Skip to main content

Recent Observations on Quench-Aging and Strain-Aging of Iron and Steel

  • Chapter

Part of the book series: Materials Science Research ((MSR))

Abstract

The results of recent studies of the precipitation of carbides and nitrides from solid solution in alpha iron are combined with earlier findings in an effort to present as complete an account as possible of these processes and their effects. The study of the effects of alloy additions on carbide nucleation, growth and structure was continued, using Fe-Si-C alloys. Silicon greatly retards the rate of growth of carbides and widens the temperature range in which the low-temperature carbide is stable. The inhibition of tempering of martensite by silicon is attributed to these effects. The structural changes during quench-aging of an Fe–0.02%N alloy and an 0.03%C rimmed steel are correlated with changes in hardness, tensile properties, and relaxation strength. During the period of rapid increase of hardness, the interparticle spacing remained constant or increased slightly. The hardening is attributed principally to particle thickening, which increases resistance to passage of dislocations. The interactions between dislocations and particles after various aging treatments substantiates this conclusion. Softening during overaging was related to an increase of interparticle spacing. The quench-aging of low-carbon steels can be complicated by a change in the carbide from the low-temperature phase to Fe3C. Preaging of the 0.02%N alloy at room temperature greatly enhanced its ability to harden during subsequent aging at 100°C, by increasing the number of nuclei for precipitation. In Fe-N, Fe-C, and Fe-Mn-C alloys, and in low-carbon steels, substantial strain-aging can occur without detectable precipitation on dislocations, when the alloys are not supersaturated with interstitial elements. If the alloys are supersaturated at the aging temperature, the later stages of strain-aging include precipitation (quench-aging). The rise in flow stress during strain-aging is attributed to the strong pinning of dislocations, which necessitates the generation of new dislocations at points of stress concentration. The strengthening of steel in the blue-brittle temperature range is associated with repeated generation of new dislocations as the old dislocations are pinned dynamically by interstitial solute atoms during straining.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Kenyon and R. S. Burns, Age Hardening of Metals, ASM, 262 (1940).

    Google Scholar 

  2. H. W. Paxton, Precipitation from Solid Solution, ASM 208 (1959).

    Google Scholar 

  3. C. Wert, Thermodynamics in Physical Metallurgy, ASM 178 (1950).

    Google Scholar 

  4. W. Pitsch and K. Lücke, Arch. Eisenhüttenw. 27, 45 (1956).

    Google Scholar 

  5. R. H. Doremus, Trans. AIME 218, 596 (1960).

    Google Scholar 

  6. C. Wert, J. Appl. Phys. 20, 943 (1949).

    Article  Google Scholar 

  7. S. Harper, Phys. Rev. 83, 709 (1951).

    Article  Google Scholar 

  8. R. C. Newman and R. Bullough, Proc. Roy. Soc. 266, 209 (1962).

    Article  Google Scholar 

  9. L. J. Dijkstra, Trans. AIME 185, 752 (1949).

    Google Scholar 

  10. W. Dahl and K. Lücke, Arch. Eisenhüttenw. 25, 241 (1954).

    Google Scholar 

  11. W. R. Thomas and C. M. Leak, J. Iron and Steel Inst. 180, 155 (1955).

    Google Scholar 

  12. W. S. Carswell, Acta Met. 9, 670 (1961).

    Article  Google Scholar 

  13. A. H. Cottrell and B. A. Bilby, Proc. Phys. Soc. A62, 49 (1949).

    Article  Google Scholar 

  14. A. L. Tsou, J. Nutting, and J. W. Menter, J. Iron and Steel Inst. 172, 163 (1952).

    Google Scholar 

  15. G. Lagerberg and B. S. Lement, Trans. ASM 50, 141 (1958).

    Google Scholar 

  16. R. H. Doremus and E. F. Koch, Trans. AIME 218, 591 (1960).

    Google Scholar 

  17. E. Smith, Direct Observation of Imperfections in Crystals, Interscience, New York, 1962, p. 203.

    Google Scholar 

  18. K. F. Hale (private communications).

    Google Scholar 

  19. W. Pitsch, Arch. Eisenhüttenw. 32, 493 (1961).

    Google Scholar 

  20. W. C. Leslie, Acta Met. 9, 1004 (1961).

    Article  Google Scholar 

  21. A. S. Keh and H. A. Wriedt, Trans. AIME. 224, 560 (1962).

    Google Scholar 

  22. E. W. Filer and L. S. Darken, unpublished results, quoted by W. C. Leslie, Nitrogen in Ferritic Steels, A.I.S.I. Contributions to the Metallurgy of Steel, Feb. 1959.

    Google Scholar 

  23. K. H. Jack, Proc. Roy. Soc. A195, 34 (1948).

    Article  Google Scholar 

  24. R. F. Mehl, C. S. Barrett, and H. S. Jerabek, Trans. AIME 113, 211 (1934).

    Google Scholar 

  25. G. R. Booker, Acta Met. 9, 590 (1961).

    Article  Google Scholar 

  26. W. Pitsch, Arch. Eisenhüttenw. 32, 573 (1961).

    Google Scholar 

  27. K. H. Jack, Proc. Roy. Soc. (London) 208, 216 (1951).

    Article  Google Scholar 

  28. G. R. Booker, J. Norbury, and A. L. Sutton, J. Iron and Steel Inst. 187, 205 (1957).

    Google Scholar 

  29. H. S. Rosenbaum and D. Turnbull, Acta Met. 7, 664 (1959).

    Article  Google Scholar 

  30. W. C. Leslie, R. M. Fisher, and N. Sen, Acta Met. 7, 632 (1959).

    Article  Google Scholar 

  31. K. Kuo and A. Hultgren, Jernkontorets Ann. 135, 449 (1951).

    Google Scholar 

  32. R. W. Gurry, J. Christakos, and L. S. Darken, Trans. ASM, 53, 187 (1961).

    Google Scholar 

  33. W. S. Owen, Trans. ASM, 46, 812 (1954).

    Google Scholar 

  34. A. G. Allten and P. Payson, Trans. ASM 45, 498 (1953).

    Google Scholar 

  35. C. H. Shih, B. L. Averbach, and M. Cohen, Trans. ASM 48, 86 (1956).

    Google Scholar 

  36. J. Vajda, J. J. Hauser, and C. Wells, Trans. ASM 49, 517 (1957).

    Google Scholar 

  37. R. W. Heckel and H. W. Paxton, Trans. AIME 218, 799 (1960).

    Google Scholar 

  38. G. R. Booker (private communication).

    Google Scholar 

  39. W. C. Leslie, R. L. Rickett, C. P. Stroble, and G. Konoval, Trans. ASM 53, 715 (1960).

    Google Scholar 

  40. F. Garofalo, P. R. Malenock, and G. V. Smith, Symposium on Elastic Constants, ASTM, STP No. 129, 10 (1952).

    Google Scholar 

  41. E. S. Davenport and E. C. Bain, Trans. ASM 23, 1047 (1935).

    Google Scholar 

  42. R. L. Rickett, C. E. Morgan, and W. P. Wallace, unpublished results (1939).

    Google Scholar 

  43. E. Orowan, Symposium on Internal Stresses in Metals and Alloys, Institute of Metals, London, 451 (1948).

    Google Scholar 

  44. G. S. Ansell and F. V. Lenel, Acta. Met. 8, 612 (1960).

    Article  Google Scholar 

  45. W. H. Meikeljohn and R. E. Skoda, Acta. Met. 7, 675 (1959).

    Article  Google Scholar 

  46. G. S. Ansell, Acta. Met. 9, 518 (1961).

    Article  Google Scholar 

  47. M. E. Fine, Relation Between the Structure and Properties of Metals (to be published).

    Google Scholar 

  48. E. Hornbogen (to be published).

    Google Scholar 

  49. D. V. Wilson and B. Russell, Acta Met. 7, 628 (1959).

    Article  Google Scholar 

  50. D. V. Wilson and B. Russell, Acta Met. 8, 36 (1960).

    Article  Google Scholar 

  51. D. V. Wilson and B. Russell, Acta Met. 8, 468 (1960).

    Article  Google Scholar 

  52. W. C. Leslie and A. S. Keh, J. Iron and Steel Inst., 200, 722 (1962).

    Google Scholar 

  53. F. R. N. Nabarro, Strength of Solids, Phys. Soc. (London), 38 (1948).

    Google Scholar 

  54. A. H. Cottrell, Relation of Properties to Microstructure, ASM, 131 (1954).

    Google Scholar 

  55. A. S. Keh and S. Weissmann, Electron Microscopy and Strength of Crystals, Interscience, New York, (1963), p. 231.

    Google Scholar 

  56. A. H. Cottrell, Plastic Deformation of Crystalline Solids, 60 (1950).

    Google Scholar 

  57. G. T. Hahn, Acta Met. 10, 727 (1962).

    Article  Google Scholar 

  58. J. J. Gilman and W. G. Johnston, J. Appl. Phys. 31, 687 (1960).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. H. Stadelmaier W. W. Austin

Rights and permissions

Reprints and permissions

Copyright information

© 1963 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keh, A.S., Leslie, W.C. (1963). Recent Observations on Quench-Aging and Strain-Aging of Iron and Steel. In: Stadelmaier, H.H., Austin, W.W. (eds) Materials Science Research. Materials Science Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5537-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5537-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5539-5

  • Online ISBN: 978-1-4899-5537-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics