Skip to main content

Use of Lipid Biomarkers in Environmental Samples

  • Chapter

Abstract

Even in a water column the classical methods of microbiology, which involve the isolation and subsequent culturing of organisms on petri plates, can lead to gross underestimations of the numbers of organisms detectable in direct counts of the same waters.1 With sediments, soils, and biofilms, the problems with classical methods are more severe. In addition to the problems in providing a universal growth medium in the petri plate, the organisms must be quantitatively removed from the surfaces and from each other. Microscopic methods that require quantitative release of the microorganisms from the biofilm can have the problem of inconsistent removal from the surfaces.2 Direct microscopy can sometimes be performed on thin biofilms by making estimations for organisms rendered invisible by particles or overlapping organisms in the biofilm.3 This methodology works best when the density of organisms is low and overlapping is minimal. However, direct microscopic examinations offer a limited insight into the metabolic function or activity of the cells. Methane bacteria, for example, come in all sizes and shapes.4 The problem is further complicated by the fact that in many environments only a tiny fraction of the organisms is active at any one level and aside from the observation of bacterial doubling time,5 the morphology gives little evidence of the activity of the cells. The most direct method of determining the proportion of active cells in a given biofilm involves a combination of autoradiography and electron or epifluorescence microscopy. These methods require metabolic activity in the presence of the substrates and are subject to the limitations of density of organisms and thickness of the biofilm in the field of view. With the necessity for inducing metabolic activity there is a danger of inducing artificially high levels of activity with the addition of the substrates.6

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. W. Jannasch and G. E. Jones, Bacterial populations in seawater as determined by different methods of enumeration, Limnol. Oceanogr. 4: 128 (1959).

    Article  Google Scholar 

  2. D. J. W. Moriarty, Biogeochemistry of ancient and modern sediments, in: “Problems in the Measurement of Bacterial Biomass in Sandy Sediments”, Australian Academy of Science, Canberra (1980).

    Google Scholar 

  3. D. E. Caldwell and J. J. Germida, Evaluation of difference imagery for visualizing and quantitating microbial growth, Canad. J. Microbiol. 31: 35 (1984).

    Article  Google Scholar 

  4. J. G. Zeikus, The biology of methanogenic bacteria, Bacteriol. Rev. 41: 514 (1977).

    PubMed  CAS  Google Scholar 

  5. A. Hagstrom, U. Larsaon, P. Horstedt, and S. Normark, Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments, Appl. Environ. Microbiol. 37: 805 (1979).

    PubMed  CAS  Google Scholar 

  6. R. H. Findlay, P. C. Pollard, D. J. W. Moriarty, and D. C. White, Quantitative determination of microbial activity and community nutritional status in estuarine sediments: evidence for a disturbance artifact, Canad. J. Microbiol. 31: 493 (1985).

    Article  CAS  Google Scholar 

  7. K. C. Marshall, “Interfaces in Microbial Ecology”, Harvard University Press, Cambridge (1976).

    Google Scholar 

  8. J. W. Costerton, T. J. Marrie, and K.-J. Cheng, Phenomena of bacterial adhesion, in: “Bacterial Adhesion Mechanisms and Physiological Significance”, C. D. Savage and M. Fletcher, eds., Plenum Press, New York (1985).

    Google Scholar 

  9. D. C. White, Analysis of microorganisms in terms of quantity and activity in natural environments, in: “Microbes in Their Natural Environments”, Society for General Microbiology Symposium, 34: 37 (1983).

    Google Scholar 

  10. M. P. Lechevalier, Lipids in bacterial taxonomy— a taxonomist’s view, Crit. Rev. Microbiol. 7: 109 (1977).

    Article  Google Scholar 

  11. D. C. White, R. J. Bobbie, J. S. Herron, J. D. King, and S. J. Morrison, Biochemical measurements of microbial mass and activity from environmental samples, in: “Native Aquatic Bacteria: Enumeration, Activity and Ecology”, ASTM STP 695, American Soc. for Testing and Materials (1979).

    Google Scholar 

  12. D. C. White, W. M. Davis, J. S. Nickels, J. D. King, and R. J. Bobbie, Determination of the sedimentary microbial biomass by extractible lipid phosphate, Oecologia 40: 51 (1979).

    Article  Google Scholar 

  13. D. L. Balkwill, F. R. Leach, F. T. Wilson, J. F. McNabb, and D. C. White, Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate, and direct counts in subsurface aquifer sediments, Microb. Ecol. 16: 73 (1988).

    Article  CAS  Google Scholar 

  14. O. Luderitz, M. A. Freudenberg, C. Galanos, V. Lehmann, E. Th. Rietschel, and D. H. Shaw, Lipopolysaccharides of Gram negative bacteria, in: “Current Topics in Membranes and Transport”, vol. 17, S. Razin and S. Rottem, eds., Academic Press, New York (1982).

    Google Scholar 

  15. J. D. Weete, Sterols of the fungi: distribution and biosynthesis, Phytochemistry 12: 1843 (1973).

    Article  CAS  Google Scholar 

  16. W. R. Nes, The biochemistry of plant sterols, Adv. Lipid Res. 15: 233 (1977).

    CAS  Google Scholar 

  17. R. J. Bobbie and D. C. White, Characterization of benthic microbial community structure by high resolution gas chromatography of fatty acid methyl esters, Appl. Environ. Microbiol. 39: 1212 (1980).

    PubMed  CAS  Google Scholar 

  18. J. B. Guckert, C. B. Antworth, P. D. Nichols, and D. C. White, Phospholipid, ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments, FEMS Microbiol. Ecology 31: 147 (1985).

    CAS  Google Scholar 

  19. J. L. Harwood and N. J. Russell, “Lipids in Plants and Microbes”, George Allen and Unwin, London (1984).

    Book  Google Scholar 

  20. M. Sasser, Identification of bacteria by fatty acid composition, Am. Soc. Microbiol. Meet. March 3–7, 1985.

    Google Scholar 

  21. G. H. Joyce, R. K. Hammond, and D. C. White, Changes in membrane lipid composition in exponentially growing Staphylococcus aureus during shift from 37 to 25ΰC, J. Bacteriol. 104: 323 (1970).

    PubMed  CAS  Google Scholar 

  22. F. F. Frerman and D. C. White, Membrane lipid changes during formation of a functional electron transport system in Staphylococcus aureus, J. Bacteriol. 94: 1854 (1967).

    PubMed  Google Scholar 

  23. P. H. Ray, D. C. White, and T. D. Brock, Effect of growth temperatures on the lipid composition of Thermus aquaticus, J. Bacteriol. 108: 227 (1971).

    PubMed  CAS  Google Scholar 

  24. H. Goldfine and P. O. Hagen, Bacterial plasmalogens, in: “Ether Lipids: Chemistry and Biology”, E. Snyder, ed., Academic Press, New York (1972).

    Google Scholar 

  25. Y. Kamio, S. Kanegasaki, and H. Takanshi, Occurrence of plasmalogens in anaerobic bacteria, J. Gen. Appl. Microbiol. 15: 439 (1969).

    Article  CAS  Google Scholar 

  26. M. DeRosa, A. Gambacorta, and A. Gliozzi, Structure, biosynthesis, and physical properties of archaebacterial lipids, Microbiol. Rev. 50: 70 (1986).

    CAS  Google Scholar 

  27. M. D. Collins and D. Jones, Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications, Microbiol. Rev. 45: 316 (1981).

    PubMed  CAS  Google Scholar 

  28. C. R. Whistance, J. F. Dillon, and D. R. Threlfall, The nature, intergeneric distribution and biosynthesis of isoprenoid quinones and phenols in gram-negative bacteria, Biochem. J. 111: 461 (1969).

    PubMed  CAS  Google Scholar 

  29. R. Hollander, G. Wolf, and W. Mannheim, Lipoquinones of some bacteria and mycoplasmas, with considerations on their functional significance, Antonie van Leeuwenhoek J. Microbiol. 43: 177 (1977).

    Article  PubMed  CAS  Google Scholar 

  30. D. B. Hedrick and D. C. White, Microbial respiratory quinones in the environment I. A sensitive liquid Chromatographic method, J. Microbiol. Methods 5: 243 (1986).

    Article  CAS  Google Scholar 

  31. E. A. Dawes and P. J. Senior, The role and regulation of energy reserve polymers in micro-organisms. Adv. Microb. Physiol. 20: 135 (1973).

    Article  Google Scholar 

  32. M. J. Gehron and D. C. White, Quantitative determination of the nutritional status of detrital microbiota and grazing fauna by triglyceride glycerol analysis, J. Exp. Mar. Biol. Ecol. 64: 145 (1982).

    Article  CAS  Google Scholar 

  33. J. S. Nickels, J. D. King, and D. C. White, Poly-β-hydroxybutyrate metabolism as a measure of unbalanced growth of the estuarine detrital microbiota, Appl. Environ. Microbiol. 37: 459 (1979).

    PubMed  CAS  Google Scholar 

  34. R. H. Findlay and D. C. White, Polymeric β-hydroxy alkanoates from environmental samples and Bacillus megaterium, Appl. Environ. Microbiol. 45: 71 (1983).

    PubMed  CAS  Google Scholar 

  35. R. Y. Morita, Starvation-survival of heterotrophs in the marine environment, Adv. Microb. Ecol. 6: 171 (1982).

    Article  Google Scholar 

  36. J. B. Guckert, M. A. Hood, and D. C. White, Phospholipid, ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in the trans-cis ratio and proportions of cyclopropyl fatty acids, Appl. Environ. Microbiol. 52: 794 (1986).

    PubMed  CAS  Google Scholar 

  37. D. C. White, R. J. Bobbie, S. J. Morrison, D. K. Oosterhof, C. W. Taylor, and D. A. Meeter, Determination of microbial activity of estuarine detritus by relative rates of lipid biosynthesis, Limnol. Oceanogr. 22: 1089 (1977).

    Article  CAS  Google Scholar 

  38. D. J. W. Moriarty, D. C. White, and T. J. Wassenberg, A convenient method for measuring rates of phospholipid synthesis in seawater and sediments: its relevance to the determination of bacterial productivity and the disturbance artifacts introduced by measurements, J. Microbiol. Methods 3: 321 (1985).

    Article  CAS  Google Scholar 

  39. A. Tunlid, H. Ek, G. Westerdahl, and G. Odham, Determination of 13C-enrichment in bacterial fatty acids using chemical ionization mass spectrometry with negative ion detection, J. Microbiol. Methods 7: 77 (1987).

    Article  CAS  Google Scholar 

  40. D. C. White, Validation of quantitative analysis for microbial biomass, community structure, and metabolic activity, Arch. Hydrobiol. Beih. Ergeben Limnol. 31: 1 (1988).

    Google Scholar 

  41. E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911 (1959).

    Article  PubMed  CAS  Google Scholar 

  42. J. D. King, D. C. White, and C. W. Taylor, Use of lipid composition and metabolism to examine structure and activity of estuarine detrital microflora, Appl. Environ. Microbiol. 33: 1177 (1977).

    PubMed  CAS  Google Scholar 

  43. J. H. Parker, G. A. Smith, H. L. Fredrickson, J. R. Vestal, and D. C. White, Sensitive assay, based on hydroxy-fatty acids from lipopolysaccharide lipid A for gram negative bacteria in sediments, Appl. Environ. Microbiol. 44: 1170 (1982).

    PubMed  CAS  Google Scholar 

  44. D. C. White, R. J. Bobbie, J. S. Nickels, S. D. Fazio, and W. M. Davis, Nonselective biochemical methods for the determination of fungal mass and community structure in estuarine detrital microflora, Botanica Marina 23: 239 (1980).

    CAS  Google Scholar 

  45. M. J. Gehron and D. C. White, Sensitive assay of phospholipid glycerol in environmental samples, J. Microbiol. Methods 1: 23 (1983).

    Article  CAS  Google Scholar 

  46. R. F. Martz, D. L. Sebacher, and D. C. White, Biomass measurement of methane-forming bacteria in environmental samples, J. Microbiol. Methods 1: 53 (1983).

    Article  PubMed  CAS  Google Scholar 

  47. C. A. Mancuso, P. D. Nichols, and D. C. White, A method for the separation and characterization of Archaebacterial signature ether lipids, J. Lipid Res. 27: 49 (1986).

    PubMed  CAS  Google Scholar 

  48. C. Asselineau and J. Asselineau, Fatty acids and complex lipids, in: “Gas Chromatography/Mass Spectrometry Applications in Microbiology”, G. Odham, L. Larsson, and P.-A. Mardh, eds., Plenum Press, New York (1984).

    Google Scholar 

  49. P. D. Nichols, J. B. Guckert, and D. C. White, Determination of monunsaturated double bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts, J. Microbiol. Methods 5: 49 (1986).

    Article  CAS  Google Scholar 

  50. A. Tunlid and G. Odham, Ultrasensitive analysis of bacterial signatures by gas chromatography/mass spectrometry, in: “Perspectives in Microbial Ecology”, Proc. of the Fourth International Symposium on Microbial Ecology, Ljubljana, Yugoslavia, (1986).

    Google Scholar 

  51. G. Odham, A. Tunlid, G. Westerdahl, L. Larsson, J. B. Guckert, and D. C. White, Determination of microbial fatty acid profiles at femtomolar levels in human urine and the initial marine microfouling community by capillary gas chromatography-chemical ionization mass spectrometry with negative ion detection, J. Microbiol. Methods 3: 331 (1985).

    Article  CAS  Google Scholar 

  52. G. Odham, A. Tunlid, G. Westerdahl, P. Marden, Combined determination of poly-β-hydroxyalkanoic and cellular fatty acids in starved marine bacteria and sewage sludge using gas chromatography with flame ionization or mass spectrometry detection, Appl. Environ. Microbiol. 52: 905 (1986).

    PubMed  CAS  Google Scholar 

  53. G. J. Perry, J. K. Volkman, and R. B. Johns, Fatty acids of bacterial origin in contemporary marine sediments, Geochem. Cosmochim. Acta 43: 1715 (1979).

    Article  CAS  Google Scholar 

  54. F. T. Gillan and R. W. Hogg, A method for the estimation of bacterial biomass and community structure in mangrove-associated sediments, J. Microbiol. Methods 2: 275 (1984).

    Article  CAS  Google Scholar 

  55. P. A. Cranwell, The stereochemistry of 2-and 3-hydroxy acids in a recent lacustrine sediment, Geochem. Cosmochim. Acta 45: 547 (1981).

    Article  CAS  Google Scholar 

  56. H. Gossens, W. I. C. Rijpstra, R. R. Duren, J. W. deLeeuw, and P. A. Schenck, Bacterial contribution to sedimentary organic matter; a comparative study of lipid moieties in bacteria and recent sediments, Org. Geochem. 10: 683 (1986).

    Article  Google Scholar 

  57. J. J. Boon, J. W. de Leeuw, G. J. v. d. Hoek, and J. H. Vosjan, Significance and taxonomic value of iso and anteiso monoenoic fatty acids and branched β-hydroxy acids in Desulfovibrio desulfuricans, J. Bacteriol. 129: 1183 (1977).

    PubMed  CAS  Google Scholar 

  58. R. J. Parkes and J. Taylor, The relationship between fatty acid distributions and bacterial respiratory types in contemporary mariane sediments, Estuarine Coastal Mar. Sci. 16: 173 (1983).

    Article  CAS  Google Scholar 

  59. J. Taylor and R. J. Parkes, The cellular fatty acids of the sulfate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp., and Desulfovibrio desulfuricans, J. Gen. Microbiol. 129: 3303 (1983).

    CAS  Google Scholar 

  60. A. Edlund, P. D. Nichols, R. Roffey, and D. C. White, Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species, J. Lipid Res. 26: 982 (1985).

    PubMed  CAS  Google Scholar 

  61. R. J. Parkes and A. G. Calder, The cellular fatty acids of three strains of Desulfobulbus, a propionate-utilizing sulfate-reducing bacterium, FEMS Microbiol. Ecol. 31: 361 (1985).

    Article  CAS  Google Scholar 

  62. N. J. E. Dowling, F. Widdel, and D. C. White, Analysis of phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulfate reducers and other sulfide forming bacteria, J. Gen. Microbiol. 132: 1815 (1986).

    CAS  Google Scholar 

  63. J. E. Dowling, P. D. Nichols, and D. C. White, Phospholipid fatty acid and infra-red spectroscopic analysis of a sulphate-reducing consortium, FEMS Microbiol. Ecol. 53: 325 (1989).

    Article  Google Scholar 

  64. J. S. Nickels, R. J. Bobbie, D. F. Lott, R. F. Martz, P. H. Benson, and D. C. White, Effect of manual brush cleaning on the biomass and community structure of the microfouling film formed on aluminum and titanium surfaces exposed to rapidly flowing seawater, Appl. Environ. Microbiol. 41: 1442 (1981).

    PubMed  CAS  Google Scholar 

  65. R. J. Bobbie, S. J. Morrison, and D. C. White, Effects of substrate biodegradability on the mass and activity of the associated estuarine microbiota, Appl. Environ. Microbiol. 35: 179 (1978).

    PubMed  CAS  Google Scholar 

  66. J. S. Nickels, R. J. Bobbie, R. F. Martz, G. A. Smith, D. C. White, and N. L. Richards, Effect of silicate grain shape, structure and location on the biomass and community structure of colonizing marine microbiota, Appl. Environ. Microbiol. 41: 1262–1268 (1981).

    PubMed  CAS  Google Scholar 

  67. N. J. E. Dowling, J. Guezennec, and D. C. White, Methods for insight into mechanisms of microbially influenced metal corrosion, in: “Biodeterioration”, D. R. Hougton, R. N. Smith, and H. O. U. Eggins, eds., Elsevier Applied Science Publ., London (1988).

    Google Scholar 

  68. N. J. E. Dowling, J. Guezennec, and D. C. White, Facilitation of corrosion of stainless steel exposed to aerobic seawater by microbial biofilms containing both facultative and absolute anaerobes, in: “Microbial Problems in the Offshore Oil Industry”, E. C. Hill, J. L. Sherman, and R. J. Watkinson, eds., John Wiley, Chichester (1986).

    Google Scholar 

  69. N. J. E. Dowling, J. Guezennec, M. L. Limoine, A. Tunlid, and D. C. White, Corrosion analysis of carbon steels affected by aerobic and anaerobic bacteria in mono and coculture using AC impedance and DC techniques, Corrosion 44: 869 (1988).

    Article  CAS  Google Scholar 

  70. B. D. Kerger, P. D. Nichols, C. A. Antworth, W. Sand, E. Bock, J. C. Cox, T. A. Langworthy, and D. C. White, Signature fatty acids in the polar lipids of acid producing Thiobacilli: methoxy, cyclopropyl, α-hydroxy-cyclopropyl and branched and normal monoenoic fatty acids, FEMS Microbiol. Ecology 38: 67 (1986).

    Article  CAS  Google Scholar 

  71. B. D. Kerger, P. D. Nichols, W. Sand, E. Bock, and D. C. White, Association of acid producing Thiobacilli with degradation of concrete: analysis by “signature” fatty acids from the polar lipids and lipopolysaccharide, J. Industrial Microbiol. 2: 63 (1986).

    Article  Google Scholar 

  72. A. Tunlid, B. H. Baird, M. B. Trexler, S. Olsson, R. H. Findlay, G. Odham, and D. C. White, Determination of phospholipid ester-linked fatty acids and poly-β-hydroxybutyrate for the estimation of bacterial biomass and activity in the rhizosphere of the rape plant Brassica napus (L), Canad. J. Microbiol. 31: 1113 (1986).

    Article  Google Scholar 

  73. A. Tunlid, H. A. J. Hoitink, C. Low, and D. C. White, Characterization of bacteria that suppress Rhizoctonia damping-off in bark compost media by analysis of fatty acid biomarkers, Appl. Environ. Microbiol. 55: 1368 (1989).

    PubMed  CAS  Google Scholar 

  74. P. D. Nichols, W. R. Mayberry, C. P. Antworth, and D. C. White, Determination of monounsaturated double bond position and geometry in the cellular fatty acids of the pathogenic bacterium Francisella tularensis, J. Clin. Microbiol. 21: 738 (1984).

    Google Scholar 

  75. D. C. White, G. S. Smith, M. J. Gehron, J. H. Parker, R. H. Findlay, R. F. Martz, and H. L. Fredrickson, The ground water aquifer microbiota: biomass, community structure and nutritional status, Developments in Industrial Microbiol. 24: 201 (1983).

    CAS  Google Scholar 

  76. G. A. Smith, J. S. Nickels, B. D. Kerger, J. D. Davis, S. P. Collins, J. T. Wilson, J. F. McNabb, and D. C. White, Quantitative characterization of microbial biomass and community structure in subsurface material: A prokaryotic consortium responsive to organic contamination, Canad. J. Microbiol. 32: 104 (1986).

    Article  CAS  Google Scholar 

  77. J. T. Wilson and B. H. Wilson, Biotransformation of trichlorethylene in soil, Appl. Environ. Microbiol. 49: 242 (1985).

    PubMed  CAS  Google Scholar 

  78. P. D. Nichols and D. C. White, Accumulation of poly-β-hydroxybutyrate in a methane-enriched halogenated hydrocarbon-degrading soil column, Proceed. Fourth Intl. Symp. Interaction between Sediments and Water, Melbourne, Australia (1987).

    Google Scholar 

  79. P. D. Nichols, G. A. Smith, C. P. Antworth, R. S. Hanson, and D. C. White, Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for the methane-oxidizing bacteria, FEMS Microbiol. Ecology 31: 327 (1985).

    Article  CAS  Google Scholar 

  80. P. D. Nichols, J. M. Henson, C. P. Antworth, J. Parsons, J. T. Wilson, and D. C. White, Detection of a microbial consortium including type II methanotrophs by use of phospholipid fatty acids in an aerobic halogenated hydrocarbon-degrading soil column enriched with natural gas, Environ. Toxicol. Chem. 6: 8997 (1987).

    Article  Google Scholar 

  81. N. R. Wolin, The rumen fermentation: a model for microbial interactions in anaerobic ecosystems, Adv. Microbiol. Ecol. 3: 49 (1979).

    Article  CAS  Google Scholar 

  82. B. Rizza, A. N. Tucker, and D. C. White, Lipids of Bacteroides melanogenicus, J. Bacteriol. 101: 84 (1970).

    PubMed  CAS  Google Scholar 

  83. J. M. Henson, G. A. Smith, and D. C. White, Examination of thermophilic methane-producing digesters by analysis of bacterial lipids, Appl. Environ. Microbiol. 50: 1428 (1985).

    PubMed  CAS  Google Scholar 

  84. A. T. Mikell, T. J. Phelps, and D. C. White, Phospholipids to monitor microbial ecology in anaerobic digesters, in: “Methane from Biomass. A Systems Approach”, W. Smith, ed., Elsevier, New York (1986).

    Google Scholar 

  85. J. V. Johnson and R. A. Yost, Tandem mass spectrometry for trace analysis, Anal. Chem. 57: 758A (1985).

    Article  CAS  Google Scholar 

  86. K. L. Busch and R. G. Cooks, Mass spectrometry of large, fragile, and involatile molecules, Science 218: 247 (1982).

    Article  PubMed  CAS  Google Scholar 

  87. D. C. White, R. J. Bobbie, J. D. King, J. S. Nickels, and P. Amoe, Lipid analysis of sediments for microbial biomass and community structure, in: “Methodology for Biomass Determinations and Microbial Activities in Sediments”, ASTM STP 673, American Society for Testing and Materials, pp. 87 (1979).

    Google Scholar 

  88. M. Seitz, D. B. Sauer, R. Burroughs, H. E. Mohr, and J. D. Hubbard, Ergosterol as a measure of fungal growth, Phytopathology 69: 1202 (1979).

    Article  CAS  Google Scholar 

  89. S. E. Matcham, B. R. Jordan, D. A. Wood, Estimation of fungal biomass in a solid substrate by three independent methods, Appl. Microbiol. Biotechnol. 21: 108 (1985).

    CAS  Google Scholar 

  90. W. D. Grant and A. W. West, Measurements of ergosterol, diaminoplmelic acid and glucosamine in soil: evaluation as indicators of microbial biomass, J. Microbiol. Methods 6: 47 (1986).

    Article  CAS  Google Scholar 

  91. W. P. Osswald, W. Holl, and E. F. Elstner, Ergosterol as a biochemical indicator of fungal infection in spruce and fir needles from different sources, Z. Naturforsch. 41c: 542 (1986).

    Google Scholar 

  92. S. K. Maitra, M. C. Schotz, T. T. Yoshikawa, and L. B. Guze, Determination of lipid A and endotoxin in serum by mass spectroscopy, Proc. Natl. Acad. Sci. USA 75: 3993 (1978).

    Article  PubMed  CAS  Google Scholar 

  93. N. Saddler and A. C. Wardlaw, Extraction, distribution and biodegradation of bacterial lipopolysaccharides in estuarine sediments, Antonie van Leeuwenhoek J. Microbiol. 46: 27 (1980).

    Article  PubMed  CAS  Google Scholar 

  94. K. Kawamura and R. Ishiwatari, Tightly bound β-hydroxy acids in recent sediment, Nature 297: 144 (1982).

    Article  CAS  Google Scholar 

  95. L. Larsson, P.-A. Mardh, G. Odham, and G. Westerdahl, Detection of tuberculostearic acid in biological specimens by means of glass capillary gas chromatography—electron and chemical ionization mass spectrometry, utilizing selected ion monitoring, J. Chromatogr. 182: 402 (1980).

    PubMed  CAS  Google Scholar 

  96. G. Odham, A. Tunlid, L. Larsson, and P.-A. Mardh, Mass spectrometric determination of selected microbial constituents using fused silica and chiral glass capillary gas chromatography, Chromatographia 16: 83 (1982).

    Article  CAS  Google Scholar 

  97. L. Larsson, G. Odham, G. Westerdahl, and B. Olsson, Diagnosis of pulmonary tuberculosis by selected ion monitoring: improved analysis of tuberculostearate in sputum using negative-ion mass spectrometry, J. Clin. Microbiol. 25: 893 (1987).

    PubMed  CAS  Google Scholar 

  98. J. K. Volkman and R. B. Johns, The geochemical significance of positioned isomers of unsaturated acids from an intertidal zone sediment, Nature 267: 693 (1977).

    Article  CAS  Google Scholar 

  99. H. L. Frederickson, T. E. Cappenberg, and J. W. De Leeuu, Polar lipid ester-linked fatty acid composition of Lake Vechten seston: an ecological application of lipid analysis, FEMS Microbiology Ecology 38: 381 (1986).

    Article  Google Scholar 

  100. W. Michaelis and P. Albrecht, Molecular fossils of archaebacteria in kerogen, Naturwiss. 66: 420 (1979).

    Article  CAS  Google Scholar 

  101. S. C. Brassell, A. M. K. Wardroper, I. D. Thomson, J. R. Maxwell, and G. Eglinton, Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments, Nature 290: 693 (1981).

    Article  PubMed  CAS  Google Scholar 

  102. B. Chappe, W. Michaelis, P. Albrecht, and G. Ourisson, Fossil evidence for a novel series of archaebacterial lipids, Naturwiss. 66: 522 (1982).

    Article  Google Scholar 

  103. D. M. Ward, S. C. Brassell, and G. Eglinton, Archaebacterial lipids in hot-spring microbial mats, Nature 318: 656 (1985).

    Article  Google Scholar 

  104. G. G. Pauly and E. S. Van Vleet, Acyclic archaebacterial ether lipids in swamp sediments, Geochim. Cosmochim. Acta 50: 1117 (1986).

    Article  CAS  Google Scholar 

  105. J. J. Boon, W. I. C. Rijpstra, F. de Lange, and J. W. De Leeuu, Black sea sterol— a molecular fossil for dinoflagellate blooms, Nature 277: 125 (1979).

    Article  CAS  Google Scholar 

  106. S. C. Brassell and G. Eglinton, Biogeochemical significance of a novel sedimentary C27-stanol, Nature 290: 579 (1981).

    Article  CAS  Google Scholar 

  107. J. W. De Leeuu, W. I. C. Rijpstra, and P. A. Schenk, Free, esterified and residual bound sterols in Black Sea Unit I sediments, Geochim. Cosmochim. Acta 47: 455 (1983).

    Article  Google Scholar 

  108. N. Robinson, G. Eglinton, S. C. Brassel, and P. A. Cranwell, Dinoflagellate origin for sedimentary 4α-methyl steroids and 5α(H)-stanols, Nature 308: 439 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tunlid, A., White, D.C. (1990). Use of Lipid Biomarkers in Environmental Samples. In: Fox, A., Morgan, S.L., Larsson, L., Odham, G. (eds) Analytical Microbiology Methods. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-3564-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-3564-9_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-3566-3

  • Online ISBN: 978-1-4899-3564-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics