar 

  23. Abraham KM, Jiang Z, Carroll B (1997) Highly conductive PEO-like polymer electrolytes. Chem Mater 9:1978–1988

    Article  Google Scholar 

  24. Yang XH, Xia YY (2010) The effect of oxygen pressures on the electrochemical profile of lithium/oxygen battery. J Solid State Electrochem 14:109–114

    Article  MATH  Google Scholar 

  25. Dobley A, Morein C, Abraham KM (2005) Cathode optimization for lithium-air batteries. In: Abstracts of the 208th meeting of the Electrochemical Society: energy technology and battery joint general session, Los Angeles, 16–21 Oct 2005, Abstract No. 823

    Google Scholar 

  26. Shiga T, Nakano H, Imagawa H (2008) Non-aqueous air battery and catalyst therefor. US Patent 7,887,957B2, 15 Feb 2011

    Google Scholar 

  27. Williford RE, Zhang JG (2009) Air electrode design for sustained high power operation of Li-air batteries. J Power Sources 194:1164–1170

    Article  Google Scholar 

  28. Xiao J et al (2010) Hybrid air-electrode for Li-air batteries. J Electrochem Soc 157:A294–A297

    Article  Google Scholar 

  29. Xu W et al (2009) Optimization of nonaqueous electrolytes for primary lithium/air batteries operated in ambient environment. J Electrochem Soc 156:A773–A779

    Article  Google Scholar 

  30. Xu W et al (2010) Effects of nonaqueous electrolytes on the performance of lithium/air batteries. J Electrochem Soc 157:A219–A224

    Article  Google Scholar 

  31. Kowalczk I, Read J, Salomon M (2007) Li-air batteries: a classic example of limitations owing to solubilities. Pure Appl Chem 79:851–860

    Article  Google Scholar 

  32. Wang YG, Zhou HS (2010) A lithium-air battery with a potential to continuously reduce O-2 from air for delivering energy. J Power Sources 195:358–361

    Article  Google Scholar 

  33. Shimonishi Y et al (2010) A study on lithium/air secondary batteries—stability of NASICON-type glass ceramics in acid solutions. J Power Sources 195:6187–6191

    Article  Google Scholar 

  34. Debart A et al (2007) Effect of catalyst on the performance of rechargeable lithium/air batteries. ECS Trans 3:225–232

    Article  Google Scholar 

  35. Debart A et al (2008) Alpha-MnO2 nanowires: a catalyst for the O-2 electrode in rechargeable lithium batteries. Angew Chem Int Ed 47:4521–4524

    Article  Google Scholar 

  36. Debart A et al (2007) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 147:1177–1182

    Article  Google Scholar 

  37. Giordani V et al (2010) H2O2 decomposition reaction as selecting tool for catalysts in Li-O2 cells. Electrochem Solid State Lett 13:A180–A183

    Article  Google Scholar 

  38. Laoire CO et al (2009) Elucidating the mechanism of oxygen reduction for lithium-air battery applications. J Phys Chem C 113:20127–20134

    Article  Google Scholar 

  39. Hamlen RP, Atwater TB (2001) Metal/air batteries. In: Linden D, Reddy T (eds) Handbook of batteries, 3rd edn. McGraw-Hill, New York, pp 38.1–38.53

    Google Scholar 

  40. Visco SJ, Nimon E, De Jonghe LC (2009) Secondary batteries—metal-air systems: lithium-air. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 376–383

    Chapter  Google Scholar 

  41. Jöerissen L (2009) Secondary batteries—metal-air systems: bifunctional oxygen electrodes. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 5. Elsevier, Amsterdam, pp 356–371

    Chapter  Google Scholar 

  42. Luo J-Y, Cui W-J, He P, Xia YY (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2:760–765

    Article  Google Scholar 

  43. Zheng JP, Andrei P, Hendrickson M, Plichta EJ (2011) The theoretical energy densities of dual-electrolytes rechargeable Li-air and Li-air flow batteries. J Electrochem Soc 158:A43–A46

    Article  Google Scholar 

  44. Read J et al (2003) Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J Electrochem Soc 150:A1351–A1356

    Article  Google Scholar 

  45. Cheng H, Scott K (2010) Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. J Power Sources 195:1370–1374

    Article  Google Scholar 

  46. Lee JS et al (2011) Metal–air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 1:34–50

    Article  Google Scholar 

  47. Wang G et al (2008) Improving the DMFC performance with Ketjen Black EC 300J as the additive in the cathode catalyst layer. J Power Sources 180:176–180

    Article  Google Scholar 

  48. Mirzaeian M, Hall PJ (2009) Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim Acta 54:7444–7451

    Article  Google Scholar 

  49. Tran C, Yang X-Q, Qu D (2010) Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity. J Power Sources 195:2057–2063

    Article  Google Scholar 

  50. Zhang GQ et al (2010) Lithium–air batteries using SWNT/CNF buckypapers as air electrodes. J Electrochem Soc 157:A953–A956

    Article  Google Scholar 

  51. Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries. Energy Environ Sci 4:2952–2958

    Article  Google Scholar 

  52. Liu C, Yu Z, Neff D, Zhamu A, Jang B (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  Google Scholar 

  53. Wang D et al (2009) Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3:907–914

    Article  Google Scholar 

  54. Yoo E, Zhou H (2011) Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5:3020–3026

    Article  Google Scholar 

  55. Li Y, Wang J, Li X, Geng D, Li R, Sun X (2011) Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem Commun 47:9438–9440

    Article  Google Scholar 

  56. Xiao J et al (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11:5071–5078

    Article  Google Scholar 

  57. Xu Y, Shelton WA (2011) Oxygen reduction by lithium on model carbon and oxidized carbon structures. J Electrochem Soc 158:A1177–A1184

    Article  Google Scholar 

  58. Zhang S, Foster D, Read J (2010) A high energy density lithium/sulfur–oxygen hybrid battery. J Power Sources 195:3684–3688

    Article  Google Scholar 

  59. Xiao J et al (2011) Investigation of the rechargeability of Li-O2 batteries in non-aqueous electrolyte. J Power Sources 196:5674–5678

    Article  Google Scholar 

  60. Lu Y-C et al (2011) The discharge rate capability of rechargeable Li-O2 batteries. Energy Environ Sci 4:2999–3007

    Article  Google Scholar 

  61. Lu Y-C et al (2010) Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J Am Chem Soc 132:12170–12171

    Article  Google Scholar 

  62. Shiga T, Nakano H, Imagawa H (2008) US 2008/0299456 A1, 4 Dec 2008

    Google Scholar 

  63. Xu W, Xiao J, Wang D, Zhang J, Zhang JG (2010) Crown ethers in nonaqueous electrolytes for lithium/air batteries. Electrochem Solid State Lett 13:A48–A51

    Article  Google Scholar 

  64. Zhang SS, Read J (2011) Partially fluorinated solvent as a co-solvent for the non-aqueous electrolyte of Li-air battery. J Power Sources 196:2867–2870

    Article  Google Scholar 

  65. Zhang S, Xu K, Read J (2011) A non-aqueous electrolyte for the operation of Li-air battery in ambient environment. J Power Sources 196:3906–3910

    Article  Google Scholar 

  66. Crowther O, Meyer B, Salomon M (2011) Methoxybenzene as an electrolyte solvent for the primary lithium metal air battery. Electrochem Solid State Lett 14:A113–A115

    Article  Google Scholar 

  67. Zhang S, Foster D, Read J (2010) The effect of quaternary ammonium on discharge characteristic of a non-aqueous electrolyte Li/O2 battery. Electrochim Acta 56:1283–1287

    Article  Google Scholar 

  68. Wang Y, Zheng D, Yang X-Q, Yang D (2011) High rate oxygen reduction in non-aqueous electrolytes with the addition of perfluorinated additives. Energy Environ Sci 4:3697–3702

    Article  Google Scholar 

  69. Zhang Z et al (2011) Increased stability toward oxygen reduction products for lithium-air batteries with oligoether-functionalized silane electrolytes. J Phys Chem C 115:25535–25542

    Article  Google Scholar 

  70. Mohamed SN et al (2008) Electrochemical studies on epoxidised natural rubber-based gel polymer electrolytes for lithium-air cells. J Power Sources 183:351–354

    Article  MathSciNet  Google Scholar 

  71. Zhang D, Li R, Huang T, Yu A (2010) Novel composite polymer electrolyte for lithium air batteries. J Power Sources 195:1202–1206

    Article  Google Scholar 

  72. Ye H, Huang J, Xu JJ, Khalfan A, Greenbaum SG (2007) Li ion conducting polymer gel electrolytes based on ionic liquid/PVDF-HFP blends. J Electrochem Soc 154:A1048–A1057

    Article  Google Scholar 

  73. Visco SJ, Katz BD, Nimon YS, Dejonghe LD (2007) Protected active metal electrode and battery cell structures with non-aqueous interlayer architecture. US Patent 7,282,295, 16 Oct 2007

    Google Scholar 

  74. Imanishi N et al (2008) Lithium anode for lithium-air secondary batteries. J Power Sources 185:1392–1397

    Article  Google Scholar 

  75. Hasegawa S et al (2009) Study on lithium/air secondary batteries—stability of NASICON-type lithium ion conducting glass-ceramics with water. J Power Sources 189:371–377

    Article  Google Scholar 

  76. Affinito JD et al (2007) Rechargeable lithium/water, lithium/air batteries. US Patent 20070221265 A1

    Google Scholar 

  77. Zhang T et al (2008) Li/polymer electrolyte/water stable lithium-conducting glass ceramics composite for lithium-air secondary batteries with an aqueous electrolyte. J Electrochem Soc 155:A965–A969

    Article  Google Scholar 

  78. Zhang T et al (2009) Water-stable lithium anode with the three-layer construction for aqueous lithium–air secondary batteries. Electrochem Solid State Lett 12:A132–A135

    Article  Google Scholar 

  79. Zhang T et al (2010) Stability of a water-stable lithium metal anode for a lithium-air battery with acetic acid-water solutions. J Electrochem Soc 157:A214–A218

    Article  Google Scholar 

  80. Zhou H, Wang Y, Li H, He P (2010) The development of a new type of rechargeable batteries based on hybrid electrolytes. ChemSusChem 3:1009–1019

    Article  Google Scholar 

  81. Shimonishi Y et al (2011) A study on lithium/air secondary batteries—stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sources 196:5128–5132

    Article  Google Scholar 

  82. He P, Wang Y, Zhou H (2011) The effect of alkalinity and temperature on the performance of lithium-air fuel cell with hybrid electrolytes. J Power Sources 196:5611–5616

    Article  Google Scholar 

  83. Li L, Zhao X, Manthiram A (2012) A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte. Electrochem Commun 14:78–81

    Article  Google Scholar 

  84. Wolfenstine J, Allen JL (2008) Reaction of Li0.33La0.57TiO3 with water. J Mater Sci 43:7247–7249

    Article  Google Scholar 

  85. Aleshin GY et al (2011) Protected anodes for lithium-air batteries. Solid State Ion 184:62–64

    Article  Google Scholar 

  86. Yang XH, He P, Xia YY (2009) Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem Commun 11:1127–1130

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Guang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, JG., Xiao, J., Xu, W. (2014). Primary Lithium Air Batteries. In: Imanishi, N., Luntz, A., Bruce, P. (eds) The Lithium Air Battery. Springer, New York, NY. https://doi.org/10.1007/978-1-4899-8062-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-8062-5_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4899-8061-8

  • Online ISBN: 978-1-4899-8062-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics