Skip to main content

Surface Modification of Polymers for Biomedical Applications: Chemical, Biological, and Surface Analytical Challenges

  • Chapter
Surface Modification of Polymeric Biomaterials

Abstract

Synthetic polymers are widely used in contact with biological systems. Applications in medicine, biotechnology, food processing and natural water environments are common. Millions of medical devices comprised of synthetic materials (biomaterials) are used in humans each year (Table 1). These medical devices can be designed, synthesized, and fabricated to have appropriate mechanical properties, durability, and functionality. Examples are a knee prosthesis that should withstand high localized mechanical stresses, a blood oxygenator membrane that should have the requisite permeability characteristics, and the leaflets in a heart valve that should flex for millions of cycles without failure. The bulk structure of the materials governs these properties. Biological responses to biomaterials, on the other hand, are dominated by their surface chemistry and structure. Thus, the rationale for the surface modification of biomaterials is straightforward: retain the key physical properties while modifying only the outermost surface to influence biointeraction. If surface modification is properly effected, the bulk mechanical properties and functionality of the medical device will be unchanged, but the biological performance will be improved. Improvements in certain important surface physical properties such as lubricity are also readily achieved by surface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Williams, DF (Ed.) (1987): Definitions in Biomaterials. Progress in Biomedical Engineering, 4. Elsevier Press, Amsterdam.

    Google Scholar 

  2. Tang, LP; Eaton, JW (1995): Inflammatory responses to biomaterials. Am. J. Clin. Path. 103, 466–471.

    CAS  Google Scholar 

  3. Ratner, BD; Hoffman, AS; Lemons, JE and Schoen, FJ (1996): Biomaterials Science - An Introduction to Materials in Medicine, Academic Press, New York

    Google Scholar 

  4. Anderson, JM (1988): Perspectives on in vivo testing of biomaterials, prostheses, and artificial organs. Journal of the American College of Toxicology 7 (4), 469–479.

    Article  CAS  Google Scholar 

  5. Hench, LL; Ethridge, EC (1982): Biomaterials: An Interfacial Approach. Academic Press, New York.

    Google Scholar 

  6. Plate, NA; Valuev, LI (1986): Heparin-containing polymeric materials. Advances in Polymer Science 79, 95–137

    Article  CAS  Google Scholar 

  7. Hoffman, AS; Schmer, G; Harris, C; Kraft, WG (1972): Covalent binding of biomolecules to radiation-grafted hydrogels on inert polymer surfaces. Trans. Am. Soc. Artif. Int. Organs 18, 10–17

    Article  CAS  Google Scholar 

  8. Hoffman, AS; Ratner, BD; Garfinkle, AM; Reynolds, LO; Horbett, TA; Hanson, SR (1985): The small diameter vascular graft–a biomaterials challenge. In: Polymers in Medicine II–Biomedical and Pharmaceutical Applications. (Eds: Chiellini, E; Giusti, P; Migliaresi, C; Nicolais, L) Plenum Press, New York, 157–173

    Google Scholar 

  9. Engbers, GH; Feijen, J (1991): Current techniques to improve the blood compatibility of biomaterial surfaces. Int. J. Artif. Org. 14 (4), 199–215.

    CAS  Google Scholar 

  10. Bamford, CH; Al-Lamee, KG (1992): Chemical Methods for improving the haemocompatibility of synthetic polymers. Clinical Materials 10, 243–261.

    Article  CAS  Google Scholar 

  11. Ertel, SI; Ratner, BD; Horbett, TA (1990): Radio-frequency plasma deposition of oxygen-containing films on polystyrene and poly(ethylene terephthalate) substrates improves endothelial cell growth. J. Biomed.Mater. Res. 24 (12), 1637–1659.

    Article  CAS  Google Scholar 

  12. Schamberger, PC; Gardella, JA (1994): Surface chemical modifications of materials which influence animal cell adhesion–a review. Coll. Surf. B: Biointerfaces 2, 209–223.

    Article  CAS  Google Scholar 

  13. Tengvall, P; Lestelius, M; Liedberg, B; Lundstrom, I (1992): Plasma protein and antisera interactions with L-cysteine and 3-mercaptoproprionic acid monolayers on gold surfaces. Langmuir 8 (5), 1236–1238.

    Article  CAS  Google Scholar 

  14. Wesslen, B; Kober, M; Freij-Larsson, C; Ljungh, A; Paulsson, M (1994): Protein adsorption of poly(ether urethane) surfaces modified by amphiphilic and hydrophilic polymers. Biomaterials 15 (4), 278–284.

    Article  CAS  Google Scholar 

  15. Wu, S (1982): Polymer Interface and Adhesion. Marcel Dekker, Inc., New York.

    Google Scholar 

  16. Fowkes, FM (1989): Acid-base interactions. In: Encyclopedia of Polymer Science and Engineering. Supplement. (Eds: Mark, HF; Bikales, NM; Overberger, CG; Menges, G; Kroschwitz, JI) John Wiley & Sons, New York, 1–11.

    Google Scholar 

  17. Ratner, BD; Yoon, SC (1988): Polyurethane surfaces: Solvent and temperature induced structural rearrangements. In: Polymer Surface Dynamics. (Ed: Andrade, JD) Plenum Press, New York, 137–152

    Chapter  Google Scholar 

  18. Garbassi, F; Morra, M; Occhiello, E; Barino, L; Scordamaglia, R (1989): Dynamics of macromolecules: a challenge for surface analysis. Surf Interface Anal. 14, 585–589

    Article  CAS  Google Scholar 

  19. Somorjai, GA (1990): Modern concepts in surface science and heterogeneous catalysis. J. Phys. Chem. 94, 1013–1023

    Article  CAS  Google Scholar 

  20. Somorjai, GA (1991): The flexible surface. Correlation between reactivity and restructuring ability. Langmuir 7 (12), 3176–3182

    Article  CAS  Google Scholar 

  21. Huang, J; Hemminger, JC (1993): Photooxidation of thiols in self-assembled monolayers on gold. J. Am. Chem. Soc. 115, 3342–3343

    Article  CAS  Google Scholar 

  22. Griesser, HJ; Chatelier, RC (1990): Surface characterization of plasma polymers from amine, amide and alcohol monomers. J. Appl. Polym. Sci. Appl. Polym. Symp. 46, 361–384

    Article  CAS  Google Scholar 

  23. Ratner, BD (1993): Plasma depostion of organic thin films-control of film chemistry. ACS Polym. Prepr. 34(1), 643. (644)

    Google Scholar 

  24. Lopez, GP; Ratner, BD (1992): Substrate temperature effects on film chemistry in plasma deposition of organics. II: Polymerizable precursors. J. Polym. Sci., Polym. Chem. Ed. 30, 2415–2425

    Article  CAS  Google Scholar 

  25. Ferguson, GS; Chaudhury, MK; Biebuyck, HS; Whitesides, GM (1993): Monolayers on disordered substrates: self-assembly of Alkyltrichlorosilanes on surface-modified polyethylene and poly(dimethylsiloxane). Macromolecules 26, 5870–5875.

    Article  CAS  Google Scholar 

  26. Sun, F; Grainger, DW; Castner, DG (1994): Ultrathin self-assembled polymeric films on solid surfaces. III. Influence of acrylate dithioalkyl side chain length on polymeric monolayer formation on gold. J. Vac. Sci. Technol. A 12 (4), 2499–2506.

    Article  CAS  Google Scholar 

  27. Ratner, BD (1993): Characterization of biomaterial surfaces. Cardiovasc. Pathol. 2 Suppl.(3), 87S - 1005

    Google Scholar 

  28. Lewis, KB; Ratner, BD (1993): Observation of surface restructuring of polymers using ESCA. J. Coll. Interf. Sci. 158, 77–85

    Article  Google Scholar 

  29. Chilkoti, A; Ratner, BD (1993): Chemical derivatization methods for enhancing the analytical capabilities of X-ray photoelectron spectroscopy and static secondary ion mass spectrometry. In: Surface Characterization of Advanced Polymers. (Eds: Sabbatini, L; Zambonin, PG) VCH Publishers, Weinheim, Germany, 221–256

    Google Scholar 

  30. Chilkoti, A; Ratner, BD; Briggs, D (1993): Static secondary ion mass spectrometric investigation of the surface chemistry of organic plasma-deposited films created from oxygen-containing precursors. 3. Multivariate statistical modeling. Anal. Chem. 65, 1736–1745

    Article  CAS  Google Scholar 

  31. Golander, CG; Pitt, WG (1990): Characterization of hydrophobicity gradients prepared by means of radio frequency plasma discharge. Biomaterials 11, 32–35.

    Article  CAS  Google Scholar 

  32. Liedberg, B; Tengvall, P (1995): Molecular gradients of co-substituted alkanethiols on gold: preparation and characterization. Langmuir 11, 3821–3827.

    Article  CAS  Google Scholar 

  33. Singhvi, R; Kumar, A; Lopez, GP; Stephanopoulos, GN; Wang, DIC; Whitesides, GM; Ingber, DE (1994): Engineering cell shape and function. Science 264, 696–698.

    Article  CAS  Google Scholar 

  34. Okano, T; Suzuki, K; Yui, N; Sakurai, Y; Nakahama, S (1993): Prevention of changes in platelet cytoplasmic free calcium levels by interaction with 2-hydroxyethyl methacrylate/styrene block copolymer surfaces. J. Biomed. Mater. Res. 27, 1519–1525.

    Article  CAS  Google Scholar 

  35. von Recum, AF; van Kooten, TG (1995): The influence of micro-topography on cellular response and the implications for silicone implants. J. Biomater. Sci. Polymer. Edn. 7 (2), 181–198.

    Article  CAS  Google Scholar 

  36. Stenger, DA; Georger, JH; Dulcey, CS; Hickman, JJ; Rudolph, AS; Nielsen, TB; McCort, SM; Calvert, JM (1992): Coplanar molecular assemblies of amino-and perfluorinated alkylsilanes: characterization and geometric definition of mammalian cell adhesion and growth. J. Am. Chem. Soc. 114 (22), 8435–8442.

    Article  CAS  Google Scholar 

  37. Matsuda, T; Sugawara, T; Inoue, K (1992): Two-dimensional cell manipulation technology. An artificial neural circuit based on surface microphotoprocessing. ASAIO J. 38, M243 - M247.

    Article  CAS  Google Scholar 

  38. Kaiser, R; Hunkapiller, T; Hood, L (1991): Light on molecular recognition. Nature 350, 656–657.

    Article  CAS  Google Scholar 

  39. van den Berg, A; Bergveld, P (eds.)(1995) Micro Total Analysis Systems, Proceedings of the IsTAS ‘84 Workshop, held at MESA Research Institute, University of Twente, The Netherlands, 21–22 November 1994, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  40. Kumar, A; Biebuyck, HA; Whitesides, GM (1994): Patterning self-assembled monolayers: applications in materials science. Langmuir 10 (5), 1498–1511.

    Article  CAS  Google Scholar 

  41. Pritchard, DJ; Morgan, H; Cooper, JM (1995): Patterning and regeneration of surfaces with antibodies. Anal. Chem. 67 (19), 3605–3607.

    Article  CAS  Google Scholar 

  42. Rozsnyai, LF; Wrighton, MS (1995): Selective deposition of conducting polymers via monolayer photopatterning. Langmuir 11 (10), 3913–3920.

    Article  CAS  Google Scholar 

  43. Lom, B; Healy, KE; Hockberger, PE (1993): A versatile technique for patterning biomolecules onto glass coverslips. Journal of Neuroscience Methods 50, 385–397.

    Article  CAS  Google Scholar 

  44. Ranieri, JP; Bellamkonda, R; Jacob, J; Vargo, TG; Gardella, JA; Aebischer, P (1993): Selective neuronal cell attachment to a covalently patterned monoamine on fluorinated ethylene propylene films. J. Biomed. Mater. Res. 27, 917–925.

    Article  CAS  Google Scholar 

  45. Bhatia, SK; Hickman, JJ; Ligler, FS (1992): New approach to producing patterned biomolecular assemblies. J. Am. Chem. Soc. 114, 4432–4433.

    Article  CAS  Google Scholar 

  46. Ratner, BD (1993): The blood compatibility catastrophe. J. Biomed. Mater. Res. 27, 283–287.

    Article  CAS  Google Scholar 

  47. Ratner, BD (1993): New ideas in biomaterials science–a path to engineered biomaterials. J. Biomed. Mater. Res. 27, 837–850

    Article  CAS  Google Scholar 

  48. Ratner, BD (1996): The engineering of biomaterials exhibiting recognition and specificity. J. Mol. Recognition, in press

    Google Scholar 

  49. Piglowski, J; Gancarz, I; Staniszewska-Kus, J; Paluch, D; Szymonowicz, M; Konieczny, A (1994): Influence of plasma modification on biological properties of poly(ethyleneterephthalate). Biomaterials 15 (11), 909–920.

    Article  CAS  Google Scholar 

  50. Johansson, CB; Albrektsson, T; Ericson, LE; Thomsen, P (1992): A quanitative comparison of the cell response to commercially pure titanium and Ti-6A1–4V implants in the abdominal wall of rats. J. Mat. Sci.: Mat. Med. 3, 126–136.

    Article  CAS  Google Scholar 

  51. Tidwell, CD; Ertel, SI; Ratner, BD; Tarasevich, B; Atre, S; Allara, D (1996): Endothelial cell growth and protein adsorption on terminally functionalized, self assembled monolayers of alkanethiolates on gold. Langmuir (submitted)

    Google Scholar 

  52. Jozefonvicz, J; Jozefowicz, M (1990): Review: Interactions of biospecific functional polymers with blood proteins and cells. Journal of Biomaterials Science: Polymer Edition 1 (3), 147–165

    Article  CAS  Google Scholar 

  53. Mallik, S; Plunkett, SD; Dhal, PK; Johnson, RD; Pack, D; Shnek, D; Arnold, FH (1994): Towards materials for the specific recognition and separation ofproteins. New J. Chem. 18, 299–304

    CAS  Google Scholar 

  54. Massia, SP; Hubbell, JA (1988): Covalently attached GRGD on polymer surfaces promotes biospecific adhesion of mammalian cells. Ann. N. Y. Acad. Sci., 589, 261–270

    Article  Google Scholar 

  55. Brauker, JH; Carr-Brendel, VE; Martinson, LA; Crudele, J; Johnston, WD; Johnson, RC (1995): Neovascularization of synthetic membranes directed by membrane microarchitecture. J. Biomed. Mater. Res. 29, 1517–1524

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ratner, B.D. (1996). Surface Modification of Polymers for Biomedical Applications: Chemical, Biological, and Surface Analytical Challenges. In: Ratner, B.D., Castner, D.G. (eds) Surface Modification of Polymeric Biomaterials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1953-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1953-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1955-7

  • Online ISBN: 978-1-4899-1953-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics