Skip to main content

Purification and Structural Properties of Ubiquitin

  • Chapter
Ubiquitin

Abstract

This chapter discusses the purification and characteristics of ubiquitin (Ub),1 the highly conserved and widely distributed peptide that participates in a variety of cellular functions. As this book makes clear, Ub has a role in protein degradation,2–4 chromatin structure,5–7 the heat-shock response,8,9 cell surface receptors,10–12 and perhaps even immunological response.13 The one unifying theme in all these functions is the formation of an amide bond between the carboxyl terminus of Ub and amino groups of a variety of proteins. Thus, Ub can be thought of as a marker molecule that targets proteins for any of a variety of metabolic fates. One of the critical unanswered questions about its mode of action involves the definition of how Ub contributes to the partition of various Ub-protein conjugates between these metabolic fates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schlesinger, D. H., Goldstein, G., and Niall, H. D., 1975, The complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells, Biochemistry 14: 2214–2218.

    Article  PubMed  CAS  Google Scholar 

  2. Ciechanover, A., Elias, S., Heller, H., Ferber, S., and Hershko, A., 1980, Characterization of the heat-stable polypeptide of the ATP-dependent proteolytic system from reticulocytes, J. Biol. Chem. 255: 7525–7528.

    PubMed  CAS  Google Scholar 

  3. Wilkinson, K. D., Urban, M. K., and Haas, A. L., 1980, Ubiquitin in the ATP-dependent proteolysis factor I of rabbit reticulocytes, J. Biol. Chem. 255: 7529–7532.

    PubMed  CAS  Google Scholar 

  4. Wilkinson, K. D., and Audhya, T. K., 1981, Stimulation of ATP-dependent proteolysis requires ubiquitin with the COOH-terminal sequence Arg-Gly-Gly, J. Biol. Chem. 256: 9235–9241.

    PubMed  CAS  Google Scholar 

  5. Matsui, S., Seon, B. K., and Sandberg, A. A., 1979, Disappearance of a structural chromatin protein A24 in mitosis: Implications for molecular basis of chromatin condensation, Proc. Natl. Acad. Sci. U.S.A. 76: 6386–6390.

    Article  PubMed  CAS  Google Scholar 

  6. Levinger, L., and Varshavsky, A., 1982, Selective arrangement of ubiquitinated and Dl protein-containing nucleosomes within the Drosophila genome, Cell 28: 375–385.

    Article  PubMed  CAS  Google Scholar 

  7. Mueller, R. D., Yasuda, H., Hatch, C. L., Bonner, W. M., and Bradbury, E. M., 1985, Identification of ubiquitinated histones 2A and 2B in Physarum polycephalum, J. Biol. Chem. 260: 5147–5153.

    PubMed  CAS  Google Scholar 

  8. Finley, D., Ciechanover, A., and Varshavsky, A., 1984, Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85, Cell 37: 43–55.

    Article  PubMed  CAS  Google Scholar 

  9. Bond, U., and Schlesinger, M. J., 1985, Ubiquitin is a heat shock protein in chicken embryo fibroblasts, Mol. Cell. Biol. 5: 949–956.

    PubMed  CAS  Google Scholar 

  10. Siegelman, M., Bond, M. W., Gallatin, W. M., St. John, T., Smith, H. T., Fried, V. A., and Weissman, I. L., 1986, Cell surface molecule associated with lymphocyte homing is a ubiquitinated branched-chain glycoprotein, Science 231: 823–829.

    Article  PubMed  CAS  Google Scholar 

  11. Yarden, Y., Escobedo, J. A., Kuang, W.-J., Yang-Feng, T. L., Daniel, T. O., Tremble, P. M., Chen, E. Y., Ando, M. E., Harkins, R. N., Francke, U., Fried, V. A., Ullrich, A., and Williams, L. T., 1986, Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors, Nature 323: 226–232.

    Article  PubMed  CAS  Google Scholar 

  12. Meyer, E. M., West, C. M., and Chau, V., 1986, Antibodies directed against ubiquitin inhibit high affinity [3H]choline uptake in rat cerebral cortical synaptosomes, J. Biol. Chem. 261: 14365–14368.

    PubMed  CAS  Google Scholar 

  13. Scheid, M. P., Goldstein, G., and Boyse, E. A., 1978, The generation and regulation of lymphocyte populations, J. Exp. Med. 147: 1727–1743.

    Article  PubMed  CAS  Google Scholar 

  14. Haas, A. L., Murphy, K. E., and Bright, P. M., 1985, The inactivation of ubiquitin accounts for the inability to demonstrate ATP-dependent proteolysis in liver extracts, J. Biol. Chem. 260: 4694–4703.

    PubMed  CAS  Google Scholar 

  15. Hershko, A., Eytan, E., Ciechanover, A., and Haas, A. L., 1982, Immunochemical analysis of the turnover of ubiquitin-protein conjugates in intact cells, J. Biol. Chem. 257: 13964–13970.

    PubMed  CAS  Google Scholar 

  16. Haas, A. L., and Bright, P. M., 1985, The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates, J. Biol. Chem. 260: 12464–12473.

    PubMed  CAS  Google Scholar 

  17. Ciechanover, A., Elias, S., Heller, H., and Hershko, A., 1982, “Covalent-affinity” purification of ubiquitin-activating enzyme, J. Biol. Chem. 257: 2537–2542.

    PubMed  CAS  Google Scholar 

  18. Haas, A. L., and Rose, I. A., 1982, The mechanism of ubiquitin activating enzyme, J. Biol. Chem. 257: 10329–10337.

    PubMed  CAS  Google Scholar 

  19. Rose, I. A., and Warms, J. V. B., 1987, A specific endpoint assay for ubiquitin, Proc. Natl. Acad. Sci. U.S.A. 84: 1477–1481.

    Article  PubMed  CAS  Google Scholar 

  20. Ciechanover, A., Hod, Y., and Hershko, A., 1978, A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes, Biochem. Biophys. Res. Commun. 81: 1100–1104.

    Article  Google Scholar 

  21. Evans, A. C., Jr., and Wilkinson, K. D., 1985, Ubiquitin-dependent proteolysis of native and alkylated bovine serum albumin: Effects of protein structure and ATP concentration on selectivity, Biochemistry 24: 2915–2923.

    Article  PubMed  CAS  Google Scholar 

  22. Wilkinson, K. D., Cox, M. J., O’Connor, L. B., and Shapira, R., 1986, Structure and activities of a variant ubiquitin sequence from Bakers’ yeast, Biochemistry 25: 4999–5004.

    Article  PubMed  CAS  Google Scholar 

  23. Jabusch, J. R., and Deutsch, H. F., 1983, Isolation and crystallization of ubiquitin from mature erythrocytes, Prep. Biochem. 13: 261–273.

    Article  PubMed  CAS  Google Scholar 

  24. Haas, A. L., and Wilkinson, K. D., 1985, The large scale purification of ubiquitin from human erythrocytes, Prep. Biochem. 15: 49–60.

    Article  PubMed  CAS  Google Scholar 

  25. Goldstein, G., Scheid, M., Hammerling, U., Boyse, E. A., Schlesinger, D. H., and Niall, H. D., 1975, Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells, Proc. Natl. Acad. Sci. U.S.A. 72: 11–15.

    Article  PubMed  CAS  Google Scholar 

  26. Loir, M., Caraty, A., Lanneau, M., Menezy, Y., Muh, J. P., and Sautiere, P., 1984, Purification and characterization of ubiquitin from mammalian testis, FEBS Lett. 169: 199–204.

    Article  PubMed  CAS  Google Scholar 

  27. Seidah, N. G., Crine, P., Benjannet, S., Scherrer, H., and Chretien, M., 1978, Isolation and partial characterization of a biosynthetic N-terminal methionyl peptide of bovine pars intermedia: Relationship to ubiquitin, Biochem. Biophys. Res. Commun. 80: 600–608.

    Article  PubMed  CAS  Google Scholar 

  28. Hamilton, J. W., and Rouse, J. B., 1980, The biosynthesis of ubiquitin by parathyroid gland, Biochem. Biophys. Res. Commun. 96: 114–120.

    Article  PubMed  CAS  Google Scholar 

  29. Scherrer, H., Seidah, N. G., Benjannet, S., Crine, P., Lis, M., and Chretian, M., 1978, Biosynthesis of a ubiquitin-related peptide in rat brain and in human and mouse pituitary tumors, Biochem. Biophys. Res. Commun. 84: 874–885.

    Article  PubMed  CAS  Google Scholar 

  30. Watson, D. C., Levy-Wilson, B., Gordon, W., and Dixon, G. H., 1978, Free ubiquitin is a non-histone protein of trout testis chromatin, Nature 276: 196–198.

    Article  PubMed  CAS  Google Scholar 

  31. Gavilanes, J. G., de Buitrago, G. G., Perez-Castells, R., and Rodriguez, R., 1982, Isolation, characterization and amino acid sequence of a ubiquitin-like protein from insect eggs, J. Biol. Chem. 257: 10267–10270.

    PubMed  CAS  Google Scholar 

  32. Levenbrook, L., Bauer, A. C., and Chou, J. Y., 1986, Ubiquitin in the blowfly Calliphora vicina, Insect Biochem. 16: 509–515.

    Article  Google Scholar 

  33. Dworkin-Rastl, E., Shrutkowski, A., and Dworkin, M. B., 1984, Multiple ubiquitin mRNAs during Xenopus laevis development contain tandem repeats of the 76 amino acid coding sequence, Cell 39: 321–325.

    Article  PubMed  CAS  Google Scholar 

  34. Levy-Wilson, B., Denker, M. S., and Ito, E., 1983, Isolation, characterization, and postsynthetic modifications of Tetrahymena high mobility group proteins, Biochemistry 22: 1715–1721.

    Article  PubMed  CAS  Google Scholar 

  35. Fusauchi, Y., and Iwai, K., 1985, Tetrahymena ubiquitin-histone conjugate uH2A. Isolation and structural analysis, J. Biochem. 97: 1467–1476.

    PubMed  CAS  Google Scholar 

  36. Vierstra, R. D., Langan, S. M., and Haas, A. L., 1985, Purification and initial characterization of ubiquitin from the higher plant, Avena sativa, J. Biol. Chem. 260: 12015–12021.

    CAS  Google Scholar 

  37. Vierstra, R. D., Langan, S. M., and Schaller, G. E., 1986, Complete amino acid sequence of ubiquitin from the higher plant Avena sativa, Biochemistry 25: 3105–3108.

    Article  CAS  Google Scholar 

  38. Ozkaynak, E., Finley, D., and Varshavsky, A., 1984, The yeast ubiquitin gene: Head-to-tail repeats encoding a polyubiquitin precursor protein, Nature 312: 663–666.

    Article  PubMed  CAS  Google Scholar 

  39. Low, T. L. K., Thurman, G. B., McAdoo, M., McClure, J., Rossio, J. L., Naylor, P. H., and Goldstein, A. L., 1979, The chemistry and biology of thymosin, J. Biol. Chem. 254: 981–986.

    PubMed  CAS  Google Scholar 

  40. Cary, P. D., King, D. S., Crane-Robinson, C., Bradbury, M., Rabbani, A., Goodwin, G. H., and Johns, E. W., 1980, Structural studies on two high-mobility-group proteins from calf thymus, HMG-14 and HMG-20 (ubiquitin), and their interaction with DNA, Eur. J. Biochem. 112: 557–580.

    Google Scholar 

  41. Lenkinski, R. E., Chen, D. M., Glickson, J. D., and Goldstein, G., 1977, Nuclear magnetic resonance studies of the denaturation of ubiquitin, Biochim. Biophys. Acta 494: 126–130.

    Article  PubMed  CAS  Google Scholar 

  42. Jenson, J., Goldstein, G., and Breslow, E., 1980, Physical-chemical properties of ubiquitin, Biochim. Biophys. Acta 624: 378–385.

    Article  PubMed  CAS  Google Scholar 

  43. Wilkinson, K. D., and Mayer, A. N., 1986, Alcohol-induced conformational changes of ubiquitin, Arch. Biochem. Biophys. 250: 390–399.

    Article  PubMed  CAS  Google Scholar 

  44. Breslow, E., Chauhan, Y., Daniel, R., and Tate, S., 1986, Role of methionine-1 in ubiquitin conformation and activity, Biochem. Biophys. Res. Commun. 138: 437–444.

    Article  PubMed  CAS  Google Scholar 

  45. Cox, M. J., Haas, A. L., and Wilkinson, K. D., 1986, Role of ubiquitin conformations in the specificity of protein degradation: Iodinated derivatives with altered conformations and activities, Arch. Biochem. Biophys. 250: 400–409.

    Article  PubMed  CAS  Google Scholar 

  46. Lund, P. K., Moats-Staats, B. M., Simmons, J. G., Hoyt, E., D’Ercole, A. J., Martin, F., and Van Wyk, J. J., 1985, Nucleotide sequence analysis of a cDNA encoding human ubiquitin reveals that ubiquitin is synthesized as a precursor, J. Biol. Chem. 260: 7609–7613.

    PubMed  CAS  Google Scholar 

  47. Wiborg, O., Pedersen, M. S., Wind, A., Berglund, L. E., Marcker, K. A., and Vuust, J., 1985, The human multigene family: Some genes contain multiple directly repeated ubiquitin coding sequences, EMBO J. 4: 755–759.

    PubMed  CAS  Google Scholar 

  48. Vijay-Kumar, S., Bugg, C. E., Wilkinson, K. D., and Cook, W. J., 1985, Three-dimensional structure of ubiquitin at 2.8 Å resolution, Proc. Natl. Acad. Sci. U.S.A. 82: 3582–3585.

    Article  PubMed  CAS  Google Scholar 

  49. Vijay-Kumar, S., Bugg, C. E., and Cook, W. J., 1987, Structure of ubiquitin refined at 1.8 Å resolution, J. Mol. Biol. 194: 531–544.

    Article  PubMed  CAS  Google Scholar 

  50. Vijay-Kumar, S., Bugg, C. E., Wilkinson, K. D., Vierstra, R. D., and Cook, W. J., 1987, Comparison of three-dimensional structures of yeast and oat ubiquitin with human ubiquitin, J. Biol. Chem. 262: 6396–6399.

    PubMed  CAS  Google Scholar 

  51. Cox, M. J., Shapira, R., and Wilkinson, K. D., 1986, Tryptic peptide mapping of ubiquitin and derivatives using reverse-phase high performance liquid chromatography, Anal. Biochem. 154: 345–352.

    Article  PubMed  CAS  Google Scholar 

  52. Low, T. L. K., and Goldstein, A. L., 1979, The chemistry and biology of thymosin, J. Biol. Chem. 254: 987–995.

    PubMed  CAS  Google Scholar 

  53. Mezquita, Z., Chiva, M., Vidal, S., and Mezquita, C., 1982, Effects of high mobility group nonhistone proteins HMG-20 (ubiquitin) and HMG-17 on histone deacetylase activity assayed in vitro, Nucleic Acids Res. 10: 1781–1797.

    Article  PubMed  CAS  Google Scholar 

  54. Matsumoto, H., Taniguchi, N., and Deutsch, H. F., 1984, Isolation, characterization, and esterase and CO hydration activities of ubiquitin from bovine erythrocytes, Arch. Biochem. Biophys. 234: 426–433.

    Article  PubMed  CAS  Google Scholar 

  55. Taniguchi, N., and Matsumoto, H., 1985, The p-nitrophenyl phosphatase activity of ubiquitin from bovine erythrocytes, Comp. Biochem. Physiol. 81B: 587–590.

    CAS  Google Scholar 

  56. Jabusch, J. R., and Deutsch, H. F., 1985, Localization of lysine acetylated in ubiquitin reacted with p-nitrophenyl acetate, Arch. Biochem. Biophys. 238: 170–177.

    Article  PubMed  CAS  Google Scholar 

  57. Cox, M. J., 1986, Chemical modification of ubiquitin, M.S. Thesis, Emory University.

    Google Scholar 

  58. Wilkinson, K. D., 1987, Protein ubiquitinization: A regulatory post-translational modification, Anti-Cancer Drug Des. 2: 211–229.

    CAS  Google Scholar 

  59. Duerksen-Hughes, P. J., Xu, X., and Wilkinson, K. D., 1987, The ubiquitin binding sites of the activating enzyme and proteases: Evidence for differential interactions around Arg-74 of ubiquitin, Biochemistry 26: 6980–6987.

    Article  PubMed  CAS  Google Scholar 

  60. Ecker, D. J., Khan, M. I., Marsh, J., Butt, T., and Crooke, S. T., 1987, Chemical synthesis and expression of a cassette adapted ubiquitin gene, J. Biol. Chem. 262: 3524–3527.

    PubMed  CAS  Google Scholar 

  61. Pickart, C. M., and Rose, I. A., 1985, Ubiquitin carboxyl-terminal hydrolase acts on ubiquitin carboxyl-terminal amides, J. Biol. Chem. 260: 7903–7910.

    PubMed  CAS  Google Scholar 

  62. Hough, R., and Rechsteiner, M., 1986, Ubiquitin-lysozyme conjugates: Purification and susceptibility to proteolysis, J. Biol. Chem. 261: 2391–2399.

    PubMed  CAS  Google Scholar 

  63. Hershko, A., Leshinsky, E., Ganoth, D., and Heller, H., 1984, ATP-dependent degradation of ubiquitin-protein conjugates, Proc. Natl. Acad. Sci. U.S.A. 81: 1619–1623.

    Article  PubMed  CAS  Google Scholar 

  64. Lee, P. L., Midelfort, C. F., Murakami, K., and Hatcher, V. B., 1986, Multiple forms of ubiquitin-protein ligase. Binding of activated ubiquitin to protein substrates, Biochemistry 25: 3134–3138.

    Article  PubMed  CAS  Google Scholar 

  65. Wilkinson, K. D., Cox, M. J., Mayer, A. N., and Frey, T., 1986, Synthesis and characterization of ubiquitin ethyl ester, a new substrate for ubiquitin carboxyl-terminal hydrolase, Biochemistry 25: 6644–6649.

    Article  PubMed  CAS  Google Scholar 

  66. Mayer, A. N., 1986, Resolution of ubiquitin carboxyl-terminal hydrolases using ubiquitin ethyl ester as the substrate, M.S. Thesis, Emory University.

    Google Scholar 

  67. Kanda, F., Sykes, D. E., Yasuda, H., Sandberg, A. A., and Matsui, S.-L, 1986, Substrate recognition of isopeptidase: Specific cleavage of the (α-glycyl)lysine linkage of ubiquitin protein conjugates, Biochim. Biophys. Acta 870: 64–75.

    Article  PubMed  CAS  Google Scholar 

  68. Wilkinson, K. D., Marriott, D., and Chau, V., 1988, Non-enzymatic synthesis of ubiquitin-calmodulin conjugates: A general synthetic route to prepare ubiquitin conjugates (manuscript submitted).

    Google Scholar 

  69. Haas, A. L., and Rose, I. A., 1981, Hemin inhibits ATP-dependent proteolysis: Role of hemin in regulating conjugate degradation, Proc. Natl. Acad. Sci. U.S.A. 78: 6845–6848.

    Article  PubMed  CAS  Google Scholar 

  70. Tanaka, K., Waxman, L., and Goldberg, A. L., 1984, Vanadate inhibits the ATP-dependent degradation of proteins in reticulocytes without affecting ubiquitin conjugation, J. Biol. Chem. 259: 2803–2809.

    PubMed  CAS  Google Scholar 

  71. Breslow, E., Daniel, R., Ohba, R., and Tate, S., 1986, Inhibition of ubiquitin-dependent proteolysis by non-ubiquitinable proteins, J. Biol. Chem. 261: 6530–6535.

    PubMed  CAS  Google Scholar 

  72. Hough, R., Pratt, G., and Rechsteiner, M., 1986, Ubiquitin-lysozyme conjugates, identification and characterization of an ATP-dependent protease from rabbit reticulocyte lysates, J. Biol. Chem. 261: 2400–2408.

    PubMed  CAS  Google Scholar 

  73. Pickart, C. M., and Rose, I. A., 1987, Mechanism of ubiquitin carboxyl-terminal hydrolase: Borohydride and hydroxylamine inactivate in the presence of ubiquitin, J. Biol. Chem. 261: 10210–10217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wilkinson, K.D. (1988). Purification and Structural Properties of Ubiquitin. In: Rechsteiner, M. (eds) Ubiquitin. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-2049-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-2049-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-2051-5

  • Online ISBN: 978-1-4899-2049-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics