Skip to main content

Ubiquitin Activation and Ligation

  • Chapter
Ubiquitin

Abstract

The energy dependence of intracellular protein turnover has been recognized for several decades. In the 1950s, Simpson1 and Schwieger et al. 2 showed that respiratory inhibitors decrease the rate of release of amino acids from cells. Therefore, these compounds, which decrease intracellular ATP concentration, inhibit intracellular protein turnover. Since peptide bond hydrolysis is a thermodynamically favorable process, why should protein break down require ATP? And how might ATP hydrolysis be coupled to peptide bond hydrolysis? Our understanding of the mechanistic basis for the ATP requirement has increased substantially in recent years. There are now several known ATP-dependent proteases. One of these is part of the multienzyme pathway that requires the small protein ubiquitin (Ub) as a cofactor. Although Ub-dependent protein breakdown is not the only ATP-dependent protein breakdown in higher eukaryotes,3 it is clear that the Ub-dependent pathway is quantitatively important. Turnover of at least 90% of the short-lived proteins in a mouse mammary carcinoma cell line is Ub dependent.4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simpson, M. V., 1953, The release of labeled amino acids from the proteins of rat liver slices, J. Biol. Chem. 201: 143–145.

    PubMed  CAS  Google Scholar 

  2. Schweiger, H. G., Rapoport, S., and Scholzel, E., 1956, Role of nonprotein nitrogen in the synthesis of haemoglobin in the reticulocyte in vitro, Nature 178: 141–142.

    Article  PubMed  CAS  Google Scholar 

  3. Tanaka, K., Waxman, L., and Goldberg, A. L., 1983, ATP serves two distinct roles in protein degradation in reticulocytes, one requiring and one independent of ubiquitin, J. Cell. Biol. 96: 1580–1585.

    Article  PubMed  CAS  Google Scholar 

  4. Ciechanover, A., Finley, D., and Varshavsky, A., 1984, Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85, Cell 37: 57–66.

    Article  PubMed  CAS  Google Scholar 

  5. Busch, H., and Goldknopf, I. L., 1981, Ubiquitin-protein conjugates, Mol. Cell. Biochem. 840: 173–187.

    Google Scholar 

  6. Siegelman, M., Bond, M. W., Gallatin, W. M., St. John, T., Smith, H. T., Fried, V. A., and Weissman, I. L., 1986, Cell surface molecule associated with lymphocyte homing is a ubiquitinated branched-chain glycoprotein, Science 231: 823–829.

    Article  PubMed  CAS  Google Scholar 

  7. Yarden, Y., Escobedo, J. A., Kuang, W.-J., Yang-Feng, T. L., Daniel, T. O., Tremble, P. M., Chen, E. Y., Ando, M. E., Harkins, R. N., Francke, U., Fried, V. A., Ullrich, A., and Williams, L. T., 1986, Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors, Nature 323: 226–232.

    Article  PubMed  CAS  Google Scholar 

  8. Hershko, A., Heller, H., Ganoth, D., and Ciechanover, A., 1978, in Protein Turnover and Lysosomal Function (H. L. Segal and D. Doyle, eds.), Academic Press, New York, pp. 149–169.

    Google Scholar 

  9. Etlinger, J. D., and Goldberg, A. L., 1977, A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes, Broc. Natl. Acad. Sci. U.SA. 74: 54–58.

    Article  CAS  Google Scholar 

  10. Ciechanover, A., Hod, Y., and Hershko, A., 1978, A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes, Biochem. Biophys. Res. Commun. 81: 1100–1105.

    Article  Google Scholar 

  11. Ciechanover, A., Elias, S., Heller, H., Ferber, S., and Hershko, A., 1980, Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes, J. Biol. Chem. 255: 7525–7528.

    PubMed  CAS  Google Scholar 

  12. Wilkinson, K. D., Urban, M. K., and Haas, A. L., 1980, Ubiquitin is the ATP-dependent factor I of rabbit reticulocytes, J. Biol. Chem. 255: 7529–7532.

    PubMed  CAS  Google Scholar 

  13. Ciechanover, A., Heller, H., Elias, S., Haas, A. L., and Hershko, A., 1980, ATP-dependent conjugation of reticulocyte proteins with the polypeptide required for protein degradation, Proc. Natl. Acad. Sci. U.S.A. 77: 1365–1368.

    Article  PubMed  CAS  Google Scholar 

  14. Hershko, A., Ciechanover, A., Heller, H., Haas, A. L., and Rose, I. A., 1980, Proposed role of ATP in protein breakdown: Conjugation of proteins with multiple chains of the polypeptide of ATP-dependent proteolysis, Proc. Natl. Acad. Sci. U.S.A. 77: 1783–1786.

    Article  PubMed  CAS  Google Scholar 

  15. Hershko, A., Eytan, E., Ciechanover, A., and Haas, A. L., 1982, Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells, J. Biol. Chem. 257: 13964–13970.

    PubMed  CAS  Google Scholar 

  16. Finley, D., Ciechanover, A., and Varshavsky, A., 1984, Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85, Cell 37: 43–55.

    Article  PubMed  CAS  Google Scholar 

  17. Ozkaynak, E., Finley, D., and Varshavsky, A., 1984, The yeast ubiquitin gene: Head-to-tail repeats encoding a polyubiquitin precursor protein, Nature 312: 663–666.

    Article  PubMed  CAS  Google Scholar 

  18. Rapoport, S., Dubiel, W., and Muller, M., 1985, Proteolysis of mitochondria in reticulocytes during maturation is ubiquitin-dependent and is accompanied by a high rate of ATP hydrolysis, FEBS Lett. 180: 249–252.

    Article  PubMed  CAS  Google Scholar 

  19. Chin, D. T., Kuehl, L., and Rechsteiner, M., 1982, Conjugation of ubiquitin to denatured hemoglobin is proportional to the rate of hemoglobin degradation in HeLa cells, Proc. Natl. Acad. Sci. U.S.A. 79: 5857–5861.

    Article  PubMed  CAS  Google Scholar 

  20. Hershko, A., Leshinsky, E., Ganoth, D., and Heller, H., 1984, ATP-dependent degradation of ubiquitin-protein conjugates, Proc. Natl. Acad. Sci. U.S.A. 81: 1619–1623.

    Article  PubMed  CAS  Google Scholar 

  21. Hough, R., and Rechsteiner, M., 1986, Ubiquitin-lysozyme conjugates: Purification and susceptibility to proteolysis, J. Biol. Chem. 261: 2391–2399.

    PubMed  CAS  Google Scholar 

  22. Hough, R., Pratt, G., and Rechsteiner, M., 1986, Ubiquitin-lysozyme conjugates: Identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates, J. Biol. Chem. 261: 2400–2408.

    PubMed  CAS  Google Scholar 

  23. Wilkinson, K. D., and Audhya, T. K., 1981, Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH-terminal sequence Arg-Gly-Gly, J. Biol. Chem. 256: 9235–9241.

    PubMed  CAS  Google Scholar 

  24. Hershko, A., Ciechanover, A., and Rose, I. A., 1981, Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown, J. Biol. Chem. 256: 1525–1528.

    PubMed  CAS  Google Scholar 

  25. Hershko, A., and Heller, H., 1985, Occurrence of a polyubiquitin structure in ubiquitin-protein conjugates, Biochem. Biophys. Res. Commun. 128: 1079–1086.

    Article  PubMed  CAS  Google Scholar 

  26. Hershko, A., Heller, H., Eytan, E., Kaklij, G., and Rose, I. A., 1984, Role of the alphaamino group of protein in ubiquitin-mediated protein breakdown, Proc. Natl. Acad. Sci. U.S.A. 81: 7021–7025.

    Article  PubMed  CAS  Google Scholar 

  27. Gregory, L., Marriott, D., West, C. M., and Chau, V., 1985, Specific recognition of calmodulin from D. discoideum by the ATP, ubiquitin-dependent degradative pathway, J. Biol. Chem. 260: 5232–5235.

    Google Scholar 

  28. Hershko, H., Heller, H., Eytan, E., and Reiss, Y., 1986, The protein substrate binding site of the ubiquitin-protein ligase system, J. Biol. Chem. 261: 11992–11999.

    PubMed  CAS  Google Scholar 

  29. Haas, A. L., Murphy, K. E., and Bright, P. M., 1985, The inactivation of ubiquitin accounts for the inabiility to demonstrate ATP, ubiquitin-dependent proteolysis in liver extracts, J. Biol. Chem. 260: 4694–4703.

    PubMed  CAS  Google Scholar 

  30. Waxman, L., Fagan, J. M., Tanaka, K., and Goldberg, A. L., 1985, A soluble ATP-dependent system for protein degradation from murine erythroleukemia cells: Evidence for a protease which requires ATP hydrolysis but not ubiquitin, J. Biol. Chem. 261: 11994–12000.

    Google Scholar 

  31. Vierstra, R. D., 1986, Demonstration of ATP-dependent, ubiquitin-conjugating activities in higher plants (abstr. 696), Fed. Proc. 45: 1599.

    Google Scholar 

  32. Ciechanover, A., Elias, S., Heller, H., and Hershko, A., 1982, “Covalent affinity” purification of ubiquitin-activating enzyme, J. Biol. Chem. 257: 2537–2542.

    PubMed  CAS  Google Scholar 

  33. Hershko, A., Heller, H., Elias, S., and Ciechanover, A., 1983, Components of ubiquitin-protein ligase system: Resolution, affinity purification, and role in protein breakdown, J. Biol. Chem. 258: 8206–8214.

    PubMed  CAS  Google Scholar 

  34. Ciechanover, A., Heller, H., Katz-Etzion, R., and Hershko, A., 1981, Activation of the heat-stable polypeptide of the ATP-dependent proteolytic system, Proc. Natl. Acad. Sci. U.S.A. 78: 761–765.

    Article  PubMed  CAS  Google Scholar 

  35. Haas, A. L., and Rose, I. A., 1982, The mechanism of ubiquitin activating enzyme: A kinetic and equilibrium analysis, J. Biol. Chem. 257: 10329–10337.

    PubMed  CAS  Google Scholar 

  36. Haas, A. L., Warms, J. B. V., and Rose, I. A., 1983, Ubiquitin adenylate: Structure and role in ubiquitin activation, Biochemistry 22: 4388–4394.

    Article  PubMed  CAS  Google Scholar 

  37. Haas, A. L., Warms, J. V. B., Hershko, A., and Rose, I. A., 1982, Ubiquitin-activating enzyme: Mechanism and role in protein-ubiquitin conjugation, J. Biol. Chem. 257: 2543–2548.

    PubMed  CAS  Google Scholar 

  38. Jakubowski, H., and Fersht, A. R., 1981, Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases, Nucleic Acids Res. 9: 3105–3117.

    Article  PubMed  CAS  Google Scholar 

  39. Lipmann, F., 1971, Attempts to map a process evolution of peptide biosynthesis, Science 173: 875–884.

    Article  PubMed  CAS  Google Scholar 

  40. Alberts, A. W., Goldman, P., and Vagelos, P. R., 1963, The condensation reaction of fatty acid synthesis, J. Biol. Chem. 238: 557–565.

    PubMed  CAS  Google Scholar 

  41. Pickart, C. M., and Rose, I. A., 1985, Functional heterogeneity of ubiquitin carrier proteins, J. Biol. Chem. 260: 1573–1581.

    PubMed  CAS  Google Scholar 

  42. Vella, A. T., and Pickart, C. M., unpublished experiments.

    Google Scholar 

  43. Pickart, C. M., and Rose, I. A., 1985, Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides, J. Biol. Chem. 260: 7903–7910.

    PubMed  CAS  Google Scholar 

  44. Lee, P. L., and Midelfort, C. F., Murakami, K., and Hatcher, V. B., 1986, Multiple forms of ubiquitin-protein ligase: Binding of activated ubiquitin to protein substrates, Biochemistry 25: 3134–3138.

    Article  PubMed  CAS  Google Scholar 

  45. Rose, I. A., O’Connell, E. L., Litwin, S., and Bar-Tana, J., 1974, Determination of the rate of hexokinase-glucose dissociation by the isotope-trapping method, J. Biol. Chem. 249: 5163–5168.

    PubMed  CAS  Google Scholar 

  46. Kimmel, J. R., 1967, Guanidination of proteins, in Methods in Enzymology, Vol. 11 (C. H. W. Hirs, ed.), Wiley, New York, pp. 584–589.

    Google Scholar 

  47. Chin, D. T., Carlson, N., Kuehl, L., and Rechsteiner, M., 1986, The degradation of guanidinated lysozyme in reticulocyte lysate, J. Biol. Chem. 261: 3883–3890.

    PubMed  CAS  Google Scholar 

  48. Bachmair, A., Finley, D., and Varshavsky, A., 1986, In vivo half-life of a protein is a function of its amino-terminal residue, Science 234: 179–186.

    Article  PubMed  CAS  Google Scholar 

  49. Ferber, S., and Ciechanover, A., 1986, Transfer RNA is required for conjugation of ubiquitin to selective substrates of the ubiquitin-and ATP-dependent proteolytic system, J. Biol. Chem. 261: 3128–3134.

    PubMed  CAS  Google Scholar 

  50. Haas, A. L., and Bright, P. M., 1985, The immunochemical detection and quantitation of ubiquitin-protein conjugates, J. Biol. Chem. 260: 12464–12473.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pickart, C.M. (1988). Ubiquitin Activation and Ligation. In: Rechsteiner, M. (eds) Ubiquitin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2049-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2049-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2051-5

  • Online ISBN: 978-1-4899-2049-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics