Skip to main content

Improving the Orientation of Nerve Regrowth with a Simple Device

  • Chapter
Synthetic Microstructures in Biological Research

Abstract

The synthetic microstructure described here is one of the simplest that can be imagined, and yet it partially solves one of the most complex problems currently encountered in reconstructive surgery. This microstructure is a simple rectangular sheet of biocompatible material, and it is used in the repair of divided nerves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Sunderland, “Nerve and Nerve Injuries,” Williams & Wilkins, Baltimore (1968).

    Google Scholar 

  2. B. Woodhall and G. W. Beebe, “Peripheral Nerve Regeneration: A Follow-up Study of 3,656 World War II Injuries,” Veterans Administration medical monograph, U.S. Govt. Printing Office, Washington, DC (1956).

    Google Scholar 

  3. H. E. Cabaud, W. G. Rodkey, H. R. McCarrol, S. B. Mutz, and J. J. Niebauer, Epineurial and perineurial fascicular nerve repair; a critical comparison, J. Hand Surg. 1:131 (1976).

    Article  CAS  Google Scholar 

  4. L. Young, R. C Wray, and P. M. Weeks, A randomized prospective comparison of fascicular and epineurial digital nerve repair, Plast Reconstr. Surg. 68:89 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. A. L. van Beek, S. C Jacobs, and E. G. Zook, Examination of peripheral nerves with the scanning electron microscope, Plast. Reconstr. Surg. 63:509 (1979).

    Article  PubMed  CAS  Google Scholar 

  6. J. M. Lane, F. W. Bora, and D. Pleasure, Neuroma scar formation following peripheral nerve transection, J. Bone Joint Surg. (Am) 60:197 (1978).

    CAS  Google Scholar 

  7. S. Ramon and Y. Cajal, “Degeneration and Regeneration of the Nervous System”, (R. Maytransi. & ed.), reprint 1968, Hafner, New York (1928).

    Google Scholar 

  8. P. H. Spencer, H. J. Weinberg, C. S. Raine, and J. W. Prineas, The perineurial window — a new model for the study of demyelination and remyelination, Brain Res. 96:329 (1975).

    Article  Google Scholar 

  9. R. S. Mellick and J. B. Cavanagh, Changes in blood vessel permeability during degeneration and regeneration in peripheral nerves, Brain 91:141 (1968).

    Article  PubMed  CAS  Google Scholar 

  10. Y. Olsson, Studies on vascular permeability in peripheral nerves. I. Distribution of circulating fluorescent serum albumin in normal, crushed and sectioned rat sciatic nerve, Acta Neuropathol. 7:1 (1968).

    Article  Google Scholar 

  11. M. Schwartz, B. A. Sela, and N. Eshhar, Antibodies to gangliosides and myelin autoantigens are produced in mice following sciatic nerve injury, J. Neurochem. 38:1192 (1982).

    Article  PubMed  CAS  Google Scholar 

  12. J. P. Kendall, I. A. Stokes, and J. P. O’Hara, Tension and creep phenomena in peripheral nerve, Acta Orthop. Scand. 50:721 (1979).

    Article  PubMed  CAS  Google Scholar 

  13. Y. Miyamoto, Experimental studies on repair for peripheral nerves; Effects of tension at suture site on intraneural circulation, Hiroshima J. Med. Sci. 28:13 (1979).

    PubMed  CAS  Google Scholar 

  14. B. G. Cragg and P. K. Thomas, The conduction velocity of regenerated peripheral nerve fibers, J. Physiol. 171:103 (1964).

    Google Scholar 

  15. W. A. Rushton, A theory of the effects of fibre size in medullated nerve, J. Physiol. 115:101 (1951).

    PubMed  CAS  Google Scholar 

  16. J. M. Schroder, Altered ratio between axon diameter and myelin sheath thickness in regenerated nerve fibers, Brain Res. 45:49 (1972).

    Article  PubMed  CAS  Google Scholar 

  17. T. Ebendal, L. Olson, and A. Seiger, The level of nerve growth factor (NGF) as a function of innervation, Exp. Cell Res. 148:311 (1983).

    Article  PubMed  CAS  Google Scholar 

  18. N. Miki, Y. Hayashi, and H. Higashida, Characterization of chick gizzard extract that promotes neurite outgrowth in cultured ciliary neurons, J. Neurochem. 37:627 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. L. de Medinaceli and R. R. Rawlings, Is it possible to predict the outcome of peripheral nerve injuries? A probability model based on prospects for regenerating neurites, BioSystems 20:243 (1987).

    Article  PubMed  Google Scholar 

  20. L. de Medinaceli, Functional consequences of experimental nerve lesions: effects of reinnervation blend, Exp. Neurol. 100:166 (1988).

    Article  PubMed  Google Scholar 

  21. L. de Medinaceli, How to correctly match 175,000 neurites: two postulates for a quick solution, BioSystems 20:307 (1987).

    Article  PubMed  Google Scholar 

  22. A. de Saint-Venant, Memoire sur la torsion des prismes, avec des considerations sur leur flexion ainsi que sur l’equilibre interieur des solides elastiques en general, et des formules pratiques pour le calcul de leur resistance a divers efforts s’exercant simultanement, Mem. Sav. Acad. Sci. Paris 14:233 (1856).

    Google Scholar 

  23. S. Timoshenko and J. N. Goodier, Saint-Venant’s Principle, in: “Theory of Elasticity,” 2nd Edn., p. 33, McGraw-Hill (1951).

    Google Scholar 

  24. R. D. Schile and R. L. Sierakowski, On the Saint-Venant problem for a nonhomogeneous elastic material, Quat. Appl Math. 23:19 (1965).

    Google Scholar 

  25. S. Edshage, Peripheral nerve suture, Act Chir. Scand. Suppl. 331:2 (1964).

    Google Scholar 

  26. L. de Medinaceli and W. J. Freed, Peripheral nerve reconnection: immediate histologic consequences of distributed mechanical support, Exp. Neurol. 81:459 (1983).

    Article  PubMed  Google Scholar 

  27. G. L. Clark, A method of preparation of nerve ends for suturing, Plast. Reconstr. Surg. 34:233 (1964).

    Article  PubMed  CAS  Google Scholar 

  28. V. E. Meyer and J. Smahel, The surgical cut-surface of peripheral nerves, Int. J. Microsurg. 2:187 (1980).

    Google Scholar 

  29. L. de Medinaceli, R. J. Wyatt, and W. J. Freed, Peripheral nerve reconnection: mechanical, thermal and ionic conditions that promote the return of function, Exp. Neurol. 81:469 (1983).

    Article  PubMed  Google Scholar 

  30. A. Waller, Examen des alterations qui ont lieu dans les filets d’origine du nerf pneumo-gastrique et des nerfs rachidiens, par suite de la section de ces nerfs au-dessus de leurs ganglions, C. R Hebd. Acad. Sci. Paris 34:842 (1852).

    Google Scholar 

  31. M. A. Badalamente, L. C Hurst, and D. Blum, Carbon dioxide laser transection of peripheral nerve, Orthop. Res. Soc. Abstr. 30:21 (1984).

    Google Scholar 

  32. L. de Medinaceli and M. de Medinaceli, “Reflexions sur les Lesions Traumatiques des Nerfs Peripheriques,” Foulon, Imprimeur, Paris (1970).

    Google Scholar 

  33. S. Edshage, Evaluation of freezing as a method to improve cut surfaces in peripheral nerves preparatory to suturing, Plast. Reconstr. Surg. 37:196 (1966).

    Article  PubMed  CAS  Google Scholar 

  34. L. de Medinaceli and A. C. Church, Peripheral nerve reconnection: inhibition of early degenerative processes through the use of a novel fluid medium, Exp. Neurol. 84:396 (1984).

    Article  PubMed  Google Scholar 

  35. R. Keeler, J. Swinney, R. M. Taylor, and P. R. Uldall, The problem of renal preservation, Br. J. Urol. 38:653 (1966).

    Article  Google Scholar 

  36. G. M. Collins, M. Bravo-Shugarman, and P. I. Terasaki, Kidney preservation for transportation. Initial perfusion and 30 hours’ice storage, Lancet 11:1219 (1969).

    Article  Google Scholar 

  37. L. van den Berg, The effect of addition of sodium and potassium chloride to the reciprocal system: KH2P04-Na2HP04-H20 on pH and composition during freezing, Arch. Biochem. Biophys. 84:305 (1959).

    Article  Google Scholar 

  38. L. de Medinaceli, W. J. Freed, and R. J. Wyatt, Peripheral nerve reconnection: improvement of long term functional effects under simulated clinical conditions in the rat, Exp. Neurol. 81:488 (1983).

    Article  PubMed  Google Scholar 

  39. R. P. Wikholm, J. E. Swett, Y. Torigoe, and H. I. Blanks, Repair of severed peripheral nerve: a superior anatomic and functional recovery with a new “reconnection” technique, Otolar. Head Neck Surg. 99:353 (1988).

    CAS  Google Scholar 

  40. R. T. Zellem, D. W. Miller, J. A. Kenning, E. M. Hoenig, and W. A. Bucheit, Experimental peripheral nerve repair: environmental control directed at the cellular level, Microsurgery 10:290 (1989).

    Article  PubMed  CAS  Google Scholar 

  41. A. V. Seaber, J. M. Boswick, W. H. Joyner, and J. R. Urbaniak, Sutureless reconnection of peripheral nerves, Orthop. Res. Soc. Abstr. 30:(1984).

    Google Scholar 

  42. B. Stookey, Surgical considerations of peripheral nerve injuries, Surg.Gynec.Obst. 27:362 (1918).

    Google Scholar 

  43. B. Stookey, The technic of nerve suture, J. Am. Med. Ass. 74:1380 (1920).

    Article  Google Scholar 

  44. C. A. Eisberg, Technic of nerve suture and nerve grafting, J. Am. Med. Ass. 73:1422 (1919).

    Article  Google Scholar 

  45. G. C Huber, Repair of peripheral nerve injuries, Surg. Gynec. Obst. 30:464 (1920).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Medinaceli, L., Wyatt, R.J. (1992). Improving the Orientation of Nerve Regrowth with a Simple Device. In: Schnur, J.M., Peckerar, M., Stratton, H.M. (eds) Synthetic Microstructures in Biological Research. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1630-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1630-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1632-7

  • Online ISBN: 978-1-4899-1630-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics