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SOME OF THE NOTATION USED IN THE BOOK 9 

analysis and graphics. Our language of choice (at present) is "S" 
(or "S-PLUS"), and a number of S programs appear in the Ap- 
pendix. Most of these programs could be easily translated into 
other languages such as Gauss, Lisp-Stat, or Matlab. Details on 
the availability of S and S-PLUS are given in the Appendix. 

1.3 Some of the notation used in the book 

Lower case bold letters such as x refer to vectors, that is, x = 
(x1,x2,. . .x,). Matrices are denoted by upper case bold letters 
such as X, while a plain uppercase letter like X refers to a random 
variable. The transpose of a vector is written as xT. A superscript 
"*" indicates a bootstrap random variable: for example, x* indi- 
cates a bootstrap data set generated from a data set x. Parameters 
are denoted by Greek letters such as 8. A hat on a letter indicates 
an estimate, such as 8. The letters F and G refer to populations. In 
Chapter 21 the same symbols are used for the cumulative distribu- 
tion function of a population. Ic is the indicator function equal to 
1 if condition C is true and 0 otherwise. For example, I{ ,<z)  = 1 
if x < 2 and 0 otherwise. The notation tr(A) refers to the trace 
of the matrix A, that is, the sum of the diagonal elements. The 
derivatives of a function g(x) are denoted by g'(x),g"(x) and so 
on. 

The notation 
F +  ( ~ 1 , ~ 2 , . . . x n )  

indicates an independent and identically distributed sample drawn 

from F .  Equivalently, we also write xii.id'F for i = 1,2, .  . . n. 
Notation such as #{xi > 3) means the number of xis greater 

than 3. logx refers to the natural logarithm of x. 
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Cross-validation and other 
estimates of prediction error 

17.1 Introduction 

In our discussion so far we have focused on a number of measures 
of statistical accuracy: standard errors, biases, and confidence in- 
tervals. All of these are measures of accuracy for parameters of a 
model. Prediction error is a different quantity that measures how 
well a model predicts the response value of a future observation. 
It is often used for model selection, since it is sensible to choose a 
model that has the lowest prediction error among a set of candi- 
dates. 

Cross-validation is a standard tool for estimating prediction er- 
ror. It is an old idea (predating the bootstrap) that has enjoyed a 
comeback in recent years with the increase in available computing 
power and speed. In this chapter we discuss cross-validation, the 
bootstrap and some other closely related techniques for estimation 
of prediction error. 

In regression models, prediction error refers to the expected 
squared difference between a future response and its prediction 
from the model: 

The expectation refers to repeated sampling from the true pop- 
ulation. Prediction error also arises in the classification problem, 
where the response falls into one of k unordered classes. For ex- 
ample, the possible responses might be Republican, Democrat, or 
Independent in a political survey. In classification problems predic- 
tion error is commonly defined as the probability of an incorrect 
classification 

PE = Prob(6 # y), (17.2) 
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hours of wear 

Figure 17.1. Hormone data. Plot shows the amount  of hormone remain- 
ing for a device versus the hours of wear. The  symbol represents the lot 
number. 

also called the misclassification rate. The methods described in this 
chapter apply to both definitions of prediction error, and also to 
others. We begin with a intuitive description of the techniques, and 
then give a more detailed account in Section 17.6.2. 

17.2 Example: hormone data 

Let's look again at  the hormone data example of chapter 9. Fig- 
ure 17.1 redisplays the data for convenience. Recall that the re- 
sponse variable yi is the amount of anti- inflammatory hormone 
remaining after zi hours of wear, in 3 lots A, B, and C indicated 
by the plotting symbol in the figure. In Chapter 9 we fit regres- 
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sion lines to the data in each lot, with different intercepts but a 
common slope. The estimates are given in Table 9.3 on page 110. 

Here we consider two questions: 1) "How well will the model pre- 
dict the amount of hormone remaining for a new device?", and 2) 
"Does this model predict better (or worse) than a single regression 
line?" To answer the first question, we could look at  the average 
residual squared error for all n = 27 responses, 

V, 

but this will tend to be too "optimistic"; that is to say, it will 
probably underestimate the true prediction error. The reason is 
that we are using the same data to assess the model as were used 
to fit it, using parameter estimates that are fine-tuned to our par- 
ticular data set. In other words the test sample is the same as the 
original sample, sometimes called the training sample. Estimates 
of prediction error obtained in this way are aptly called "apparent 
error" estimates. 

A familiar method for improving on (17.3) is to divide by n - p 
instead of n, where p is the number of predictor variables. This 
gives the usual unbiased estimate of residual variance 6' = C ( y i  - 
yi)'/(n - p). We will see that bigger corrections are necessary for 
the prediction problem. 

In order to get a more realistic estimate of prediction error, we 
would like to have a test sample that is separate from our training 
sample. Ideally this would come in the form of some new data 
from the same population that produced our original sample. In 
our example this would be hours of wear and hormone amount for 
some additional devices, say m of them. If we had these new data, 
say (z:, y?), . . . (z%, y;), we would work out the predicted values 
y: from (9.3) 

(where j = A, B, or C depending on the lot), and compute the 
average prediction sum of squares 
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Algorithm 17. 1 

K-fold cross-validation 

1. Split the data into K roughly equal-sized parts. 

2. For the kth part, fit the model to the other K - 1 parts 
of the data, and calculate the prediction error of the fitted 
model when predicting the kth part of the data. 

3. Do the above for k = 1,2 , .  . . K and combine the K esti- 
mates of prediction error. 

This quantity estimates how far, on the average, our prediction 9: 
differs from the actual value yP. 

Usually, additional data are not often available, for reasons of 
logistics or cost. To get around this, cross-validation uses part of 
the available data to fit the model, and a different part to test it. 
With large amounts of data, a common practice is to split the data 
into two equal parts. With smaller data sets like the hormone data, 
"K-fold" cross-validation makes more efficient use of the available 
information. The procedure is shown in Algorithm 17.1. 

Here is K-fold cross-validation in more detail. Suppose we split 
the data into K parts. Let k(i) be the part containing observation 

- - k ( i )  i. Denote by yi the fitted value for observation i,  computed 
with the k(i)th part of the data removed. Then the cross-validation 
estimate of prediction error is 

Often we choose k = n, resulting in "leave-one-out" cross-validation. 
For each observation i, we refit the model leaving that observa- 
tion out of the data, and then compute the predicted value for 
the ith observation, denoted by 5;'. We do this for each observa- 
tion and then compute the average cross-validation sum of squares 
cv = C ( y i  - $ii)"n. 

We applied leave-one-out cross-validation to the hormone data: 
the value of CV turned out to be 3.09. By comparison, the average 
residual squared error (17.3) is 2.20 and so it underestimates the 
prediction error by about 29%. Figure 17.2 shows the usual residual 
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hour 

Figure 17.2. Plot of residuals (circles) and cross-validated residuals 
(stars) for hormone data. 

yi  - zji (circles) and the cross-validated residual yi  - zjc2 (stars). 
Notice how the cross-validated residual is equal to or larger (in 
absolute value) than the usual residual for every case. (This turns 
out to be true in some generality: see Problems 17.1 and 18.1.) 

We can look further at  the breakdown of the CV by lot: the aver- 
age values are 2.09, 4.76 and 2.43 for lots A, B and C, respectively. 
Hence the amounts for devices in lot B are more difficult to predict 
than those in lots A and C. 

Cross-validation, as just described, requires refitting the com- 
plete model n times. In general this is unavoidable, but for least- 
squares fitting a handy shortcut is available (Problem 17.1). 
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17.4 C ,  and other estimates of prediction error 

There are other ways to estimate prediction error, and all are based 
on adjustments to the residual squared error RSE. The last part 
of this chapter describes a bootstrap approach. A simple analytic 
measure is the adjusted residual squared error 

RSE/(n - 2p) (17.7) 

where p denotes the number of regressors in the model. This ad- 
justs RSE/n upward to account for the fitting, the adjustment 
being larger as p increases. Note that RSE/(n - 2p) is a more se- 
vere adjustment to RSE than the unbiased estimate of variance 
RSE/(n - p). 

Another estimate is (one form of) the "C," statistic 

Here 62 is an estimate of the residual variance; a reasonable choice 
for 82 is RSE/(n - p). (When computing the C, statistic for a 
number of models, 6' is computed once from the value of RSE/(n- 
p) for some fixed large model.) The C, statistic is a special case of 
Akaike's information criterion (AIC) for general models. It adjusts 
RSEIn so as to make it approximately unbiased for prediction 
error: E(Cp) x PE. 

Implicitly these corrections account for the fact that the same 
data is being used to fit the model and to assess it through the 
residual squared error. The "p" in the denominator of the ad- 
justed RSE and the second term of C, are penalties to account 
for the amount of fitting. A simple argument shows that the ad- 
justed residual squared error and Cp statistic are equivalent to a 
first order of approximation (Problem 17.4.) 

Similar to Cp is Schwartz's criterion, or the BIC (Bayesian In- 
formation Criterion) 

BIC = RSEIn + log n - p62/n (17.9) 

BIC replaces the "2" in C, with logn and hence applies a more 
severe penalty than C,, as long as n > e2. As a result, when used 
for model comparisons, BIC will tend to favor more parsimonious 
models than C,. One can show that BIC is a consistent criterion 
in the sense that it chooses the correct model as n + co. This is 
not the case for the adjusted RSE or C,. 

In the hormone example, RSE = 59.27, 62 = 2.58 and p = 4 and 
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hence RSE/(n - 2p) = 3.12, Cp = 2.96, BIC = 3.45, as compared 
to the value of 3.09 for CV. 

Why bother with cross-validation when simpler alternatives are 
available? The main reason is that for fitting problems more com- 
plicated than least squares, the number of parameters "p" is not 
known. The adjusted residual squared error, C, and BIC statis- 
tics require knowledge of p, while cross-validation does not. Just 
like the bootstrap, cross-validation tends to give similar answers as 
standard methods in simple problems and its real power stems from 
its applicability in more complex situations. An example involving 
a classification tree is given below. 

A second advantage of cross-validation is its robustness. The 
Cp and BIC statistics require a roughly correct working model to 
obtain the estimate 6'. Cross-validation does not require this and 
will work well even if the models being assessed are far from correct. 

Finally, let's answer the second question raised above, regarding 
a comparison of the common slope, separate intercept model to 
a simpler model that specifies one common regression line for all 
lots. In the same manner as described above, we can compute the 
cross-validation sum of squares for the single regression line model. 
This value is 5.89 which is quite a bit larger than the value 3.27 
for the model that allows a different intercept for each lot. This is 
not surprising given the statistically significant differences among 
the intercepts in Table 9.3. But cross-validation is useful because 
it gives a quantitative measure of the price the investigator would 
pay if he does not adjust for the lot number of a device. 

17.5 Example: classification trees 

For an example that illustrates the real power of cross-validation, 
let's switch gears and discuss a modern statistical procedure called 
"classification trees." In an experiment designed to provide in- 
formation about the causes of duodenal ulcers (Giampaolo et al. 
1988), a sample of 745 rats were each administered one of 56 model 
alkyl nucleophiles. Each rat was later autopsied for the develop- 
ment of duodenal ulcer and the outcome was classified as 1, 2 or 
3 in increasing order of severity. There were 535 class 1, 90 class 
2 and 120 class 3 outcomes. Sixty-seven characteristics of these 
compounds were measured, and the objective of the analysis was 
to ascertain which of the characteristics were associated with the 
development of duodenal ulcers. 
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Sum of polarizabilities Solubility in octanol 

5362% \3620 5 - 2 y  b>-2.31 

Measured density log(Partition coef) 

Figure 17.3. C A R T  tree. Classification tree from the C A R T  analysis of 
data on duodenal ulcers. A t  each node of the tree a question is asked, 
and data points for which the answer is "yes" are assigned to  the left 
branch and the others to  the right branch. The shaded regions are the 
terminal nodes, or leaves, of the tree. The numbers i n  square brackets 
are the number of observations i n  each of the three classes present at 
each node. The bold number indicates the predicted class for the node. In  
this particular example, jive penalty points are charged for misclassifying 
observations i n  true class 2 or 3, and one penalty point is charged for 
misclassifying observations in class 1. The predicted class is the one 
resulting i n  the fewest number of penalty points. 

The CART method (for Classification and Regression Trees) 
of Breiman, Friedman, Olshen and Stone (1984) is a computer- 
intensive approach to this problem that has become popular in 
scientific circles. When applied to these data, CART produced the 
classification tree shown in Figure 17.3. 

At each node of the tree a yes-no question is asked, and data 
points for which the answer is "yes" are assigned to the left branch 
and the others to the right branch. The leaves of the tree shown 
in Figure 17.3 are called "terminal nodes." Each observation is 
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assigned to one of the terminal nodes based on the answers to 
the questions. For example a rat that received a compound with 
Dipole moment 5 3.56 and melting point > 98.1 would go left then 
right and end up in the terminal node marked "[13,7,41]." Triplets 
of numbers such as "[13,7,41]" below each terminal node number 
indicate the membership at that node, that is, there are 13 class 
1, 7 class 2 and 41 class 3 observations at this terminal node. 

Before discussing how the CART procedure built this tree, let's 
look at how it is used for classification. Each terminal node is 
assigned a class (1,2 or 3). The most obvious way to assign classes 
to the terminal nodes would be to use a majority rule and assign 
the class that is most numerous in the node. Using a majority 
rule, the node marked "[13,7,41]" would be assigned to class 3 and 
all of the other terminal nodes would be assigned to class 1. In 
this study, however, the investigators decided that it would be five 
times worse to misclassify an animal that actually had a severe 
ulcer or moderate ulcer than one with a milder ulcer. Hence, five 
penalty points were charged for misclassifying observations in true 
class 2 or 3, and one penalty point was charged for misclassifying 
observations in class 1. The predicted class is the one resulting in 
the fewest number of penalty points. In Figure 17.3 the predicted 
class is in boldface at each terminal node; for example, the node 
at the bottom left marked "[10,0,5]" has the "5" in boldface and 
hence is a class 3 node. 

We can summarize the tree as follows. The top ("root") node 
was split on dipole moment. A high dipole moment indicates the 
presence of electronegative groups. This split separates the class 
1 and 2 compounds: the ratio of class 2 to class 1 in the right 
split, 66/190, is more than 5 times as large as the ratio 241355 in 
the left split. However, the class 3 compounds are divided equally, 
60 on each side of the split. If in addition the sum of squared 
atomic charges is low, then CART finds that all compounds are 
class 1. Hence, ionization is a major determinant of biologic action 
in compounds with high dipole moments. Moving further down 
the right side of the tree, the solubility in octanol then (partially) 
separates class 3 from class 2 compounds. High octanol solubility 
probably reflects the ability to cross membranes and to enter the 
central nervous system. 

On the left side of the root node, compounds with low dipole 
moment and high melting point were found to  be class 3 severe. 
Compounds at this terminal node are related to cysteamine. Com- 
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pounds with low melting points and high polarizability, all thiols 
in this study, were classified as class 2 or 3 with the partition co- 
efficient separating these two classes. Of those chemicals with low 
polarizability, those of high density are class 1. These chemicals 
have high molecular weight and volume, and this terminal node 
contains the highest number of observations. The low density side 
of the split are all short chain amines. 

In the terminology mentioned earlier, the data set of 745 obser- 
vations is called the training sample. It is easy to work out the 
misclassification rate for each class when the tree of Figure 17.3 
is applied to the training sample. Looking at the terminal nodes 
that predict classes 2 or 3, the number of errors for class 1 is 
13 + 89 + 50 + 10 + 25 + 25 = 212, so the apparent misclassifi- 
cation rate for class 1 is 212/535=39.6%. Similarly, the apparent 
misclassification rates for classes 2 and 3 are 56.7% and 18.3%. 
"Apparent" is an important qualifier here, since misclassification 
rates in the training sample can be badly biased downward, for the 
same reason that the residual squared error is overly optimistic in 
regression. 

How does CART build a tree like that in Figure 17.3? CART 
is a fully automatic procedure that chooses the splitting variables 
and splitting points that best discriminate between the outcome 
classes. For example, "Dipole moments 3.56" is 'the split that was 
determined to best separate the data with respect to the outcome 
classes. CART chose both the splitting variable "Dipole moment" 
and the splitting value 3.56. Having found the first splitting rule, 
new splitting rules are selected for each of the two resulting groups, 
and this process is repeated. 

Instead of stopping when the tree is some reasonable size, CART 
uses a more effective approach: a large tree is constructed and then 
pruned from the bottom. This latter approach is more effective in 
discovering interactions that involve several variables. 

This brings up an important question: how large should the tree 
be? If we were to build a very large tree with only one observation in 
each terminal node, then the apparent misclassification rate would 
be 0%. However, this tree would probably do a poor job predicting 
the outcomes for a new sample. The reason is that the tree would be 
geared to the training sample; statistically speaking it is "overfit." 

The best-sized tree would be the one that had the lowest mis- 
classification rate for some new data. Thus if we had a second data 
set available (a test sample), we could apply trees of various sizes 
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to it and then choose the one with lowest misclassification rate. 
Of course in most situations we do not have extra data to work 

with, and this is where cross-validation comes in handy. Leave-one- 
out cross-validation doesn't work well here, because the resulting 
trees are not different enough from the original tree. Experience 
shows that it is much better to divide the data up into 10 groups 
of equal size, building a tree on 90% of the data, and then assessing 
its rnisclassification rate on the remaining 10% of the data. This 
is done for each of the 10 groups in turn, and the total misclas- 
sification rate is computed over the 10 runs. The best tree size 
is determined to be that tree size giving lowest rnisclassification 
rate. This is the size used in constructing the final tree from all of 
the data. The crucial feature of cross-validation is the separation 
of data for building and assessing the trees: each one-tenth of the 
data is acting as a test sample for the other 9 tenths. The precise 
details of the tree selection process are given in Problem 17.9. 

The process of cross-validation not only provides an estimate of 
the best tree size, it also gives a realistic estimate of the misclassi- 
fication rate of the final tree. The apparent error rates computed 
above are often unrealistically low because the training sample is 
used both for building and assessing the tree. For the tree of Fig- 
ure 17.3, the cross-validated misclassification rates were about 10% 
higher than the apparent error rates. It is the cross-validated rates 
that provide an accurate assessment of how effective the tree will 
be in classifying a new sample. 

17.6 Bootstrap estimates of prediction error 

17.6.1 Overview 

In the next two sections we investigate how the bootstrap can be 
used to estimate prediction error. A precise formulation will re- 
quire some notation. Before jumping into that, we will convey the 
main ideas. The simplest bootstrap approach generates B boot- 
strap samples, estimates the model on each, and then applies each 
fitted model to the original sample to give B estimates of prediction 
error. The overall estimate of prediction error is the average of these 
B estimates. As an example, the left hand column of Table 17.1 
shows 10 estimates of prediction error ("err") from 10 bootstrap 
samples, for the hormone data example described in Section 17.2. 
Their average is 2.52, as compared to the value of 2.20 for RSEIn. 
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Table 17.1. Bootstrap estimates of prediction error for hormone data of 
Chapter 9. In each row of the table a bootstrap sample was generated 
by sampling with replacement from the hormone data, and the model 
specified i n  equation (9.21) was fit. The left column shows the result- 
ing prediction error when this model is  applied to the original data. The 
average of the left column (=2.52) is the simple bootstrap estimate of 
prediction error. The center column is the prediction error that results 
when the model is applied to the bootstrap sample, the so-called "appar- 
ent error." It is unrealistically low. The diflerence between the first and 
second columns is  the "optimism7' i n  the apparent error, given in the 
third column. The more refined bootstrap estimate adds the average op- 
timism (=0.82) to the average residual squared error (=2.20), giving an 
estimate of 3.02. 

sample 1: 
sample 2: 
sample 3: 
sample 4: 
sample 5: 
sample 6: 
sample 7: 
sample 8: 
sample 9: 

sample 10: 

AVERAGE: 2.52 1.70 0.82 

This simple bootstrap approach turns out not to work very well, 
but fortunately, it is easy to improve upon. Take a look at  the 
second column of Table 17.1: it shows the prediction error when 
the model estimated from the bootstrap sample is applied to the 
bootstrap sample itself. Not surprisingly, the values in the second 
column are lower on the average than those in the first column. The 
improved bootstrap estimate focuses on the difference between the 
first and second columns, called appropriately the "optimism"; it 
is the amount by which the average residual squared error (or "ap- 
parent error rate") underestimates the true prediction error. The 
overall estimate of optimism is the average of the B differences be- 
tween the first and second columns, a value of 0.82 in this example. 
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Once an estimate of optimism is obtained, it is added to the 
apparent error rate to obtain an improved estimate of prediction 
error. Here we obtain 2.20+0.82=3.02. Of course 10 bootstrap sam- 
ples are too few; repeating with 200 samples gave a value of 2.77 
for the simple bootstrap estimate, and an estimate of .80 for the 
optimism leading to the value 2.20+0.80=3.00 for the improved 
estimate of prediction error. Essentially, we have added a bias- 
correction to the apparent error rate, in the same spirit as in Chap- 
ter 10. 

17.6.2 Some details 

The more refined bootstrap approach improves on the simpler ap- 
proach by effectively removing the variability between the rows of 
Table 17.1, much like removing block effects in a two way analysis 
of variance. To understand further the justification for the boot- 
strap procedures, we need to think in terms of probability models 
for the data. 

In Chapters 7 and 9, we describe two methods for bootstrapping 
regression models. The second method, which will be our focus, 
here, treats the data xi = (ci, y,), i = 1,2,. . . n as an i.i.d sample 
from the multi-dimensional distribution F. Recall that c, might 
be a vector: in the hormone data, ci would be the lot number and 
hours worn for the ith device. Call the entire sample x.  A classifica- 
tion problem can be expressed in the same way, with yi indicating 
the class membership of the ith observation. Our discussion be- 
low is quite general, covering both the regression and classification 
problems. 

Suppose we estimate a model from our data, producing a pre- 
dicted value of y at c = co denoted by 

We assume that 7h<(co) can be expressed as a plug-in statistic, 
that is rlx(co) = rl(co, F) for some function q, where F is the 
empirical distribution function of the data. If our problem is a 
regression problem as in the hormone example, then rl,(co) = cob 
where ,fl is the least squares estimate of the regression parameter. 
In a classification problem, vx(co) is the predicted class for an 
observation with c = co. 

Let Q[y, v] denote a measure of error between the response y and 
the prediction 7. In regression we often choose Q[Y, Q] = (y - Q ) ~ ;  
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in classification typically Q[y,q] = that is Q[y,q] = 1 if 
y # q and 0 otherwise. 

The prediction error for qx(co) is defined by 

The notation EOF indicates expectation over a new observation 
(Co, Yo) from the population F. Note that EOF does not average 
over the data set x, which is considered fixed. The apparent error 
rate is 

because "Eopn simply averages over the n observed cases (ci, yi). 
In regression with Q [y, V ]  = (y - q)2, we have err(x, F) = Cy [yi - 
%(ci)12/n, while in classification with Q[y,q] = it equals 
#{qx(ci) # yi)/n the misclassification rate over the original data 
set. 

The K-fold cross-validation estimate of Section 17.3 can also be 
expressed in this framework. Let k(i) denote the part containing . . 

observation i,  and q ~ " ~ ) ( c )  be the predicted value at c ,  computed 
with the k(i)th part of the data removed. Then the cross-validation 
estimate of the true error rate is 

To construct a bootstrap estimate of prediction error we apply 
the plug-in principle to equation (17.11). Let x* = {(cf , y:), (c;, ya), 
. . . (c i ,  YE) )  be a bootstrap sample. Then the plug-in estimate of 
err(x, F) is 

In this expression 7 7 ~ .  (ci) is the predicted value at c = ci, based 
on the model estimated from the bootstrap data set x*. 

We could use err(x*, F )  as our estimate, but it involves only a 
single bootstrap sample and hence is too variable. Instead, we must 
focus on the average prediction error 
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with EF indicating the expectation over data sets x with observa- 
tions xi N F. The bootstrap estimate is 

Intuitively, the underlying idea is much the same as in Figure 8.3: 
in the "bootstrap world", the bootstrap sample is playing the role 
of the original sample, while the original sample is playing the role 
of the underlying population F .  

Expression (17.16) is an ideal bootstrap estimate, corresponding 
to an infinite number of bootstrap samples. With a finite num- 
ber B of bootstrap samples, we approximate this as follows. Let 
vx.b(ci) be the predicted value at ci, from the model estimated on 
bth bootstrap sample, b = 1,2, .  . . B. Then our approximation to 
Ep[err(x*, F)] is 

In regression xy Q [yi, v X I b  (ci)] /n = xy=l[ [yi - qX.b (ci)I2/n; these 
are the values in the left hand column of Table 17.1, and their 
average (2.52) corresponds to the formula in equation (17.17). 

The more refined bootstrap approach estimates the bias in 
err(x, F) as an estimator of err(x, F), and then corrects err(x, F) 
by subtracting its estimated bias. We define the average optimism 
by 

This is the average difference between the true prediction error 
and the apparent error, over data sets x with observations xi - F. 
Note that w ( F )  will tend to be positive because the apparent error 
rate tends to underestimate the prediction error. The bootstrap 
estimate of w ( F )  is obtained through the plug-in principle: 

Here F* is the empirical distribution function of the bootstrap 
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sample x*. The approximation to this ideal bootstrap quantity is 

In the above equation, qX*b(c;) is the predicted value at  c; from 
the model estimated on the bth bootstrap sample, b = 1,2, . . . B, 
and yz$ is the response value of the ith observation for the bth 
bootstrap sample. In Table 17.1, this is estimated by the average 
difference between the second and third columns, namely 0.82. The 
final estimate of prediction error is the apparent error plus the 
downward bias in the apparent error given by (17.20), 

which is approximated by C: Q[yi, qx(ci)] + G(F). This equals 
2.20+0.82=3.02 in our example. 

Both w ( 8 )  and E[err(x*, p ) ]  do not fix x (as specified in defi- 
nition 17.11), but instead measure averages over data sets drawn 
from F. The refined estimate in (17.21) is superior to the simple 
estimate (17.17) because it uses the observed x in the first term 
err(x, F); averaging only enters into the correction term w(k). 

17.7 The .632 bootstrap estimator 

The simple bootstrap estimate in (17.17) can be written slightly 
differently 

We can view equation (17.22) as estimating the prediction er- 
ror for each data point (ci, yi) and then averaging the error over 
i = 1,2, .  . . n. Now for each data point (ci, yi), we can divide the 
bootstrap samples into those that contain (ci, yi) and those that 
do not. The prediction error for the data point (ci, yi) will likely be 
larger for a bootstrap sample not containing it, since such a boot- 
strap sample is "farther away" from (ci, y,) in some sense. The idea 
behind the .632 bootstrap estimator is to use the prediction error 
from just these cases to adjust the optimism in the apparent error 
rate. 
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Let 60 be the average error rate obtained from bootstrap data 
sets not containing the point being predicted (below we give details 
on the estimation of €0). AS before, err(x, F) is the apparent error 
rate. It seems reasonable to use some multiple of €0 - err(x, F) 
as an estimate of the optimism of err(x, F). The .632 bootstrap 
estimate of optimism is defined as 

Adding this estimate to err(x, F) gives the .632 estimate of predic- 
tion error 

- ,632 err = err(x, @) + .632[co - err(x, #')I 
= .368 . err(x, F) + ,632 - €0. (17.24) 

The factor ".632" comes from a theoretical argument showing 
that the bootstrap samples used in computing €0 are farther away 
on the average than a typical test sample, by roughly a factor 
of 11.632. The adjustment in (17.23) corrects for this, and makes - ,632 err roughly unbiased for the true error rate. We will not give 
the theoretical argument here, but note that the value .632 arises 
because it is approximately the probability that a given observation 
appears in bootstrap sample of size n (Problem 17.7). 

Given a set of B bootstrap samples, we estimate €0 by 

where Ci is the set of indices of the bootstrap samples not con- 
taining the ith data point, and Bi is the number of such bootstrap 
samples. Table 17.2 shows the observation numbers appearing in 
each of the 10 bootstrap samples of Table 17.1. Observation #5 ,  
for example, does not appear in bootstrap samples 3,4,8, and 9. 
In the notation of equation (17.25), Ci = (3,4,8,9). So we would 
use only these four bootstrap samples in estimating the prediction 
error for observation i = 5 in equation (17.25). 

In our example, io equals 3.63. Not surprisingly, this is larger 
than the apparent error 2.20, since it is the average prediction 
error for data points not appearing in the bootstrap sample used for 
their prediction. The .632 estimate of prediction error is therefore 
368 . 2.20 + .632 - 3.63 = 3.10, close to the value of 3.00 obtained 
from the more refined bootstrap approach earlier. 
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Table 17.2. The observation numbers appearing i n  each of the 10 boot- 
strap samples of Table 17.1. 

Bootstrap sample 
4 5 6 7 

As a matter of interest, the average prediction error for data 
points that did appear in the bootstrap sample used for their pre- 
diction was 3.08; this value, however, is not used in the construction 
of the .632 estimator. 

17.8 Discussion 

All of the estimates of prediction error described in this chapter 
are significant improvements over the apparent error rate. Which 
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is best among these competing methods is not clear. The methods 
are asymptotically the same, but can behave quite differently in 
small samples. Simulation experiments show that cross-validation 
is roughly unbiased but can show large variability. The simple boot- 
strap method has lower variability but can be severely biased down- 
ward; the more refined bootstrap approach is an improvement but 
still suffers from downward bias. In the few studies to date, the .632 
estimator performed the best among all methods, but we need more 
evidence before making any solid recommendations. 

S language functions for calculating cross-validation and boot- 
strap estimates of prediction error are described in the Appendix. 

17.9 Bibliographic notes 

Key references for cross-validation are Stone (1974, 1977) and 
Allen (1974). The AIC is proposed by Akaike (1973), while the 
BIC is introduced by Schwarz (1978). Stone (1977) shows that the 
AIC and leave one out cross-validation are asymptotically equiva- 
lent. The Cp statistic is proposed in Mallows (1973). Generalized 
cross-validation is described by Golub, Heath and Wahba (1979) 
and Wahba (1980); a further discussion of the topic may be found 
in the monograph by Wahba (1990). See also Hastie and Tibshi- 
rani (1990, chapter 3). Efron (1983) proposes a number of boot- 
strap estimates of prediction error, including the optimism and 
.632 estimates. Efron (1986) compares Cp, CV, GCV and boot- 
strap estimates of error rates, and argues that GCV is closer to Cp 
than CV. Linhart and Zucchini (1986) provide a survey of model 
selection techniques. The use of cross-validation and the bootstrap 
for model selection is studied by Breiman (1992), Breiman and 
Spector (1992), Shao (1993) and Zhang (1992). The CART (Clas- 
sification and Regression Tree) methodology is due to Breiman et 
al. (1984). A study of cross-validation and bootstrap methods for 
these models is carried out by Crawford (1989). The CART tree 
example is taken from Giampaolo et.al. (1988). 

17.10 Problems 

17.1 (a) Let C be a regression design matrix as described on 
page 106 of Chapter 9. The projection or "hat" matrix 
that produces the fit is H = C(CTC)-lCT. If hii denotes 
the iith element of H, show that the cross-validated resid- 
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ual can be written as 

(Hint: see the Sherman-Morrison-Woodbury formula in 
chapter 1 of GoIub and Van Loan, 1983). 

(b) Use this result to show that yi - y;i 2 yi - yi. 
17.2 Find the explicit form of hii for the hormone data exampIe. 

17.3 Using the result of Problem 17.1 we can derive a simplified 
version of cross-validation, by replacing each hii by its av- 
erage value h = Cy hii/n. The resulting estimate is called 
"generalized cross-vaIidationn : 

Use a Taylor series approximation to show the close rela- 
tionship between GCV and the C, statistic. 

17.4 Use a Taylor series approximation to show that the adjusted 
residual squared error (17.7) and the C, statistic (17.8) are 
equal to first order, if RSE/n is used as an estimate of o2 in 

CP. 
17.5 Carry out a linear discriminant analysis of some classifica- 

tion data and use cross-validation to estimate the misclassifi- 
cation rate of the fitted model. Analyze the same data using 
the CART procedure and cross-validation, and compare the 
results. 

17.6 Make explicit the quantities err(x, F), err(x, F) and their 
bootstrap counterparts, in a classification problem with pre- 
diction error equal to misclassification rate. 

17.7 Given a data set of n distinct observations, show that the 
probability that an observation appears in a bootstrap sam- 
ple of size n is + (1 - e-') E .632 as n + oo. 

17.8 (a) Carry out a bootstrap analysis for the hormone data, 
like the one in Table 17.1, using B = 100 bootstrap sam- 
ples. In addition, calculate the average prediction error 
io for observations that do not appear in the bootstrap 
sample used for their prediction. Hence compute the .632 
estimator for these data. 
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(b) Calculate the average prediction error i j  for observa- 
tions that appear exactly j times in the bootstrap sam- 
ple used for their prediction, for j = 0,1,2,. . .. Graph ij 
against j and give an explanation for the results. 

17.9 Tree selection in CART. Let T be a classification tree and 
define the cost of a tree by 

where mr(T) denotes the (apparent) misclassification rate 
of T and IT1 is the number of terminal nodes in T. The 
parameter X 2 0 trades off the classification performance 
of the tree with its complexity. Denote by To a fixed (large) 
tree, and consider all subtrees T of To, that is, all trees which 
can be obtained by pruning branches of To. 

Let T, be the subtree of To with smallest cost. One can show 
that for each value a 2 0, a unique T, exists (when more 
than one tree exists with the same cost, there is one tree 
that is a subtree of the others, and we choose that tree). 
Furthermore, if a1 > a2, then T,, is a subtree of T,,. The 
CART procedure derives an estimate 6 of a by 10-fold cross- 
validation, and then the final tree chosen is T&. 

Here is how cross-validation is used. Let T;k be the cost- 
minimizing tree for cost parameter a, when the kth part of 
the data is withheld (k = 1,2 , .  . . lo) .  Let m r k ( ~ ; ~ )  be the 
misclassification rate when T;k is used to predict the kth 
part of the data. 

For each fixed a ,  the misclassification rate is estimated by 

Finally, the value 6 is chosen to minimize (17.29). 

This procedure is an example of adaptive estimation, dis- 
cussed in the next chapter. More details may be found in 
Breiman et al. (1984). 

Write a computer program that grows and prunes classifi- 
cation trees. You may assume that the predictor variables 
are binary, to simplify the splitting process. Build in 10-fold 
cross-validation and try your program on a set of real data. 




