Skip to main content

Glyco-, Phosphoglyco- and Sulfoglycoglycerolipids of Bacteria

  • Chapter
Glycolipids, Phosphoglycolipids, and Sulfoglycolipids

Part of the book series: Handbook of Lipid Research ((HLRE,volume 6))

Abstract

In view of their ubiquity in bacteria, plants, and animals, it is rather surprising that glycosyldiacylglycerols were discovered relatively recently in plants (during the late 1950s) (see review by Carter et al., 1965) and even more recently in bacteria and animals (during the early 1960s) (see review by Ishizuka and Yamakawa, 1985). The sulfoglycoglycerolipids were also rather late in being discovered, partly because of the lack of specific and sensitive reagents for the detection of sulfate and sulfonate. Thus, the plant sulfonolipid, sulfoquinovosyldiacylglycerol, was discovered in 1959 (Benson, 1963), the sulfated triglycosyldiphytanylglycerol diether of extreme halophiles in 1967 (Kates, 1978), and the sulfogalactoglycerolipid, seminolipid, of testis in 1972 (see review by Murray et al., 1976, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambron, R. T., and Pieringer, R. A., 1971, The metabolism of glyceride glycolipids. V. Identification of the membrane lipid formed from diglucosyl diglyceride in Streptococcus faecalis ATCC 9790 as an acylated derivative of glycerylphosphoryl diglucosylglycerol, J. Biol. Chem. 246: 4216.

    Google Scholar 

  • Ambron, R. T., and Pieringer, R. A., 1973, in Form and Function of Phospholipids(B. B. Ansell, R. M. C. Dawson, and J. N. Hawthorne, eds.), pp. 289–331, BBA Library 3, Elsevier, Amsterdam.

    Google Scholar 

  • Asselineau, J., 1981, Complex lipids of the cell envelope of Actinomycetales, in Actinomycetes (Schaal and Pulverer, eds.), Zentralblatt Bakteriol. Mikrobiol. Hyg. Abt. 1, Supplement 11, pp. 391–400, Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Asselineau, J., 1983, Vers l’utilisation des lipides pour l’identification d’une souche bactérienne, Bull. Inst. Pasteur 81: 367.

    Google Scholar 

  • Asselineau, C., and Asselineau, J., 1984, Fatty acids and complex lipids, in Gas Chromatography/Mass Spectrometry: Applications in Microbiology ( G. Odham, L. Larsson, and P.-A. Mardh, eds.), pp. 57–103, Plenum, New York.

    Chapter  Google Scholar 

  • Asselineau, J., and Trüper, H. G., 1982, Lipid composition of six species of the phototrophic bacterial genus Ectothiorhodospira, Biochim. Biophys. Acta 712: 111.

    Google Scholar 

  • Baer, E., and Fischer, H. O. L., 1945, Synthesis of a homologous series of optically active normal aliphatic monoglycerides ( I.-series ), J. Am. Chem. Soc. 67: 2031.

    Google Scholar 

  • Basinger, G. W., and Oliver, J. D., 1979, Inhibition of Halobacterium cutirubrum lipid biosynthesis by bacitracin, J. Gen. Microbiol. 111: 423.

    Google Scholar 

  • Batrakov, S. G., and Bergelson, L. D., 1978, Lipids of Streptomyces. Structural investigation and biological interrelation, Chem. Phys. Lipids 21: 1.

    Google Scholar 

  • Benson, A. A., 1963, The plant sulfolipid, Adv. Lipid Res. 1: 387.

    Google Scholar 

  • Bergelson, L. D., Batrakov, S. G., and Pilipenko, T. V., 1970, A new glycolipid from Streptomyces, Chem. Phys. Lipids, 4: 181.

    Google Scholar 

  • Bergy, M. G., 1974, Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), Williams & Wilkins, Baltimore.

    Google Scholar 

  • Bergy, M. G., 1984–1988, Manual o’Systematic Bacteriologs 1st ed. Q. G. Holt, ed. in chief) Williams & Wilkins, Baltimore.

    Google Scholar 

  • Bishop, D. G., Rutberg, L., and Samuelson, B., 1967, The chemical composition of the cytoplasmic membrane of Bacillus subtilis, Eur. J. Biochem. 2: 448.

    Google Scholar 

  • Björndal, H., Lindberg, B., and Svensson, S., 1967, Gas—liquid chromatography of partially methylated alditols as their acetates, Acta Chem. Scand. 21: 1801.

    Google Scholar 

  • Blaurock, A. E., 1982, Analysis of bacteriorhodopsin structure by X-ray diffraction, Methods Enzymol. 88: 124.

    Article  CAS  Google Scholar 

  • Blaurock, A. E., and Stoeckenius, W., 1971, Structure of the purple membrane, Nature New Biol. 233: 152.

    Article  PubMed  CAS  Google Scholar 

  • Blaurock, A. E., and King, G. I., 1977, Asymmetric structure of purple membrane, Science 196: 1101.

    Google Scholar 

  • Bligh, E. G., and Dyer, W. J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem . Physiol. 37: 911.

    Google Scholar 

  • Blöcher, D., Guterman, R., Henkel, B., and Ring, K., 1984, Physico-chemical characterization of tetraether lipids from Thermoplasma acidophilum, Biochim. Biophys. Acta 778: 74.

    Google Scholar 

  • Boggs, J. M., 1984, Intermolecular hydrogen bonding between membrane lipids, in Membrane Fluidity( M. Kates and L. A. Manson, eds.), pp. 3–53, Plenum, New York.

    Chapter  Google Scholar 

  • Boggs, J. M., 1987, Lipid intermolecular hydrogen bonding: Influence on structural organization and membrane function, Biochim. Biophys. Actal 906: 353.

    Google Scholar 

  • Brennan, P. J., and Ballou, C. E., 1968, Biosynthesis of mannophosphoinositides by Mycobacterium phlei. Enzymatic acylation of dimannophosphoinositides, J. Biol. Chem. 243:2975. Brennan, P. J., and Lehane, D. P., 1971, The phospholipide of corynebacteria, Lipids 6: 357.

    Google Scholar 

  • Brundish, D. E., and Baddiley, J., 1968, Synthesis of glucosylglycerols and diglucosylglycerol and their identification in small amounts, Carbohyd. Res. 8: 308.

    Google Scholar 

  • Brundish, D. E., Shaw, N., and Baddiley, J., 1965, The glycolipids from the non-capsulated strain of Pneumococcus I, Biochem. J. 97: 158.

    Google Scholar 

  • Brundish, D. E., Shaw, N., and Baddiley, J. 1966, Bacterial glycolipids. Glycosyl diglycerides in gram-positive bacteria, Biochem. J. 99: 546.

    Google Scholar 

  • Brundish, D. E., Shaw, N., and Baddiley, J., 1967, The structure and possible function of the glycolipid from Staphylococcus lactic, Biochem. J. 105: 885.

    Google Scholar 

  • Bruno, S., Canristraro, S., Gliozzi, A., De Rosa, M., and Gambacorta, A., 1986, A spin label ESR and saturation transfer-ESR study of archaebacteria bipolar lipids, Eur. Biophys. J. 13: 67.

    Google Scholar 

  • Bu’Lock, J. D., de Rosa, M., and Gambacorta, A., 1983, Isoprenoid biosynthesis in Archaebacteria, in Biosynthesis of Isoprenoid Compounds ( J. W. Porter and S. L. Spurgeon, eds.), John Wiley, New York, pp. 159–189.

    Google Scholar 

  • Button, D., and Hemmings, N. L., 1976, Lipoteichoic acid from Bacillus licheniformis 6346 MH-1. Comparative studies on the lipid portion of the lipoteichoic acid and the membrane glycolipid, Biochemistry 15: 989.

    Google Scholar 

  • Carroll, K. K., Cutts, J. H., and Murray, E. G. D., 1968, The lipids of Listeria monocytogenes, Can. J. Biochem. 46: 899.

    Google Scholar 

  • Carter, H. E., McCluer, R. H., and Slifer, E., 1956, Wheat flour lipids, J. Am. Chem. Soc. 78: 3735.

    Google Scholar 

  • Carter, H. E., Ohno, K., Nojima, S., Tipton, C. L., and Stanacev, N. Z., 196la, Wheat flour lipids. II. Isolation and characterization of glycolipids of wheat flour and other plant sources, J. Lipid Res. 2: 215.

    Google Scholar 

  • Carter, H. E., Hendry, R. A., and Stanacev, N. Z., 1961b, Wheat flour lipids. III. Structure determination of mono-and digalactosyl diglycerides, J. Lipid Res. 2: 223.

    Google Scholar 

  • Carter, H. E., Johnson, P., and Weber, E. J., 1965, Glycolipids, Annu. Rev. Biochem. 34: 109.

    Google Scholar 

  • Chen, J. S., Barton, P. G., Brown, D., and Kates, M., 1974, Osmometric and microscopic studies

    Google Scholar 

  • on bilayers of polar lipids from extreme halophile, Halobacterium cutirubrum, Biochim. Biophys. Acta 352: 202.

    Google Scholar 

  • Chignell, C. F., and Chignell, D. A., 1975, A spin label study of purple membranes from Halobacterium halobium, Biochem. Biophys. Res. Commun. 62: 136.

    Google Scholar 

  • Clarke, N. G., Hazlewood, G. P., and Dawson, R. M. C., 1976, Novel lipids of Butyrivibrio spp., Chem. Phys. Lipids 17: 222.

    Google Scholar 

  • Cohen, M., and Panos, C., 1966, Membrane lipid composition of Streptococcus pyogenes and derived L-form, Biochemistry 5: 2385.

    Article  PubMed  CAS  Google Scholar 

  • Cole, R., and Proulx, P., 1977, Further studies on the cardiolipin phosphodiesterase of Escherichia coli, Can. J. Biochem. 55: 1228.

    Google Scholar 

  • Comita, P. B., and Gogosian, R. B., 1983, Membrane lipid from deep-sea hydrothermal vent methanogen: A new macrocyclic glycerol diether, Science 222: 1329.

    Google Scholar 

  • Comita, P. B., Gagosian, R. B., Pang, H., and Costello, C. E., 1984, Structural elucidation of a unique macrocyclic membrane lipid from a new extremely thermophilic deep-sea by hydrothermal vent Archaebacterium, Methanococcus jannaschii, J. Biol. Chem. 259: 15234.

    Google Scholar 

  • Constantopoulos, G., and Bloch, K., 1967, Isolation and characterization of glycolipids from some photosynthetic bacteria, J. Bacteriol. 93: 1178.

    Google Scholar 

  • Coulon-Morelec, M. J., Dupouey, P., and Marechal, J., 1969, C. R. Acad. Sci. Paris 269: 854.

    Google Scholar 

  • Curatolo, W. 1987a, The physical properties of glycolipids, Biochim. Biophys. Acta 906: 111.

    Google Scholar 

  • Curatolo, W., 19876, Glycolipid function, Biochim. Biophys. Actal 906: 137.

    Google Scholar 

  • Dawson, R. M. C., 1967, Analysis of phosphatides and glycolipids by chromatography of their partial hydrolysis of alcoholysis products, in Lipid Chromatographic Analysis, Vol. 1 ( G. V. Marinetti, ed.), pp. 163–189, Marcel Dekker, New York.

    Google Scholar 

  • Degani, H., Danon, A., and Caplan, S. R., 1980, Proton and carbon-13 NMR studies of polar lipids of Halobacterium halobium, Biochemistry 19: 1626.

    Article  PubMed  CAS  Google Scholar 

  • Demandre, C., Tremolieres, A., Justin, A.-M., and Mazliak, P., 1985, Analysis of molecular species of plant polar lipids by high performance and gas—liquid chromatography, Phytochemistry 24: 481.

    Article  CAS  Google Scholar 

  • Deroo, P. W., 1974, Studies on the structure and metabolism of glycolipids and glycolipid sulfate in the extreme halophile Halobacterium cutirubrum, Ph.D. thesis, University of Ottawa, Canada.

    Google Scholar 

  • De Rosa, M., De Rosa, S., and Gambacorta, A., 1977a, 13C-NMR assignments and biosynthetic data for the ether lipids of Caldariella, Phytochemistry 16: 1909.

    Google Scholar 

  • De Rosa, M., De Rosa, S., Gambacorta, A., Minale, L., and Bu’Lock, J. D., 19776, Chemical structure of ether lipids of thermophilic acidophilic bacteria of the Caldariella group, Phytochemistry 16: 1961.

    Google Scholar 

  • De Rosa, M., Gambacorta, A., Nicolaus, B., and Bu’Lock, J. D., 1980a, Complex lipids of Caldariella acidophila, a thermoacidophile archaebacterium, Phytochemistry 19: 821.

    Article  Google Scholar 

  • De Rosa, M., Eposisto, E., Gambacorta, A., Nicolaus, B., and Bu’Lock, J. D., 1980b, Effects of temperature on ether lipid composition of Caldariella acidophila, Phytochemistry 19: 827.

    Article  Google Scholar 

  • De Rosa, M., Gambacorta, A., Nicolaus, B., Ross, H. N. M., Grant, W. D., and Bu’Lock, J. D., 1982a, An asymmetric archaebacterial diether lipids from alkaliphilic halophiles, J. Gen. Microbiol. 128: 343.

    Google Scholar 

  • De Rosa, M., Gambarcorta, A., Nicolaus, B., and Sodano, S., 19826, Incorporation of labelled glycerols into ether lipids in Caldariella acidophila, Phytochemistry 21: 595.

    Google Scholar 

  • De Rosa, M., Gambacorta, A., Nicolaus, B., and Grant, W. D., 1983a, A C25, C25 diether core lipid from archaebacterial haloalkaliphiles, J. Gen. Microbiol. 129: 2333.

    Google Scholar 

  • De Rosa, M., Gambacorta, A., and Nicolaus, B., 19836, A new type of cell membrane in thermophilic archaebacteria based on bipolar ether lipids, J. Membr. Sci. 16: 287.

    Google Scholar 

  • De Rosa, M., Gambacorta, A., and Gliozzi, A., 1986a, Structure, biosynthesis, and physicochemical properties of archaebacterial lipids, Microbiol. Rev. 50: 70.

    Google Scholar 

  • De Rosa, M., Gambacorta, A., Lanzotti, V., Trincone, A., Harris, J. E., and Grant, W. D., 19866, A range of ether core lipids from the methanogenic archaebacterium Methanosarcina barkeri, Biochim. Biophys. Acta875: 487.

    Google Scholar 

  • De Rosa, M., Gambacorta, A., Grant, W. D., Lanzotti, V., and Nicolaus, B., 1988, Polar lipids and glycine betaine from haloalkaliphilic archaebacteria, J. Gen. Microbiol. 134: 205.

    Google Scholar 

  • Dittmer, J. C., and Wells, M. A., 1969, Quantitative and qualitative analysis of lipids and lipid components, Methods Enzymol. 14: 482.

    Article  CAS  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F., 1956, Colorimetric method for determination of sugars and related substances, Anal. Chem. 28: 350.

    Google Scholar 

  • Ekiel, I!, Marsh, D., Smallbone, B. W., Kates, M., and Smith, I. C. P., 1981, The state of the lipids in the purple membrane of Halobacterium cutirubrum as seen by 31P-NMR, Biochem . Biophys. Res . Commun. 100: 105.

    Google Scholar 

  • Ekiel, I., Sprott, G. D., and Smith, I. C. P., 1986, Mevalonic acid is partially synthesized from amino acids in Halobacterium cutirubrum: A 13C-NMR study, J. Bacteriol . 166: 559.

    PubMed  CAS  Google Scholar 

  • Esser, A. F., and Lanyi, J. K., 1973, Structure of the lipid phase in cell envelope vesicles of Halobacterium cutirubrum, Biochemistry 12: 1933.

    Article  PubMed  CAS  Google Scholar 

  • Evans, R. W., Kushwaha, S. C., and Kates, M., 1980, The lipids of Halobacterium marismortui, an extremely halophilic bacterium from the Dead Sea, Biochim. Biophys. Actal 619: 533.

    Google Scholar 

  • Exterkate, F. A., and Veerkamp, J. H., 1969, Biochem ical changes in Bifidobacterium bifidum var. pennsylvanicus after cell wall inhibition. I. Composition of lipids, Biochim. Biophys. Actal 176: 65.

    Google Scholar 

  • Exterkate, F. A., and Veerkamp, J. H., 1971, Biochem ical changes in Bifidobacterium bifidum var. pennsylvanicus after cell wall inhibition. IV. Galactolipid composition, Biochim. Biophys. Actal 231: 545.

    Google Scholar 

  • Falk, K.-E., Karlsson, K.-A., and Samuelsson, B. E., 1979, Proton nuclear magnetic resonance analysis of anomeric structure of glycosphingolipids, Arch. Biochem. Biophys . 192: 177.

    Google Scholar 

  • Falk, K.-E., Karlsson, K.-A., and Samuelsson, B. E., 1980, Structural analysis of mass spectrometry and NMR spectroscopy of the glycolipid sulfate from Halobacterium salinarium and a note on its possible function, Chem. Phys . Lipids 27: 9.

    Google Scholar 

  • Ferrante, G., Ekiel, I., and Sprott, G. D., 1986, Structural characterization of the lipids of Methanococcus voltae including a novel N-acetylglucosamine-1-phosphate diether, J. Biol. Chem . 261: 17062.

    Google Scholar 

  • Ferrante, G., Ekiel, I., and Sprott, G. D., 1987, Structures of diether lipids of Methanosbirillum hungatei containing novel head groups N,N-dimethylamino-and N,N,N-trimethylaminopentanetetrol, Biochim. Biophys. Actal 921: 281.

    Google Scholar 

  • Ferrante, G., Ekiel, I., Patel, G. B., and Sprott, G. D., 1988a, Structure of major polar lipids isolated from the aceticlastic methanogen, Methanothrix concilii, Biochim. Biophys. Actal 963: 162.

    Google Scholar 

  • Ferrante, G., Ekiel, I., Patel, G. B. and Sprott, G. D., 1988b, A novel core lipid isolated from the aceticlastic methanogen, Methanothrix concilii GP6, Biochim. Biophys. Actal 963: 173.

    Google Scholar 

  • Ferrante, G., Richards, J. C., and Sprott, G. D., 1990, Structures of polar lipids from the ther- mophilic deep sea archaebacterium Methanococcus jannaschii, Biochem . Cell Biol ., 68: 274.

    Google Scholar 

  • Fischer, W., 1976, in Lipids, Vol. 1 (R. Paoletti, G. Porcellati, and G. Jacini, eds.), pp. 255–266, Raven, New York.

    Google Scholar 

  • Fischer, W., 1981, in Chemistry and Biological Activities of Bacterial Surface Amphiphiles (G. D. Shockman and A. J. Wicken, eds.), pp. 209–228, Academic, Orlando, Florida.

    Google Scholar 

  • Fischer, W., and Seyferth, W., 1968, 1-(O-a-D-glucopyranosyl-(1–2)-O-a-o-glycopyranosyl)glycerin aus den Glycolipiden von Streptococcus faecalis, Streptococcus laths, Hoppe-Seyler’s Z. Physiol. Chem . 349: 1662.

    Google Scholar 

  • Fischer, W., Ishizuka, I., Landgraf, H. R., and Herrmann, J., 1973, Glycerylphosphoryl diglucosyl diglyceride, a new phosphoglycolipid from Streptococci, Biochim. Biophys. Actal 296: 527.

    Google Scholar 

  • Fischer, W., Laine, R. A., Nakano, M., Schuster, D., and Egge, H., 1978a, The structure of acyl-akojibiosyldiacylglycerol from Streptococcus lattis, Chem. Phys . Lipids 21: 103.

    Google Scholar 

  • Fischer, W, Nakano, M., Laine, R. A., and Bohrer, W., 1978b, On the relationship between glycerophosphoglycolipids and lipoteichoic acids in gram-positive bacteria. I. The occurrence of phosphoglycolipids, Biochim. Biophys. Actal 528: 288.

    Google Scholar 

  • Fischer, W, Laine, A. R., and Nakano, M., 1978c, On the relation between glycerophosphoglycolipids and lipoteichoic acids in gram-positive bacteria. II. Structures of glycerophosphoglycolipids, Biochim. Biophys. Actal 528: 298.

    Google Scholar 

  • Fischer, W., Schuster, D., and Laine, A. R., 1979, Studies on the relationship between glycerophosphoglycolipids and lipoteichoic acids. IV. Trigalactosylglycerophospho-acylkojibiosyldiacylglycerol and related compounds from Streptococcus lactic Kiel 42172, Biochem . Biophys. Actal 575: 389.

    Google Scholar 

  • Galambos, J. T., 1967, The reaction of carbazole with carbohydrates. I. Effect of borate and sulfanate on carbazole colour of sugars, Anal. Biochem . 19: 119.

    Google Scholar 

  • Gigg, R., 1980, Synthesis of glycolipids, Chem. Phys . Lipids 16: 287.

    Google Scholar 

  • Gliozzi, A., Paoli, G., Rolandi, R., De Rosa, M., and Gambacorta, A., 1983, Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria, Biochim. Biophys. Actal 735: 234.

    Google Scholar 

  • Gochnauer, M. B., Leppard, G. G., Komaratat, P., Kates, M., Novitsky, T., and Kushner, D. J., 1975, Isolation and characterization of Actinopolyspora halophila, an extremely halophilic Actinomycete, Can. J. Microbiol . 21: 1500.

    Google Scholar 

  • Goldfine, H., 1972, Comparative aspects of bacterial lipids, Adv. Microbiol. Physiol. 8: 1.

    Google Scholar 

  • Goldfine, H., 1982, Lipids of prokaryotes—Structure and distribution, Curr. Top. Membr. Tramp. 17: 1.

    Google Scholar 

  • Goldfine, H., and Hagen, P. 0., 1972, Bacterial plasmalogens, in Ether Lipids, Chemistry and Biology ( F. Snyder, ed.), pp. 329–350, Academic, New York.

    Chapter  Google Scholar 

  • Grant, W. D., and Larsen, H., 1988, Extremely halophilic archaeobacteria, in Bergey’s Manual of Systematic Bacteriology, Vol. 3 Q. T. Stalley, ed.), pp. 2216–2233, Williams & Wilkins, Baltimore.

    Google Scholar 

  • Grant, W. D., and Ross, H. N. M., 1986, The ecology and taxonomy óf halobacteria, FEMS Microbiol. Rev. 39: 9.

    Google Scholar 

  • Grant, W. D., Pinch, G., Harris, J. E., De Rosa, M., and Gambacorta, A., 1985, Polar lipids in methanogen taxonomy, J. Gen. Microbioll . 131: 3277.

    Google Scholar 

  • Green, J. N., 1966, The glycofuranosides, Adv. Carbohydr. Chem. 21: 95.

    Google Scholar 

  • Gulik, A., Luzzati, V., De Rosa, M., and Gambacorta, A., 1985, Structure and polymorphism of bipolar isopranyl ether lipids from Archaebacteria, J. Mol. Biol . 182: 131.

    Google Scholar 

  • Haines, T. H., 1971, The chemistry of the sulfolipids, Prog. Chem. Fats Other Lipids 11: 297.

    Google Scholar 

  • Haines, T. H., 1983, Anionic lipid headgroups as a proton-conducting pathway along the surface of membranes: A hypothesis, Proc. Nat. Acad. Sci. USA 80: 160.

    Google Scholar 

  • Hakomori, S., 1983, Chemistry of glycosphingolipids, in Sphingolipid Biochemistry Vol. 3 U. N. Kanfer and S. Hakomori, eds.), pp. 1–165, Plenum, New York.

    Google Scholar 

  • Hanna, K., Bengis-Garber, C., Kushner, D. J., Kogut, M., and Kates, M., 1984, The effect of salt concentration on the phospholipid and fatty acid composition of the moderate halophile Vibrio costicola, Can. J. Microbiol . 30: 669.

    Google Scholar 

  • Heathcock, C. H., Finkelstein, H., Aoki, B. L., and Poulter, C. D., 1985, Stereostructure of the archaebacterial C40 diol, Science 229: 862.

    Article  PubMed  CAS  Google Scholar 

  • Heinz, E., 1967, Acygalaktosyldiglycerid aus Blatthomogenaten, Biochim. Biophys. Actal 144: 321.

    Google Scholar 

  • Heinz, E., Rullkotter, J., and Budzikiewicz, H., 1974, Acyl digalactosyl diglyceride from leaf homogenates, Hoppe-Seyler’s Z. Physiol. Chem . 355: 612.

    Google Scholar 

  • Henderson, R., Jubb, J. S., and Whytock, S., 1978, Specific labeling of the protein and lipid on the extracellular surface of purple membrane, J. Mol. Biol . 123: 259.

    Google Scholar 

  • Hinz, H.-J., Six, L., Ruess, K.-P., and Lieflander, M., 1985, Head-group contributions to bilayer stability: Monolayer and calorimetric studies on synthetic, stereochemically uniform glucolipids, Biochemistry 24: 806.

    Google Scholar 

  • Hiraki, K., Hamanaka, T., Mitsui, T., Kito, Y., 1981, Phase transitions of the purple membrane and brown holomembrane, X-ray diffraction, circular dichroism spectrum and adsorption spectrum studies, Biochim. Biophys. Actal 647: 18.

    Google Scholar 

  • Hudson, C. S., 1909, The significance of certain numerical relations in the sugar group, J. Am. Chem. Soc . 31: 66.

    Google Scholar 

  • Imhoff, J. F., Kushner, D. J., Kushwaha, S. C., and Kates, M., 1982, Polar lipids in phototrophic bacteria of the Rhodospirillaceae and Chromatiaceae families, J. Bacteriol . 150: 1192.

    PubMed  CAS  Google Scholar 

  • Inoue, T., Deshmukh, D. S., and Pieringer, R. A., 1971, The association of the galactosyldiglycerides of brain with myelination. I. Changes in the concentration of monogalactosyldiglycerol in the microsomal and myelin fractions of brain of rats during development, J. Biol. Chem . 246: 5688.

    Google Scholar 

  • Ishizuka, I., and Yamakawa, T., 1968, Glycosyl glycerides from Streptococcus hemolyticus strain D-58, J. Biochem . 64: 13.

    PubMed  CAS  Google Scholar 

  • Ishizuka, I., and Yamakawa, T., 1985, Glycoglycerolipids, in Glycolipids ( H. Wiegandt, ed.), pp. 101–197, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • IUPAC—IUB Commission on Biochem ical Nomenclature, 1978, The nomenclature of lipids, Chem. Phys . Lipids 21: 159.

    Article  Google Scholar 

  • Iwamoto, K., Sunamoto, J., Inoue, K., Endo, T., and Nojima, S., 1982, Liposomal membranes. XV. Importance of surface structure in liposomal membranes of glyceroglycolipids, Biochim. Biophys. Actal 691: 44.

    Google Scholar 

  • Jackson, M. B., and Sturtevant, J. M., 1978, Phase transitions of the purple membranes of Halobacterium halobium, Biochemistry 17: 911.

    Article  PubMed  CAS  Google Scholar 

  • Jarrell, H. C., Jovall, P. A., Giziewicz, J. B., Turner, L. A., and Smith, I. C. P., 1987, Determination of conformational properties of glycolipid head groups by 2H-NMR of oriented multibilayers, Biochemistry 26: 1805.

    Article  PubMed  CAS  Google Scholar 

  • Joo, C. N., Shier, T., and Kates, M., 1968, Characterization and synthesis of mono-and diphytanyl ethers of glycerol, J. Lipid Res. 9: 782.

    PubMed  CAS  Google Scholar 

  • Juez, G., Rodriguez-Valera, F., Ventosa, A., and Kushner, D. J., 1986, Haloarcula hispanica, spec. nov. and Haloferax gibbonsii spec. nov., two new species of extremely halophilic archaebacteria, Syst. Appl. Microbiol. 8: 75.

    Google Scholar 

  • Kahane, I., and Tully, J. G., 1976, Binding of lectins to mycoplasma cells and membranes, J. Bacteriol . 128: 1.

    PubMed  CAS  Google Scholar 

  • Kamekura, M., and Kates, M., 1988, Lipids of halophilic archaebacteria, in Halophilic Bacteria, Vol. II ( F. Rodriguez-Valera, ed.), pp. 25–54, CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Kanfer, J. N., and Hakomori, S. (eds.), 1983, Sphingolipid Biochem istry, Vol. 3, Plenum, New York.

    Google Scholar 

  • Karkkainen, J., Lehtonen, A., and Nikkari, T., 1965, J. Chromatogr. 20: 457.

    Article  PubMed  CAS  Google Scholar 

  • Kates, M., 1964, Bacterial lipids, Adv. Lipid Res. 2: 17.

    Google Scholar 

  • Kates, M., 1966, Biosynthesis of lipids in microorganisms, Annu. Rev. Microbiol. 20: 13.

    Google Scholar 

  • Kates, M., 1972, Ether-linked lipids in extremely halophilic bacteria, in Ether Lipids, Chemistry and Biology ( F. Snyder, ed.), pp. 351–398, Academic, New York.

    Chapter  Google Scholar 

  • Kates, M., 1978, The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria, Prog. Chem. Fats Other Lipids 15: 301.

    Google Scholar 

  • Kates, M., 1986a, Techniques of Lipidology, 2nd rev. ed., Elsevier, Amsterdam

    Google Scholar 

  • Kates, M., 1986b, Influence of salt concentration of membrane lipids on halophilic bacteria, FEMS Microbiol. Rev. 39: 95.

    Google Scholar 

  • Kates, M., 1988, Structure, physical properties and function of archaebacterial lipids, in Biological Membranes: Aberrations in Membrane Structure and Function, Proceedings of the Twelfth International Conference on Biological Membranes ( M. L. Karnovsky, A. Leaf, and L. C. Bolts, eds.), pp. 357–384, Alan R. Liss, New York.

    Google Scholar 

  • Kates, M., and Deroo, P. W., 1973, Structure determination of the glycolipid sulfate from the extreme halophile Halobacterium cutirubrum, Biochemistry 14: 438.

    CAS  Google Scholar 

  • Kates, M., and Kushwaha, S. C., 1978, Biochemistry of the lipids of extremely halophilic bacteria, in Energetics and Structure of Halophilic Microorganisms ( S. R. Caplan and M. Ginzburg, eds.), pp. 461–480, Elsevier, Amsterdam.

    Google Scholar 

  • Kates, M., and Volcani, B. E., 1966, Lipids of diatoms, Biochim.Biophys. Acta116: 264.

    Google Scholar 

  • Kates, M., Yengoyan, L. S., and Sastry, P. S., 1965, A diether analog of phosphatidylglycerophosphate in Halobacterium cutirubrum, Biochim. Biophys. Actal 98: 252.

    Google Scholar 

  • Kates, M., Palameta, B., Joo, C. N., Kushner, D. J., and Gibbons, N. E., 1966, Aliphatic diether analogues of glyceride-derived lipids. IV. Occurrence of di-O-dihydrophytylglycerol ether containing lipids in extremely halophilic bacteria, Biochemistry 5: 4092.

    Google Scholar 

  • Kates, M., Palameta, B., Perry, M. P., and Adams, G. A., 1967, A new glycolipid sulfate in Halobacterium cutirubrum, Biochim. Biophys. Actal 137: 213.

    Google Scholar 

  • Kates, M., Wassef, M. K., and Kushner, D. J., 1968, Radioisotopic studies on the biosynthesis of the glycerol diether lipids of Halobacterium cutirubrum, Can. J. Biochem . 46: 971.

    Google Scholar 

  • Kates, M., Wassef, M. K., and Pugh, E. L., 1970, Origin of the glycerol moieties in the glycerol diether lipids of Halobacterium cutirubrum, Biochim. Biophys. Actal 202: 206.

    Google Scholar 

  • Kates, M., Kushwaha, S. C., and Sprott, G. D., 1982, Lipids of purple membrane from extreme halophiles and of methanogenic bacteria, Methods Enzymol. 88: 98.

    Article  CAS  Google Scholar 

  • Kaufmann, B., Kunding, F. D., Distler, J., and Roseman, S., 1965, Enzymatic synthesis and structure of two glycolipids from type XIV Pneumococcus, Biochem . Biophys. Res . Commun. 18: 312.

    Google Scholar 

  • Kenyon, C. N., 1978, Complex lipids and fatty acids of photosynthetic bacteria, in The Photosynthetic Bacteria( R. K. Clayton and W. R. Sistrom, eds.) pp. 281–313, Plenum, New York.

    Google Scholar 

  • Khuller, G. K., and Brennan, P. J., 1972a, Further studies on the lipids of corynebacteria. The mannolipids of Corynebacterium aquaticum, Biochem . J. 127: 369.

    Google Scholar 

  • Khuller, G. K., and Brennan, P. J., 19726, The polar lipids of some species of Nocardia, J. Gen. Microbioll . 73: 409.

    Google Scholar 

  • Kocur, M., and Hodgkiss, W., 1973, Taxonomic status of the genus Halococcus Schoop, Int. J. Systm. Bacteriol. 23: 151.

    Google Scholar 

  • Koga, Y., Nishihara, M., and Morii, H., 1982, Lipids of alkaliphilic bacteria: identification, corn-position and metabolism, J. Univ. Occupat. Environ. Health 4: 227.

    Google Scholar 

  • Koga, Y., Ohga, M., Nishihara, M., and Morii, H., 1987, Distribution of diphytanyl ether analog of phosphatidylserine and ethanolamine-containing tetraether lipid in methanogenic bacteria, Syst. Appl. Microbiol. 9: 176.

    Google Scholar 

  • Komaratat, P., 1974, Structural and metabolic studies of the cellular lipids of halotolerant Staphylococcus epidermidis, Ph.D. thesis, University of Ottawa, Canada.

    Google Scholar 

  • Komaratat, P., and Kates, M., 1975, The lipids of a halotolerant species of Staphylococcus epidermidis, Biochim. Biophys. Actal 398: 464.

    Google Scholar 

  • Kunsman, J. E., 1970, Characterization of the lipids of Butyrivibrio fibrisolvens, J. Bacteriol . 103: 104.

    PubMed  CAS  Google Scholar 

  • Kushwaha, S. C., and Kates, M., 1981, Modification of phenol-sulfuric acid method for estimation of sugars in lipids, Lipids 16: 372.

    Article  PubMed  CAS  Google Scholar 

  • Kushwaha, S. C., Kates, M., and Martin, W. G., 1975, Characterization and composition of purple and red membranes from Halobacterium cutirubrum, Can. J. Biochem . 53: 284.

    Google Scholar 

  • Kushwaha, S. C., Kates, M., and Porter, J. W., 1976, Enzymatic synthesis of C40 carotenes by cell-free preparations from Halobacterium cutirubrum, Can. J. Biochem . 54: 816.

    Google Scholar 

  • Kushwaha, S. C., Kates, M., Sprott, G. D., and Smith, I. C. P., 1981, Novel polar lipids from methanogen Methanospirillum hungatei, Biochim. Biophys. Actal 664: 156.

    Google Scholar 

  • Kushwaha, S. C., Kates, M., Juez, G., Rodriguez-Valera, F., and Kushner, D. J., 1982a, Polar lipids of an extremely halophilic bacterial strain (R-4) isolated from salt ponds in Spain, Biochim. Biophys. Actal 711: 19.

    Google Scholar 

  • Kushwaha, S. C., Juez-Perez, G., Rodriguez-Valera, F., Kates, M., and Kushner, D. J., 1982b, Survey of lipids of a new group of extremely halophilic bacteria from salt ponds in Spain, Can. J. Microbiol . 28: 1365.

    Google Scholar 

  • Laine, R. L., and Renkonen, 0., 1975, Analysis of anomeric configuration in glyceroglycolipids and glycosphingolipids by chromium trioxide oxidation, J. Lipid Res. 16: 102.

    PubMed  CAS  Google Scholar 

  • Laine, R. A., Esselman, W. J., and Sweeley, C. C., 1972, Gas—liquid chromatography of carbohydrates, Methods Enzymol. 28: 159.

    Article  Google Scholar 

  • Lang, D. R., and Lundgren, D. G., 1970, Lipid components of Bacillus cereus during growth and sporulation, J. Bacteriol . 101: 483.

    PubMed  CAS  Google Scholar 

  • Langworthy, T. A., 1977a, Long-chain diglycerol tetraethers from Thermoplasma acidophilum, Biochim. Biophys. Actal 487: 37.

    Google Scholar 

  • Langworthy, T. A., 19776, Comparative lipid composition of heterotrophically and autotrophically grown Sulfolobus acidocaldarius, J. Bacteriol . 130: 1326.

    Google Scholar 

  • Langworthy, T. A., 1982a, Lipids of bacteria living in extreme environments, Curr. Top. Membr. Tramp. 17: 45.

    Google Scholar 

  • Langworthy, T. A., 1982b, Lipids of thermoplasma, Methods Enzymol. 88: 396.

    Article  CAS  Google Scholar 

  • Langworthy, T. A., 1985, Lipids of archaebacteria, in The Bacteria, Vol. 8 ( C. R. Woese and R. S. Wolfe, eds.), pp. 459–497, Academic, Orlando, Florida.

    Google Scholar 

  • Langworthy, T. A., Smith, P. F., and Mayberry, W. R., 1972, Lipids of Thermoplasma acidophilum, J. Bacterial. 112: 1193.

    CAS  Google Scholar 

  • Langworthy, T. A., Mayberry, W. R., and Smith, P. F., 1974, Long-chain glycerol diether and polyol dialkyl glycerol triether lipids of Sulfolobus acidocaldarius, J. Bakteriol. 119: 106.

    CAS  Google Scholar 

  • Langworthy, T. A., Mayberry, W. R., and Smith, P. F., 1976, A sulfonolipid and novel glucosamidyl glycolipids from the extreme thermoacidophile Bacillus acidocaldarius, Biochim. Biophys. Actal 431: 550.

    Google Scholar 

  • Langworthy, T. A., Tornabene, T. G., and Holzer, G., 1982, Lipids of archaebacteria, Zentralbl. Bakteriol. Mikrobiol. Hyg. Abt. 1 Orig. C 3: 228.

    CAS  Google Scholar 

  • Langworthy, T. A., Holzer, G., Zeikus, J. G., and Tornabene, T. G., 1983, Iso and anteisobranched glycerol diethers in the thermophilic anaerobe, Thermodesulfatobacterium commune, Syst. Appl. Microbiol. 4: 1.

    Google Scholar 

  • Lanyi, J. K., 1979, The role of Na+ in transport processes of bacterial membranes, Biochim. Biophys. Actal 559: 377.

    Google Scholar 

  • Lanzotti, V., De Rosa, M., Trincone, A., Basso, A. L., Gambacorta, A., and Zillig, W., 1987, Complex lipids from Desulfurococcus mobilis, a sulfur-reducing archaebacterium, Biochim. Biophys. Actal 922: 95.

    Google Scholar 

  • Lee, Y. C., and Ballou, C. E., 1965, Complete structures of the glycophospholipids of mycobacteria, Biochemistry 4: 1395.

    Article  PubMed  CAS  Google Scholar 

  • Lennarz, W. J., 1966, Lipid metabolism in bacteria, Adv. Lipid Res. 4: 175.

    Google Scholar 

  • Lennarz, W. J., 1970, in Lipid Metabolism (S. J. Wakil, ed.), pp. 155–184, Academic, New York.

    Book  Google Scholar 

  • Lennarz, W. J., and Talamo, B., 1966, The chemical characterization and enzymatic synthesis of mannolipids in Micrococcus lysodeikticus, J. Biol. Chem . 241: 2707.

    Google Scholar 

  • Lepage, M., 1964, Isolation and characterization of an esterified form of steryl glucoside, J. Lipid Res. 5: 587.

    PubMed  Google Scholar 

  • Lind, C., Hojeberg, B., and Khorana, H. G., 1981, Reconstitution of delipidated bacteriorhodopsin with endogenous polar lipids, J. Biol. Chem . 256: 8298.

    Google Scholar 

  • Livermore, B. P., and Johnson, R. C., 1970, Isolation and characterization of glycolipid from Treponema pallidum Kazan, Biochim. Biop/tys. Acta210: 315.

    Google Scholar 

  • Livermore, B. P., and Johnson, R. C., 1974, Lipids of the Spirochaetales: Comparison of the lipids of several members of the genera Spirochaeta, Trepanoma, J. Bacteriol . 120: 1268.

    Google Scholar 

  • Lynch, D. V., Gundersen, R. E., and Thompson, G. A., Jr., 1983, Separation of galactolipid molecular species by high performance liquid chromatography, Plant Physiol. 72: 903.

    Article  PubMed  CAS  Google Scholar 

  • MacDougall, J. C., and Phizackerley, P. J. R., 1969, Isomers of glucosaminylphosphatidylglycerol in Bacillus megaterium, Biochem . J. 114: 361.

    Google Scholar 

  • Macfarlane, M. G., 1961, Isolation of a phosphatidylglycerol and glycolipid from Micrococcus lysodeikticus, Biochem . J. 80: 45P.

    Google Scholar 

  • Macfarlane, M. G., 1962a, Lipid components of Staphylococcus aureus and Salmonella typhimurium, Biochem . J. 82: 40P.

    Google Scholar 

  • Macfarlane, M.G., l962b, Characterization of lipoamino acids as O-amino acid esters of phosphatidylglycerol, Nature (Lond.) 196: 136.

    Google Scholar 

  • Mancuso, C. A., Nichols, P. D., and White, D. C., 1986, A method for the separation and characterization of archaebacterial signature ether lipids, J. Lipid Res. 27: 49.

    PubMed  CAS  Google Scholar 

  • Mannock, D. A., Lewis, R. N. A. H., and McElhaney, R. N., 1987, An improved procedure for the preparation of 1,2-di-O-acyl-3-O-(13-D-glucopyranosyl)-sn-glycerols, Chem. Phys . Lipids 43: 113.

    Google Scholar 

  • Mannock, D. A., Lewis, R. N. A. H., Sen, A., and McElhaney, R. N., 1988, The physical properties of glycosyldiacylglycerols. Calorimetric studies of a homologous series of 1,2-diacyl-3-O-(13-Dglucopyranosyl)-sn-glycerols, Biochemistry 27: 6852.

    Article  PubMed  CAS  Google Scholar 

  • Marinetti, G. V., and Cattieu, K., 1981, Lipid analysis of cells and chromatosphores of Rhodopseudomonae sphaeroides, Chem. Phys . Lipids 28: 241.

    Google Scholar 

  • Marion, D., Gandemer, G., and Douillard, R., 1984, Separation of plant phosphoglycerides and galactosylglycerides by high performance liquid chromatography, in Structure, Function, and Metabolism of Plant Lipids ( P. A. Siegenthaller and W. Eichenberger, eds.), pp. 139–143, Elsevier, Amsterdam.

    Google Scholar 

  • Matsubara, T., and Hayashi, A., 1974, Determination of the structure of partially methylated sugars as O-trimethylsilyl ethers by gas chromatography—mass spectrometry, Biomed. Mass Spect. 1: 62.

    Google Scholar 

  • Matthews, H. M., Yang, T.-K., and Jenkin, H. M., 1980, Alk-1-enyl ether phospholipids (plas- malogens) and glycolipids of Treponoma hyodysenteriae, Biochim. Biophys. Actal 618: 273.

    Google Scholar 

  • Mayberry, W. R., and Smith, P. F., 1983, Structures and properties of acyldiglucosyl cholesterol and galactofuranosyl diacylglycerol from Acholeplasma axanthum, Biochim. Biophys. Actal 752: 434.

    Google Scholar 

  • Mayberry-Carson, K. J., Langworthy, T. A., Mayberry, W. R., and Smith, P. F., 1974, A new class of lipopolysaccliaride from Thermoplasma acidophilum, Biochim. Biophys. Actal 360: 217.

    Google Scholar 

  • Mayberry, W. R., Langworthy, T. A., and Smith, P. F., 1976, Structure of the mannoheptose containing pentaglycosyldiacylglycerol from Acholeplasma modicum, Biochim. Biophys. Actal 441: 115.

    Google Scholar 

  • McElhaney, R. N., 1984, Structure and function of the Acholeplasma laidlawii plasma membrane, Biochim. Biophys. Actal 779: 1.

    Google Scholar 

  • McElhaney, R. N., and Tourtellotte, M. E., 1970, Metabolic turnover of the polar lipids of Mycoplasma laidlawii Strain B, J. Bacteriol . 101: 72.

    PubMed  CAS  Google Scholar 

  • Meyer, H., and Meyer, F., 1971, Lipid metabolism in the parasitic and free-living spirochetes Trepanoma pallidum (Reiter) and Trepanoma zuelzerae, Biochim. Biophys, Acta 231: 93.

    Google Scholar 

  • Moldoveanu, N., and Kates, M., 1988, Biosynthetic studies of the polar lipids of Halobacterium cutirubrum. Formation of isoprenyl ether intermediates, Biochim. Biophys. Actal 960: 164.

    Google Scholar 

  • Moldoveanu, N., and Kates, M., 1989, Effect of bacitracin on growth and phospholipid, glycolipid and bacterioruberin biosynthesis in Halobacterium cutirubrum, J. Gen. Microbioll . 135: 2503.

    Google Scholar 

  • Montero, C. G., Ventosa, A., Rodriguez-Valera, F., Kates, M., Moldoveanu, N., and Ruiz-Berraquero, F., 1989, Halococcus saccharolyticus sp. nov., a new species of extremely halophilic nonalkaliphilic cocci, Syst. Appl. Microbiol. 12: 167.

    Google Scholar 

  • Morii, H., Nishihara, M., Ohga, M., and Koga, Y., 1986, A diphytanyl ether analog of phosphatidylserine from a methanogenic bacterium, Methanobrevibacter arboriphilus, J. Lipid Res. 27: 724.

    Google Scholar 

  • Morth, S., and Tindall, B. J., 1985, Variation in polar lipid composition within Haloalkaliphilic archaebacteria, Syst. Appl. Microbiol. 6: 247.

    Google Scholar 

  • Mullakhanbhai, M. F., and Larsen, H., 1975, Halobacterium volcanii, new species, a Dead Sea Halobacterium with a moderate salt requirement, Arch. Microbiol. 104: 207.

    Google Scholar 

  • Murray, R. K., Levine, M., and Kornblatt, M. J., 1976, Sulfatides: Principal glycolipids of the testes and spermatozoa of chordates, in Glycolipid Methodology (L. A. Witting, ed.), pp. 305327. American Oil Chemists’ Society, Champaign, Illinois.

    Google Scholar 

  • Murray, R. K., Narasimhan, R., Levine, M., and Pinteric, L., 1980, Galactoglycerolipids of mammalian testis, spermatozoa, and nervous tissue, in Cell Surface Glycolipids (C. C. Sweeley, ed.), pp. 105–125, ACS Symposium Series, Vol. 128, American Chemical Society, Washington, D.C.

    Google Scholar 

  • Nakano, M., and Fischer, W., 1977, The glycolipids of Lactobacillus casei DSM 20021, Hoppe-Seyler’s Z. Physiol. Chem . 358: 1439.

    Google Scholar 

  • Nichols, B. W., and James, A. T., 1965, Lipids of photosynthetic tissue, Biochem . J. 94: 22P.

    Google Scholar 

  • Nichols, B. W., and Moorehouse, R., 1969, The separation, structure and metabolism of monogalactosyl diglyceride species in Chlorella vulgaris, Lipids 4: 311.

    Article  PubMed  CAS  Google Scholar 

  • Nishihara, M., and Koga, Y., 1987a, Extraction and composition of polar lipids from the Archaebacterium, Methanobacterium thermoautotrophicum: Effective extraction of tetraether lipids by an acidified solvent, J. Biochem . 101: 997.

    Google Scholar 

  • Nishihara, M., Morii, H., and Koga, Y., 1987b, Structure determination of a quartet of novel tetraether lipids from Methanobacterium thermoautotrophicum, J. Biochem . 101: 1007.

    PubMed  CAS  Google Scholar 

  • Nishihara, M., Morii, H., and Koga, Y., 1989, Heptads of polar ether lipids of an archaebacterium, Methanobacterium thermoautotrophicum: Structure and biosynthesis relation, Biochemistry 28: 95.

    Google Scholar 

  • Onishi, H., Kobayashi, T., Iwao, S., and Kamekura, M., 1985, Archaebacterial diether lipids in a non-alkalophilic, non-pigmented extremely halophilic bacterium, Agric. Biol. Chem. 49: 3053.

    Google Scholar 

  • Op den Kamp, J. A. F., and van Deenen, L. L. M., 1966, On the structure of glucosaminyl phosphatidylglycerol in Bacillus megaterium, Chem. Phys . Lipids 1: 86.

    Google Scholar 

  • Oshima, M., and Ariga, T., 1976, Analysis of the anomeric configuration of galactofuranosecontaining glycolipid from an extreme halophile, FEBS Lett. 64: 440.

    Article  PubMed  CAS  Google Scholar 

  • Oshima, M., and Yamakawa, T., 1974, Chemical structure of a novel glycolipid from an extreme thermophile, Flavobacterium thermophilum, Biochemistry 13: 1140.

    Google Scholar 

  • Ourisson, G., and Rohmer, M., 1982, Prokaryotic polyterpenes: Phylogenetic precursors of sterols, Curr. Top. Membr. Tramp. 17: 153.

    Google Scholar 

  • Pandhi, P. N., and Hammond, F., 1978, The polar lipids of Actinomyces viscosus, Arch. Oral Biol. 23: 17.

    Google Scholar 

  • Peleg, E., and Tietz, A., 1971, Glycolipids of a halotolerant moderately halophilic bacterium, FEBS Lett. 15: 309.

    Article  PubMed  CAS  Google Scholar 

  • Peleg, E., and Tietz, A., 1973, Phospholipids of a moderately halophilic halotolerant bacterium. Isolation and identification of glycosylphosphatidylglycerol, Biochim. Biophys. Actal 306: 368.

    Google Scholar 

  • Pennick, R. J., and McCluer, R. H., 1966, Quantitative determination of glucose and galactose in ganglioside by gas-liquid chromatography, Biochim. Biophys. Actal 116: 288.

    Google Scholar 

  • Perlin, A. S., Casu, B., and Koch, H. J., 1970, Configurational and conformational influences on carbon-13 chemical shifts of some carbohydrates, Can. J. Chem. 48: 2596.

    Google Scholar 

  • Perry, M. B., 1964, The separation, determination and characterization of 2-amino-2-deoxy-Dglucose (n-glucosamine) and 2-amino-2-deoxy-n-galactose (n-galactosamine) in biological materials by gas-liquid parition chromatography, Can. J. Biochem . 42: 451.

    Google Scholar 

  • Perry, M. B., and Hulyalka, R. K., 1965, The analysis of hexuronic acids in biological materials by gas-liquid partition chromatography, Can. J. Biochem . 43: 573.

    Google Scholar 

  • Phizackerley, P. J. R., MacDougall, J. C., and Moore, R. A., 1972, 1-(O-a-Glucosaminyl)-2,3diglyceride in Bacillus megaterium, Biochem . J. 126: 499.

    Google Scholar 

  • Pièringer, R. A., 1968, The metabolism of glyceride glycolipids, J. Biol. Chem . 243: 4894.

    Google Scholar 

  • Plachy, W. Z., Lanyi, J. K., and Kates, M., 1974, Lipid interactions in membranes of extremely halophilic bacteria. I. Electron spin resonance and dilatometric studies of bilayer structure, Biochemistry 13: 4906.

    Google Scholar 

  • Plackett, P., 1967, The glycerolipids of Mycoplasma mycoides, Biochemistry 6: 2746.

    Google Scholar 

  • Plackett, P., and Shaw, E. J., 1967, Glycolipids from Mycoplasma laitilawii and Streptococcus MG, Biochem . J. 104: 61C.

    Google Scholar 

  • Plackett, P., Marmion, B. P., Shaw, E. J., and Lemcke, R. M., 1969, Immunochemical analysis of Mycoplasma pneumoniae, Aust. J. Exp. Biol. Med. Sci. 47: 171.

    Google Scholar 

  • Polonovski, J., Wald, R. and Paysant Diamant, 1962, Les lipides de Staphylococcus aureus, Ann. Inst. Pasteur Paris 103: 32.

    Google Scholar 

  • Poulter, C. D., Aoki, T., and Daniels, L., 1988, Biosynthesis of isoprenoid membranes in the methanogenic archaebacterium Methanospirillum hungatei, J. Am. Chem. Soc . 110: 2620.

    Google Scholar 

  • Prottey, C., and Ballou, C. E., 1968, Diacylmyoinositol monomannoside of Propionibacterium shermanii, J. Biol. Chem . 243: 6196.

    Google Scholar 

  • Proulx, P., and van Deenen, L. L. M., 1967, Phospholipase activity of Escherichia coli, Biochim. Biophys. Actal 144: 171.

    Google Scholar 

  • Pugh, E. L., Wassef, M. K., and Kates, M., 1971, Inhibition of fatty acid synthesis in Halobacterium cutirubrum and Escherichia coli by high salt concentrations, Can. J. Biochem ., 49: 953.

    Google Scholar 

  • Pugh, E. L., Bittman, R., Fugler, L., and Kates, M., 1989, Comparison of steady-state fluorescence polarization and urea permeability of phosphatidylcholine and phosphatidylsulfocholine liposomes as a function of sterol structure, Chem. Phys . Lipids 50: 43.

    Google Scholar 

  • Quinn, P. J., and Sherman, W. R., 1971, Monolayer characteristics and calcium absorption to cerebroside and cerebroside oriented at the air—water interface. Biochim. Biophys. Actal 233: 734.

    Google Scholar 

  • Quinn, P. J., and Williams, W. P., 1983, The structural role of lipids in photosynthetic membranes, Biochim. Biophys. Actal 737: 223.

    Google Scholar 

  • Quinn, P. J., Brain, A. P. R., Stewart, L. C., and Kates, M., 1986, The structure of membrane lipids of the extreme halophile, Halobacterium cutirubrum in aqueous systems studied by freeze-fracture, Biochim. Biophys. Actal 863: 213.

    Google Scholar 

  • Quinn, P. J., Kates, M., Tocanne, J.-F., and Tomaoia-Cotisel, M., 1989, Surface characteristics of phosphatidylglycerophosphate from Halobacterium cutirubrum, compared with its deoxy analogue at the air—water interface, 1989, Biochem . J. 261: 377.

    Google Scholar 

  • Radin, N. S., Lavin, F. B., and Brown, J. R., 1955, Determination of cerebrosides, J. Biol. Chem . 217: 789.

    Google Scholar 

  • Raetz, C. R. H., 1978, Enzymology, genetics and regulation of membrane phospholipid synthesis in Escherichia coli, Microbiol. Rev. 42: 614.

    Google Scholar 

  • Razin, S., 1978, The Mycoplasmas, Microbiol. Rev., 42: 414.

    Google Scholar 

  • Raziuddin, S., 1976, Effect of growth temperature and culture age on the lipid composition of Vibrio cholerae 569B, J. Gen. Microbioll . 94: 367.

    Google Scholar 

  • Reeves, R. E., Latour, N. G., and Lousteau, R. J., 1964, A glycerol galactofuranoside from the lipid of an anaerobe provisionally designated as Bacteroides symbiosus, Biochemistry 3: 1248.

    Article  PubMed  CAS  Google Scholar 

  • Renkonen, 0., 1961, A note on spectrophotometric determination of acyl ester groups in lipids, Biochim. Biophys. Actal 54: 361.

    Article  Google Scholar 

  • Renkonen, 0., 1962, Determination of glycerol in phosphatides, Biochim. Biophys. Actal 56: 367.

    Article  Google Scholar 

  • Rilfors, L., Lindblom, G., Wieslander, A., and Christiansson, A., 1984, Lipid bilayer stability in biological membranes, in Membrane Fluidity ( M. Kates and L. A. Manson, eds.), pp. 205–245, Plenum, New York.

    Chapter  Google Scholar 

  • Rinehart, K. L., 1982, Fast atom bombardment mass spectrometry, Science 218: 254.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, R. G. S., Cyr, N., Korsch, B., Koch, H. J., and Perlin, A. S., 1975, Carbon-13 chemical shifts of furanosides and cyclopentanols. Configurational and conformational influence, Can. J. Chem. 53: 1424.

    Google Scholar 

  • Rodriguez-Valera, F., Juez, G., and Kushner, D. J., 1983, Halobacterium mediterranei, spec. nov., a new carbohydrate-utilizing extreme halophile, Syst. Appi. Microbiol. 4: 369.

    Google Scholar 

  • Ross, H. N. M., and Grant, W. D., 1985, Nucleic acid studies of halophile archaebacteria, J. Gen. Microbioll . 131: 165.

    Google Scholar 

  • Ross, H. N. M., Collins, M. D., Tindall, B. J., and Grant, W. D., 1981, A rapid procedure for detection of archaebacterial lipids in halophilic bacteria, J. Gen. Microbioll . 123: 75.

    Google Scholar 

  • Ross, H. N. M., Grant, W. D., and Harris, J. E., 1985, Lipids in archaebacterial taxonomy, in Chemical Methods in Bacterial Systematics (M. Goodfellow and D. E. Minnikin, eds.), pp. 289299, Academic, Orlando, Florida.

    Google Scholar 

  • Rottem, S., 1980, Membrane lipids of Mycoplasmas, Biochim. Biophys. Actal 604: 65.

    Google Scholar 

  • Rottem, S., 1982, Transbilayer distribution of lipids in microbial membranes, Curr. Top. Membr. Tramp. 17: 235.

    Google Scholar 

  • Rouser, S., Fleischer, S., and Yamomoto, A., 1970, Two dimensional TLC separation of polar lipids and determination of phospholipids by phosphorus analysis of spots, Lipids 5: 494.

    Article  PubMed  CAS  Google Scholar 

  • Saito, K., and Mukoyama, K., 1971, Diglucosyl diglyceride from B. cereus, J. Biochem . ( Tokyo ) 69: 83.

    Google Scholar 

  • Sastry, P. S., 1974, Glycosyl glycerides, Adv. Lipid Res. 12: 251.

    Google Scholar 

  • Sastry, P. S., and Kates, M., 1964, Lipid components of leaves. V. Galactolipids, cerebrosides and lecithin of runner-bean leaves, Biochemistry 3: 1271.

    Google Scholar 

  • Schultz, J. C., and Elbein, A. D., 1974, Biosynthesis of glycosyldiglycerides in Mycobacterium smegmatis, J. Bacteriol . 117: 107.

    PubMed  CAS  Google Scholar 

  • Sen, A., Williams, W. P., and Quinn, P. J., 1981, The structure and thermotropic properties of pure 1,2-diacylgalactosylglycerols in aqueous systems, Biochim. Biophys. Actal 663: 380.

    Google Scholar 

  • Shaw, N., 1968a, The lipid composition of Microbacterium lacticum, Biochim. Biophys. Actal 152: 427.

    Google Scholar 

  • Shaw, N., 1968b, The detection of lipids on thin-layer chromatograms with the periodate—Schiff reagents, Biochim. Biophys. Actal 164: 435.

    Google Scholar 

  • Shaw, N., 1970, Bacterial glycolipids, Bacterial. Rev. 34: 365.

    Google Scholar 

  • Shaw, N., 1974, Lipid composition as a guide to the classification of bacteria, Adv. Appi. Microbial. 17: 63.

    Google Scholar 

  • Shaw, N., 1975, Bacterial glycolipids and glycophospholipids, Adv. Microbiol. Physiol. 12: 141.

    Google Scholar 

  • Shaw, N., and Pieringer, R. A., 1972, Biosynthesis of glucuronosyl diglyceride by particulate fractions of Pseudomonas diminuta, Biochem . Biophys. Res . Commun. 46: 1201.

    Google Scholar 

  • Shaw, N., and Stead, D., 1970, A study of the lipid composition of Microbacterium thermosphactum as a guide to its taxonomy, J. Appi. Bacteriol. 33: 470.

    Google Scholar 

  • Shaw, N., and Stead, D., 1971, Lipid composition of some species of Arthrobacter, J. Bacteriol . 107: 130.

    PubMed  CAS  Google Scholar 

  • Shaw, N., Heatherington, K., and Baddiley, J., 1968a, The glycolipids of Lactobacillus casei, Biochem . J. 107: 491.

    Google Scholar 

  • Shaw, N., Smith, P. F., and Koostra, W. L., 19686, The lipid composition of Mycoplasma laidlawii, strain B, Biochem . J. 107: 329.

    Google Scholar 

  • Short, S., and White, D. C., 1970, Metabolism of glucosyldiglycerides and phosphatidylglucose of Staphylococcus aureus, J. Bacteriol . 104: 126.

    PubMed  CAS  Google Scholar 

  • Siakotos, A. N., and Rouser, G., 1965, Analytical separation of nonlipid water soluble substances and gangliosides from other lipids by dextran gel column chromatography,/ Am. Oil Chemists Soc. 42: 913.

    Article  CAS  Google Scholar 

  • Silvius, J. R., Mak, N., and McElhaney, R. N., 1980, Lipid and protein composition and thermotropic phase transitions in fatty acid-homogeneous membrane of Acholeplasma laidlawii B, Biochim. Biophys. Actal 597: 199.

    Google Scholar 

  • Smallbone, B. W., and Kates, M., 1981, Structural identification of minor glycolipids in Halobacterium cutirubrum, Biochim. Biophys. Actal 665: 551.

    Google Scholar 

  • Smith, P. F., 1969, Biosynthesis of glucosyldiglycerides by Mycoplasma laidlawii Strain B, J. Bacteriol . 99: 480.

    PubMed  CAS  Google Scholar 

  • Smith, P. F., 1972, Lipid composition of Mycoplasma neurolyticum, J. Bacteriol . 112: 554.

    PubMed  CAS  Google Scholar 

  • Smith, P. F., 1980, Sequence and glucoside bond arrangement of sugars in lipopolysaccharide from Thermoplasma acidophilum, Biochim. Biophys. Actal 619: 367.

    Google Scholar 

  • Smith, P. F., 1981, Structure of the oligosaccharide chain of lipoglycan from Acholeplasma, Biochim. Biophys. Actal 665: 92.

    Google Scholar 

  • Smith, P. F., 1986, Structures of unidentified lipids in Acholeplasma laidlawii A-EE22, Biochim. Biophys. Actal 879: 107.

    Google Scholar 

  • Smith, P. F., Patel, K. R., and Al-Shamari, A. J. N., 1980, An aldehydophosphoglycolipid from Acholeplasma granularum, Biochim. Biophys. Actal 617: 419.

    Google Scholar 

  • Smith, G. G., Ruwart, M. J., and Haug, A., 1974, Lipid phase transitions in membrane vesicles from Thermoplasma acidophila, FEBS Lett. 45: 96.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, F., and Stephens, N., 1959, A simplified spectrophotometric determination of ester groups in lipids, Biochim. Biophys. Actal 34: 244.

    Google Scholar 

  • Stanek, J., Cerny, M., Kocourek, J., and Pacak, J., 1963, in The Monosaccharides(K. Mayer, transl.), pp. 50–60, Academic, New York.

    Google Scholar 

  • Steim, J. M., 1967, Mnogalactosyldiglyceride: A new neurolipid, Biochim. Biophys. Actal 144: 118.

    Google Scholar 

  • Steiner, S., Conti, S. F., and Lester, R. L., 1969, Separation and identification of the polar lipids of Chromatium strain D, J. Bacteriol . 98: 10.

    PubMed  CAS  Google Scholar 

  • Stern, N., and Tietz, A., 1973, Glycolipids of a halotolerant, moderate halophilic bacterium I. Biosynthesis of glucuronosyldiglyceride by cell-free particles, Biochim. Biophys. Actal 296: 136.

    Google Scholar 

  • Stetter, K. O., and Zillig, W., 1985, Thermoplasma and the thermophilic sulfur-dependent archaebacteria, in The Bacteria, Vol. 8 ( C. R. Woese and R. S. Wolfe, eds.) pp. 85–170, Academic Press, New York.

    Google Scholar 

  • Stewart, L. C., 1988, Physical studies of diphytanylglycerol phospholipids, Ph.D. thesis, University of Ottawa, Ottawa, Canada, pp. 241–250.

    Google Scholar 

  • Stewart, L. C., Kates, M., and Smith, I. C. P., 1988, Synthesis and characterization of deoxy analogs of diphytanylglycerol ether phospholipids, Chem. Phys . Lipids 48: 177.

    Google Scholar 

  • Stewart, L. C., Ekiel, I., Kates, M., and Smith, I. C. P., 1990a, Biophysical studies of deuterated diphytanylglycerol phospholipids by 2H-NMR spectrometry, Chem. Phys . Lipids, in press.

    Google Scholar 

  • Stewart, L. C., Yang, P. W, Mantsch, H. H., and Kates, M., 19906, Inter-and intramolecular hydrogen bonding in diphytanylglycerol phosphoryl glycerophosphate. An infrared spectroscopic investigation, Biochem . Cell Biol . 68: 266.

    Google Scholar 

  • Sweeley, C. C., and Vance, D. E., 1967, Gas chromatographic estimation of carbohydrates in glycolipids, in Lipid Chromatographic Analysis, Vol. 1 ( G. V. Marinetti, ed.), pp. 465–495, Marcel Dekker, New York.

    Google Scholar 

  • Takayama, K., and Goldman, D. S., 1969, Pathway for synthesis of mannophospholipids in Mycobacterium tuberculosis, Biochim. Biophys. Actal 176: 196.

    Google Scholar 

  • Teissie, J., Prats, M., Souicaille, P., and Tocanne, J. F., 1985, Evidence for conduction of protons along the interface between water and a polar lipid monolayer, Proc. Natl. Acad. Sci. USA 82: 3217.

    Google Scholar 

  • Teissie, J., Prats, M., Lemassu, A., Stewart, L. C., and Kates, M., 1990, Structural control of lateral proton conduction in monolayers of phospholipids from extreme halophiles. Biochem ist’) 29: 59.

    Article  CAS  Google Scholar 

  • Thirkell, D., and Summerfield, M., 1977, The membrane lipids of Planococcus citreus from cells grown in the presence of three difference concentrations of sea salt added to a basic medium, Antonie von Leewenhoek 43: 43.

    Article  CAS  Google Scholar 

  • Thurl, S., and Schäfer, W., 1988, Lipids from the sulfur-dependent archaebacterium Thermoproteus tenax, Biochim. Biophys. Actal 961: 253.

    Google Scholar 

  • Tindall, B. J., Ross, H. N. M., and Grant, W. D., 1984, Natronobacterium gen. nov. and Natronococcus gen. nov. Two new genera of Haloalkaliphilic Archaebacteria, Syst. Appi. Microbiol. 5: 41.

    Google Scholar 

  • Tomoaia-Cotisel, M., Zsako, J., Mocanu, A., Chifu, E., and Quinn, P. J., 1988, Monolayer properties of membrane lipids of the extreme halophile Halobacterium cutirubrum, at the air/water interface, Biochim. Biophys. Actal 942: 295.

    Google Scholar 

  • Tornabene, T. G., 1973, Lipid composition of selected strains of Yersinia pestis and Yersinia pseudotuberculosis, Biochim. Biophys. Actal 306: 173.

    Google Scholar 

  • Tornabene, T. G., and Langworthy, T. A., 1979, Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria, Science 203: 51.

    Article  PubMed  CAS  Google Scholar 

  • Tornabene, T. G., and Ogg, J. E., 1971, Chromatographic studies of the lipid components of Vibrio fetus, Biochim. Biophys. Actal 239: 133.

    Google Scholar 

  • Torreblanca, M. F., Rodriguez-Valera, F., Juez, G., Ventosa, A., Kamekura, M., and Kates, M., 1986, Classification of non-alkaliphilic Halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov., Syst. Appl. Microbiol. 8: 89.

    Google Scholar 

  • Trevelyan, W. E., Proctor, D. P., and Harrison, J. S., 1950, Detection of sugars on paper chromatograms, Nature (Lond.) 166: 444.

    Article  CAS  Google Scholar 

  • Usui, T., Yamoaka, N., Matsuda, K., Tuzimura, K., Sugiyama, H., and Seto, S., 1973, 13C Nuclear magnetic resonance spectra of glucobioses, glucotrioses and glucans, J. Chem. Soc. Perkin I: 2425.

    Google Scholar 

  • van den Bosch, H., and Vagelos, P. R., 1970, Fatty acyl-CoA and fatty acylacyl carrier protein as acyl donors in the synthesis of lysophosphatidate and phosphatidate in Escherichia coli, Biochim. Biophys. Actal 218: 233.

    Google Scholar 

  • Veerkamp, J. H., 1972, Biochem ical changes in Bifodobacterium bifidum var. pennsylvanicum after cell wall inhibition. V. Structure of the galactosyl diglycerides, Biochim. Biophys. Actal 273: 359.

    Google Scholar 

  • Veerkamp, J. H., and van Shaik, F. W., 1974, Biochem ical changes in Bifi dobacterium bifidum var. pennsylvanicum after cell wall inhibition. VII. Structure of the phosphogalactolipids, Biochim. Biophys. Actal 348: 370.

    Google Scholar 

  • Vorbeck, M. L., and Marinetti, G. V., 1965a, Separation of glycosyl diglycerides from phosphatides using silicic acid column chromatography, J. Lipid Res. 6, 3.

    PubMed  CAS  Google Scholar 

  • Vorbeck, M. L., and Marinetti, G. V., 1965b, Intracellular distribution and characterization of the lipids of Streptococcus faecalis ATCC 9790, Biochemistry 4: 296.

    Article  CAS  Google Scholar 

  • Wagner, G., Hartman, R., and Oesterhelt, D., 1978, Potassium uniport and ATP synthesis in Halobacterium halobium, Eur. J. Biochem . 89: 169.

    Google Scholar 

  • Walker, R. W., and Bastl, C. P., 1967, The glycolipids of Arthrobacter globiformis, Carbohydr. Res. 4: 49.

    Google Scholar 

  • Ward, J. B., 1981, Teichoic and teichuronic acids: Biosynthesis, assembly and location, Microbiol. Rev. 45: 211.

    Google Scholar 

  • Wassef, M. K., 1976, Lipids of Klebsiella pneumoniae: The presence of phosphatidylcholine in succinate-grown cells, Lipids 11: 364.

    Google Scholar 

  • Wells, M. A., and Dittmer, J. C., 1963, The use of Sephadex for removal of nonlipid contaminants from lipid extracts, Biochemistry 2: 12–59.

    Article  Google Scholar 

  • White, D. C., and Frerman, F. E., 1967, Extraction, characterization and cellular localization of lipids of Staphylococcus aureus, J. Bacteriol . 94: 1854.

    PubMed  CAS  Google Scholar 

  • Whitman, W. B., 1985, Methanogenic bacteria, in The Bacteria, Vol. 8 ( C. R. Woese and R. S. Wolfe, eds.), pp. 3–84, Academic, Orlando, Florida.

    Google Scholar 

  • Wickberg, B., 1958a, Structure of a glyceritol glycoside from Polysyphonia fastigiata and Corallina officinalis, Acta Chem. Scand. 12: 1183.

    Google Scholar 

  • Wickberg, B., 1958b, Synthesis of 1-glyceritol-D-galactopyranosides, Acta Chem. Scand. 12: 1187.

    Google Scholar 

  • Wieslander, A., Ulmius, J., Lindblom, G., and Fontell, K., 1978, Water binding and phase structures for different Acholeplasma laidlawii membrane lipids studied by deuteron nuclear magnetic resonance and X-ray diffraction, Biochim. Biophys. Actal 512: 241.

    Google Scholar 

  • Wieslander, A., Rilfors, L., Johansson, L. B.-A., and Lindblom, G., 1981, Reversed cubic phase with glucolipids from Acholeplasma laidlawii, Biochemistry 20: 730.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, S. G., 1968, Glycosyl diglycerides from Pseudomonas rubescens, Biochim. Biophys. Actal 164: 148.

    Google Scholar 

  • Wilkinson, S. G., 1969, Lipids of Pseudomonas diminuta, Biochim. Biophys. Actal 187: 492.

    Google Scholar 

  • Wilkinson, S. G., and Galbraith, L., 1979, Polar lipids of Pseudomonas vesicularis. Presence of a heptosyldiacylglycerol, Biochim. Biophys. Actal 575: 244.

    Google Scholar 

  • Winken, A. J., and Knox, K. W., 1970, Studies on the group F antigen of lactobacilli: isolation of a teichoic acid—lipid complex from Lactobacillus fermenti NCTC 6991, J. Gen. Microbioll . 60: 293.

    Google Scholar 

  • Woese, C. R., and Wolfe, R. S. (eds.), 1985, The Bacteria, Vol. 8: Archaebacteria, Academic, Orlando, Florida.

    Google Scholar 

  • Yang, H. J., and Hakomori, S., 1971, A sphingolipid having a novel type of ceramide and lacto-Nfucopentaose III, J. Biol. Chem . 246: 1192.

    Google Scholar 

  • Yang, L. L., and Haug, A., 1979, Structure of membrane lipids and physicobiochemical properties of the plasma membrane from Thermoplasma acidophilum adapted to growth at 37°C, Biochim. Biaphys. Acta573: 308.

    Google Scholar 

  • Yribarren, M., Vilkas, E., and Rozanis, J., 1974, Galactosyl-diglycerides from Actinomyces viscosus, Chem. Phys . Lipids 12: 172.

    Google Scholar 

  • Zepke, H. D., Heinz, E., Radunz, A., Linscheid, M., and Pesch, R., 1978, Combination and positional distribution of fatty acids in lipids of blue-green algae, Arch. Microbiol. 119: 157.

    Google Scholar 

  • Zillig, W, Stetter, K. O., Schäfer, W., Janekovic, D., Wunderl, S., Holz, I., and Palm, P., 1981, Thermoproteales—a novel type of extremely thermoacidophilic anaerobic archaebacterium isolated from Icelandic solfataras, Zentralbi. Bakteriol. Mikrobiol. Hyg., Abt I, Orig. C 2: 205.

    Google Scholar 

  • Zillig, W., Stetter, K. O., Prangishvilli, D., Schäfer, W., Wunderl, S., Janekovic, D., Holz, I., and Palm, P., 1982, Desulfurococcaceae, the second family of extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales, Zentralbi. Bakteriol. Mikrobiol. Hyg., Abt. I, Orig. C 3: 304.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kates, M. (1990). Glyco-, Phosphoglyco- and Sulfoglycoglycerolipids of Bacteria. In: Kates, M. (eds) Glycolipids, Phosphoglycolipids, and Sulfoglycolipids. Handbook of Lipid Research, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2516-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2516-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2518-3

  • Online ISBN: 978-1-4899-2516-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics