Skip to main content

Pyruvate Dehydrogenase Complex Activation Status and Acetyl Group Availability as a Site of Interchange between Anaerobic and Oxidative Metabolism during Intense Exercise

  • Chapter
Skeletal Muscle Metabolism in Exercise and Diabetes

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 441))

Abstract

During high intensity muscular contraction ATP is supplied at near maximal rates by PCr degradation and glycolysis. However, as exercise duration increases, the contribution of anaerobic ATP turnover to energy delivery declines due to the depletion of PCr stores and a reduction in the rate of glycogenolysis, which together may be responsible for the parallel reduction in muscle force production and power output. The importance of oxidative phosphorylation to total ATP production during intense muscle contraction has been underestimated to date. Recent studies have, however, demonstrated that the reduction in work production during repeated bouts of maximal exercise is less than the reduction observed in anaerobic energy provision. This observation has been suggested to reflect an increased contribution from oxidative phosphorylation to total energy production; but the mechanism responsible for this increased contribution is poorly understood. Recent evidence has pointed to the activation status of the pyruvate dehydrogenase complex and/or acetyl group availability as being focal in dictating temporal changes in ADP flux at the onset of intense exercise and, hence, the relative contribution made by anaerobic and oxidative ATP regenerating pathways under these conditions. As might be expected, therefore, maximising the contribution from oxidative ATP regeneration at the onset of exercise (by pharmacologically activating the pyruvate dehydrogenase complex prior to exercise) has been shown to have substantial functional benefits during high intensity contraction.

This body of work has also illustrated that, contrary to popular theory, a large proportion of muscle lactate accumulation at the onset of exercise is associated with a lag in the activation of oxidative ATP production rather than with a lag in oxygen delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bangsbo, J., P.D. Gollnick, T.E. Graham, C. Jeul, M. Mizuno, B. Saltin. Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans. J. Physiol. 422: 539–559, 1990.

    PubMed  CAS  Google Scholar 

  2. Bangsbo, J., T.E. Graham, B. Kiens and B. Saltin. Elevated muscle glycogen and anaerobic energy production during exhaustive exercise in man. J. Physiol. 451: 205–227, 1992.

    PubMed  CAS  Google Scholar 

  3. Bergstrom, J., R.C. Harris, E. Hultmanand, L-O. Nordesjo. Energy rich Phosphagens in dynamic and static work. Adv. Exp. Med. Biol. 11: 341–355, 1971.

    Article  CAS  Google Scholar 

  4. Bieber, L. L., R. Emaus, K. Valkner, and S. Farrell. Possible functions of short-chain and medium-chain carnitine acyltransferases. Federation Proc. 41: 2858–2862, 1982.

    CAS  Google Scholar 

  5. Bogdanis, G.C., M.E. Nevill, L.H. Boobisand, H.K.A. Lakomy. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J. Appl. Physiol 80: 876–884, 1996.

    PubMed  CAS  Google Scholar 

  6. Boobis, L., C. Williams and S.A. Wootton. Human muscle metabolism during brief maximal exercise. J. Physiol. 338: 21–22P, 1982.

    Google Scholar 

  7. Casey, A., D. Constantin-Teodosiu, S. Howell, E. Hultman and P.L. Greenhaff. The metabolic response of type I and II muscle fibers during repeated bouts of maximal exercise in humans. Am. J. Physiol. 271: E38–E43, 1996.

    PubMed  CAS  Google Scholar 

  8. Chance, B., and G.R. Williams. The respiratory chain and oxidative phosphorylation. Adv. Enzymol. 17: 65–134, 1956.

    CAS  Google Scholar 

  9. Chasiotis, D., K. Sahlin and E. Hultman. Regulation of glycogenolysis in human muscle in response to epinephrine infusion. J. Appl. Physiol. 54: 45–50, 1983.

    PubMed  CAS  Google Scholar 

  10. Childress, C. C., B. Sacktor, and D. R. Traynor. Function of carnitine in the fatty acid oxidase-deficient insect flight muscle. J. Biol Chem. 242: 754–760, 1966.

    Google Scholar 

  11. Connett, R. J., T. E. J. Gayeski, and C. R. Honig. Energy sources in fully aerobic rest-work transitions: a new role for glycolysis. Am. J. Physiol. 248: H922–H929, 1985.

    PubMed  CAS  Google Scholar 

  12. Constantin-Teodosiu, D. Regulation of pyruvate dehydrogenase complex activity and acetyl group formation in skeletal muscle during exercise. Karolinska Institute, Stockholm, pp 1-54.

    Google Scholar 

  13. Cooper, R.H., P.J. Randle, and R.M. Denton. Stimulation of phosphorylation and inactivation of pyruvate dehydrogenase by physiological inhibitors of the pyruvate dehydrogenase reaction. Nature 257: 808–809, 1975.

    Article  PubMed  CAS  Google Scholar 

  14. Cori, G.T., S.P. Colowick and C.F. Cori. The action of nucleotides in the disruptive phosphorylation of glycogen. J. Biol. Chem. 123: 381–389, 1938.

    CAS  Google Scholar 

  15. Engelen, M. J., Porszasz, M. Riley, K. Wasserman, K. Maehara, and T. J. Barstow. Effects of hypoxic hypoxia on O2 uptake and heart rate kinetics during heavy exercise. J. Appl. Physiol. 81: 2500–2508, 1996.

    PubMed  CAS  Google Scholar 

  16. Gaitanos, G.C., C. Williams, L.H. Boobis and S. Brooks. Human muscle metabolism during intermittent maximal exercise. J. Appl. Physiol. 75: 712–719, 1993.

    PubMed  CAS  Google Scholar 

  17. Grassi, B., D.C. Poole, R.S. Richardson, D.R. Knight, B.K. Erickson and P.D. Wagner. Muscle O2 uptake kinetics in humans: implications for metabolic control. J. Appl. Physiol. 80: 988–998, 1996.

    PubMed  CAS  Google Scholar 

  18. Hennig, G., G. Loffler, and O.H. Wieland. Active and inactive forms of pyruvate dehydrogenase in skeletal muscle as related to the metabolic and functional state of the cell. FEBS Lett. 59: 142–145.

    Google Scholar 

  19. Holloszy, J. O. and E. F. Coyle. Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J. Appl. Physiol. 56: 831–838, 1984.

    PubMed  CAS  Google Scholar 

  20. Honig, C.R., R.J. Connett, and T.E.J. Gayeski. O2 transport and its interaction with metabolism; a systems view of aerobic capacity. Med. Sci. Sports Exerc. 24: 47–53, 1992.

    PubMed  CAS  Google Scholar 

  21. Hultman, E., and H. Sjoholm. Substrate availability. In: Knuttgen HG, Vogel HG, Poortmans JA, eds. Biochemistry of Exercise, Champaign: Human Kinetics, pp. 63-75, 1983.

    Google Scholar 

  22. Hultman, E., and H. Sjöholm. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation. J. Physiol. 345: 525–532, 1983.

    PubMed  CAS  Google Scholar 

  23. Hultman, E., I. Sjoholm, EK Jaderholm and J. Krynicki. Evaluation of methods for electrical stimulation of human muscle in situ. Pfluegers Arch. 398: 139–141, 1983.

    Article  CAS  Google Scholar 

  24. Hultman, E., J. Bergstrom and N. McLennan Anderson. Breakdown and resynthesis of phosphocreatine and adenosine triphosphate in connection with muscular work in man. Scan. J. Clin. Lab. Invest. 19: 56–66, 1967.

    Article  CAS  Google Scholar 

  25. Hultman, E., P.L. Greenhaff, J-M Ren and K Söderlund. Energy metabolism and fatigue during intense muscle contraction. Biochem. Soc. Trans. 19: 347–353, 1991.

    PubMed  CAS  Google Scholar 

  26. Jacobs, I., P. Tesch, O. Bar-Or, J. Karlsson, and R. Dotan. Lactate in human skeletal muscle after 10 and 30 sec of supramaximal exercise. J. Appl. Physiol. 55: 365–367, 1983.

    PubMed  CAS  Google Scholar 

  27. Jones, N.L., N. McCartney, T. Graham, L.L. Spriet, J.M. Kowalchuk, G.J.F. Heigenhauser and J. Sutton. Muscle performance and metabolism in maximal isokinetic cycling at slow and fast speeds. J. Appl. Physiol. 59: 132–136, 1985.

    PubMed  CAS  Google Scholar 

  28. Katz, A., and K. Sahlin. Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise. Acta. Physiol. Scand. 131: 119–127, 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Linnarsson, D., J. Karlsson, L. Fagraeus, and B. Saltin. Muscle metabolites and oxygen deficit during exercise with hypoxia and hyperoxia. J Appl. Physiol. 36: 399–402, 1974.

    PubMed  CAS  Google Scholar 

  30. Margaria, R., D. Oliva, P.E. Di Prampero and P. Cerretelli. Energy utilisation in intermittant exercise of supramaximal intensity. J. Appl. Physiol. 26: 752–756, 1969.

    PubMed  CAS  Google Scholar 

  31. McCartney, N., L.L. Spreit, GJF, Heigenhauser, J.M. Kowalchuk, J.R. Sutton, and N.L. Jones. Muscle power and metabolism in maximal intermittent exercise. J Appl. Physiol. 60: 1164–1169, 1986.

    PubMed  CAS  Google Scholar 

  32. McCreary, C.R., P.D. Chilibeck, G.D. Marsh, D.H. Paterson, D.A. Cunningham and R.T. Thompson. Kinetics of pulmonary oxygen uptake and muscle phosphates during moderate-intensity calf exercise. J. Appl. Physiol. 81(3): 1331–1338, 1996.

    PubMed  CAS  Google Scholar 

  33. Medbø, J.I., and I. Tabata. Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J. Appl. Physiol. 67: 1881–1886, 1989.

    PubMed  Google Scholar 

  34. Moreno-Sanchez, R., B.A. Hogue and R.G. Hansford. Influence of NAD-linked dehydrogenase activity on flux through oxidative phosphorylation. Biochem. J. 268: 421–428, 1990.

    PubMed  CAS  Google Scholar 

  35. Murphy, P.C., L.A. Cuervo, and R.L. Hughson. A study of cardiorespiratory dynamics with step and ramp exercise tests in normoxia and hypoxia. Cardiovasc. Res. 23: 825–832, 1989.

    Article  PubMed  CAS  Google Scholar 

  36. Olgin, J., R.J. Connett, and B. Chance. Mitochondrial redox changes rest-work transition in dog gracilis muscle. Adv. Exp. Med. Biol. 191: 855–862, 1985.

    Article  Google Scholar 

  37. Putman, C.T., N.L. Jones, L.C. Lands, T.M. Bragg, M.G. Hollidge-Horvat, and G.J.F. Heigenhauser. Skeletal muscle pyruvate dehydrogenase activity during maximal exercise in humans. Am. J. Physiol. 269: E458–E468, 1995.

    PubMed  CAS  Google Scholar 

  38. Quistorff, B., L. Johansen, and K. Sahlin. Absence of phosphocreatine resynthesis in human calf muscle during ischemic recovery. Biochem. J. 291: 681–686, 1992.

    Google Scholar 

  39. Randle, P.J., P.B. Garland, C.N. Hales, and E.A. Newsholme. The Glucose Fatty-acid cycle; its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1: 785–789, 1963.

    Article  PubMed  CAS  Google Scholar 

  40. Ren, J-M., and E. Hultman. Regulation of glycogenolysis in human skeletal muscle. J. Appl. Physiol. 67: 2243–2248, 1989.

    PubMed  CAS  Google Scholar 

  41. Ren, J-M., and E. Hultman. Regulation of Phosphorylase a activity in human skeletal muscle. J. Appl. Physiol. 69: 919–923, 1990.

    PubMed  CAS  Google Scholar 

  42. Ren, J-M., S. Broberg, K. Sahlin and E. Hultman. Influence of reduced glycogen level on glycogenolysis during short term stimulation in man. Acta Physiol. Scand. 139: 427–474, 1990.

    Article  Google Scholar 

  43. Sahlin, K., J-M. Ren, and S. Broberg. Oxygen deficit at the onset of submaximal exercise is not due to a delayed oxygen transport. Acta Physiol. Scand. 134: 175–180, 1988.

    Article  PubMed  CAS  Google Scholar 

  44. Sahlin, K., J. Gorski and L. Edstrom. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Am. J. Physiol. 259: C409–C412, 1990.

    PubMed  CAS  Google Scholar 

  45. Sundberg, C.J. Exercise and training during graded leg ischemia in healthy man. Acta Physiol. Scand. 150(S615): 2–50, 1994.

    Google Scholar 

  46. Symons JD and I. Jacobs. High intensity exercise performance is not impaired by low intramuscular glycogen. Med Sci Sports Exerc 21: 550–557, 1989.

    PubMed  CAS  Google Scholar 

  47. Timmons, J.A., S.M. Poucher, D. Constantin-Teodosiu, V. Worrall, I.A. Macdonald, and P.L. Greenhaff. Increased acetyl group availability enhances contractile function of canine skeletal muscle during ischemia. J. Clin. Invest. 97: 879–883, 1996.

    Article  PubMed  CAS  Google Scholar 

  48. Timmons, J.A., S.M. Poucher, D. Constantin-Teodosiu, I.A. Macdonald and P.L. Greenhaff. The metabolic responses from rest to steady state determine contractile function in ischemic skeletal muscle. Am. J. Physiol. 273: E233–E238, 1997.

    PubMed  CAS  Google Scholar 

  49. Timmons, J.A., T. Gustavsson, C. J. Sundberg, E. Jansson, E. Hultman, L. Kaijser, J. Chwalbinska-Moneta, D. Constantin-Teodosiu, I.A. Macdonald and P.L. Greenhaff. Substrate availability limits human skeletal muscle oxidative ATP regeneration at the onset of ischaemic work. J. Clin. Invest. 101: 79–85, 1998.

    Article  PubMed  CAS  Google Scholar 

  50. Trump, M.E., G.J.F. Heigenhauser, C.T. Putman and L.L. Spriet. Importance of muscle phosphocreatine during intermittent maximal cycling. J. Appl. Physiol. 80: 1574–1580, 1996.

    PubMed  CAS  Google Scholar 

  51. Williamson, J.W., P.B. Raven and B.J. Whipp. Unaltered oxygen uptake kinetics at exercise onset with lower-body positive pressure in humans. Exp. Physiol. 81: 695–705, 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Greenhaff, P.L., Timmons, J.A. (1998). Pyruvate Dehydrogenase Complex Activation Status and Acetyl Group Availability as a Site of Interchange between Anaerobic and Oxidative Metabolism during Intense Exercise. In: Richter, E.A., Kiens, B., Galbo, H., Saltin, B. (eds) Skeletal Muscle Metabolism in Exercise and Diabetes. Advances in Experimental Medicine and Biology, vol 441. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1928-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1928-1_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1930-4

  • Online ISBN: 978-1-4899-1928-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics