Skip to main content

Overview: Potential Role of Segmental Motor Circuitry in Muscle Fatigue

  • Chapter
Book cover Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

This chapter reviews several mechanisms that the CNS may use to mitigate muscle fatigue, including intrinsic motoneuron properties and feedback systems. The emphasis is on the effects of sensory inputs on spinal cord interneurons including: Renshaw cells; Ib inhibitory interneurons; interneurons mediating presynaptic inhibition; Ia inhibitory interneurons; and interneuronal networks constituting central pattern generators for locomotion. This exercise brings out how little is known about the operation of these circuits in dealing with muscle fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldissera F, Hultborn H & Illert M (1981). Integration in spinal neuronal systems. In: Brooks VB (ed.), Handbook of Physiology, Vol. II, Part 1, The Nervous System, pp. 509–595. Bethesda: American Physiological Society.

    Google Scholar 

  • Bevan L, Laouris Y, Reinking RM & Stuart DG (1992). The effect of the stimulation pattern on the fatigue of single motor units in adult cats. Journal of Physiology (London) 449, 85–108.

    CAS  Google Scholar 

  • Bigland-Ritchie BR (1993). Regulation of motorneuron firing rates in fatigue. In: Sargeant AJ, Kernell D (eds.), Neuromuscular Fatigue, pp 147-155. Amsterdam: Royal Netherlands Academy of Arts and Sciences.

    Google Scholar 

  • Bigland-Ritchie B, Dawson NJ, Johansson RS & Lippold OCJ (1986). Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. Journal of Physiology (London) 379, 451–459.

    CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson RS, Lippold OCJ & Woods JJ (1983a). Changes in motoneurone firing rates during sustained maximal voluntary contractions. Journal of Physiology (London) 340, 335–346.

    CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson RS, Lippold OCJ & Woods JJ (1983b). Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. Journal of Neurophysiology 50, 313–324.

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B & Woods JJ (1984). Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle & Nerve 7, 691–699.

    Article  CAS  Google Scholar 

  • Binder MD & Mendell LM (eds.) (1990). The Segmental Motor System. New York: Oxford University Press

    Google Scholar 

  • Binder-Macleod SA & Barker CB (1991). Use of a catch-like property of human skeletal muscle to reduce fatigue. Muscle & Nerve 14, 850–857.

    Article  CAS  Google Scholar 

  • Binder-Macleod SA & Guerin T (1990). Preservation of force output through progressive reduction of stimulation frequency in human quadriceps femoris muscle. Physical Therapy 70, 619–625.

    PubMed  CAS  Google Scholar 

  • Botterman BR & Cope TC (1988). Motor-unit stimulation patterns during fatiguing contractions of constant tension. Journal of Neurophysiology 60, 1198–1214.

    PubMed  CAS  Google Scholar 

  • Brownstone RM, Jordan LM, Kriellaars DJ, Noga BR & Shefchyk SJ (1992). On the regulation of repetitive firing in lumbar motoneurones during fictive locomotion in the cat. Experimental Brain Research 90, 441–455.

    Article  CAS  Google Scholar 

  • Burke RE (1981). Motor units: anatomy, physiology, and functional organization. In: Brooks VB (ed.), Handbook of Physiology, Vol. II, Part 1, The Nervous System, pp 354–422. Bethesda: American Physiological Society.

    Google Scholar 

  • Burke RE, Levine DN, Tsairis P & Zajac FE (1973). Physiological types and histochemical profiles in motor units of the cat gastrocnemius. Journal of Physiology (London) 234, 723–748.

    CAS  Google Scholar 

  • Capaday C, Cody FWJ & Stein RB (1990). Reciprocal inhibition of soleus motor output in humans during walking and voluntary tonic activity. Journal of Neurophysiology 64, 607–616.

    PubMed  CAS  Google Scholar 

  • Clamann HP (1990). Changes that occur in motor units during activity. In: Binder MD, Mendell LM (eds.), The Segmental Motor System, pp. 239–257. New York: Oxford University Press.

    Google Scholar 

  • Dietz V (1992). Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiological Reviews 72, 33–69.

    PubMed  CAS  Google Scholar 

  • Dubose L, Schelhorn TB & Clamann HP (1987). Changes in contractile speed of cat motor units during activity. Muscle & Nerve 10, 744–752.

    Article  CAS  Google Scholar 

  • Dubuc R, Cabelguen J-M & Rossignol S (1988). Rhythmic fluctuations of dorsal root potentials and antidromic discharges of primary afferents during fictive locomotion in the cat. Journal of Neurophysiology 60, 2014–2036.

    PubMed  CAS  Google Scholar 

  • Dueñas SH, Loeb GE & Marks WB (1990). Monosynaptic and dorsal root reflexes during locomotion in normal and thalamic cats. Journal of Neurophysiology 63, 1467–1476.

    PubMed  Google Scholar 

  • Edwards RHT, Wiles CM, Gohil K, Krywawych S & Jones DA (1982) Energy metabolism in human myopathy. In: Schotland DL (ed.), Disorders of the Motor Unit, pp. 715–726. New York: Wiley.

    Google Scholar 

  • Enoka RM & Stuart DG (1992). Neurobiology of muscle fatigue. Journal of Applied Physiology 72, 1631–1648.

    Article  PubMed  CAS  Google Scholar 

  • Fitch S & McComas A (1985). Influence of human muscle length on fatigue. Journal of Physiology (London) 362, 205–213.

    CAS  Google Scholar 

  • Forssberg H, Grillner S & Rossignol S (1977). Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Research 132, 121–139.

    Article  PubMed  CAS  Google Scholar 

  • Fuglevand AJ, Zackowski KM, Huey KA & Enoka RM (1993). Impairment of neuromuscular propagation during human fatiguing contractions at submaximal forces. Journal of Physiology (London) 260, 549–572.

    Google Scholar 

  • Gandevia SC (1993). Central and peripheral components to human isometric muscle fatigue. In: Sargeant AJ, Kernell D (eds.), Neuromuscular Fatigue, pp. 156-164. Amsterdam: Royal Netherlands Academy of Arts and Sciences.

    Google Scholar 

  • Gandevia SC, Macefield G, Burke D & McKenzie DK (1990). Voluntary activation of human motor axons in the absence of muscle afferent feedback. The control of the deafferented hand. Brain 113, 1563–1581.

    Article  PubMed  Google Scholar 

  • Gandevia SC, Macefield VG, Bigland-Ritchie B, Gorman R & Burke D (1993). Motoneuronal output and gradation of effort in attempts to contract acutely paralyzed leg muscles in man. Journal of Physiology (London) 474, 411–427.

    Google Scholar 

  • Garland SJ, Gamer SH & McComas AJ (1988). Reduced voluntary electromyographic activity after fatiguing stimulation of human muscle. Journal of Physiology (London) 401, 547–556.

    CAS  Google Scholar 

  • Gelfand IM, Orlovsky GN & Shik ML (1988). Locomotion and scratching in tetrapods. In: Cohen AH, Rossignol S, Grillner S (eds.), Neural Control of Rhythmic Movements in Vertebrates, pp 167–199. New York: Wiley.

    Google Scholar 

  • Getting PA (1989). Emerging principles governing the operation of neural networks. Annual Review of Neuroscience 12, 185–204.

    Article  PubMed  CAS  Google Scholar 

  • Gordon DA, Enoka RM & Stuart DG (1990). Motor-unit force potentiation in adult cats during a standard fatigue test. Journal of Physiology (London) 421, 569–582.

    CAS  Google Scholar 

  • Gossard J-P, Brownstone RM, Barajon I & Hultborn H (1994). Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat. Experimental Brain Research 98, 213–228.

    Article  CAS  Google Scholar 

  • Gossard J-P & Rossignol S (1990). Phase-dependent modulation of dorsal root potentials evoked by peripheral nerve stimulation during fictive locomotion in the cat. Brain Research 537, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Graham-Brown T (1912). The factors in rhythmic activity of the nervous system. Proceedings Royal Society London B 85, 278–289.

    Article  Google Scholar 

  • Grillner S (1985). Neural control of vertebrate locomotion-central mechanisms and reflex interaction with special reference to the cat. In: Barnes WJP, Gladden MH (eds.), Feedback and Motor Control in Invertebrates and Vertebrates, pp. 35–56. London: Croom Helm.

    Chapter  Google Scholar 

  • Hamm TM, Sasaki SI, Stuart DG, Windhorst U & Yuan C-U (1987). Distribution of single-axon recurrent inhibitory post-synaptic potentials in a single spinal motor nucleus in the cat. Journal of Physiology (London) 388, 653–664.

    CAS  Google Scholar 

  • Harrison PJ & Jankowska E (1985). Sources of input to interneurones mediating group I non-reciprocal inhibition of motoneurones in the cat. Journal of Physiology (London) 361, 379–401.

    CAS  Google Scholar 

  • Hayward L, Breitbach D & Rymer WZ (1988). Increased inhibitory effects on close synergists during muscle fatigue in the decerebrate cat. Brain Research 440, 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Hayward L, Wesselmann U & Rymer WZ (1991). Effects of muscle fatigue on mechanically sensitive afferents of slow conduction velocity in the cat triceps surae. Journal of Neurophysiology 65, 360–370.

    PubMed  CAS  Google Scholar 

  • Henneman E (1957). Relation between size of neurons and their susceptibility to discharge. Science 126, 1345–1346.

    Article  PubMed  CAS  Google Scholar 

  • Houk JC & Rymer WZ (1981). Neural control of muscle length and tension. In: Brooks VB (ed.), Handbook of Physiology, Vol II, Part 1, The Nervous System, pp. 257–323. Bethesda: American Physiological Society.

    Google Scholar 

  • Houk JC, Singer JJ & Goldman MR (1970). An evaluation of length and force feedback to soleus muscles of decerebrate cats. Journal of Neurophysiology 33, 784–811.

    PubMed  CAS  Google Scholar 

  • Jami L (1992). Golgi tendon organs in mammalian skeletal muscle: functional properties and central actions. Physiological Reviews 72, 623–666.

    PubMed  CAS  Google Scholar 

  • Jankowska E (1992). Interneuronal relay in spinal pathways from proprioceptors. Progress in Neurobiology 38, 335–378.

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Johanisson T & Lipski J (1981). Common interneurons in reflex pathways from group Ia and Ib afferents of ankle extensors in the cat. Journal of Physiology (London) 310, 381–402.

    CAS  Google Scholar 

  • Jankowska E, Jukes MGM, Lund S & Lundberg A (1967a). The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiologica Scandinavica 70, 369–388.

    Article  PubMed  CAS  Google Scholar 

  • Jankowska E, Jukes MGM, Lund S & Lundberg A (1967b). The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiologica Scandinavica 70, 389–402.

    Article  PubMed  CAS  Google Scholar 

  • Kernell D (1992). Organized variability in the neuromuscular system: a survey of task-related adaptations. Archives Italiennes de Biologie 130, 19–66.

    PubMed  CAS  Google Scholar 

  • Kernell D (1993) Neuromuscular fatigue and the differentiation of motoneurone and muscle unit properties. In: Sargeant AJ, Kernell D (eds.), Neuromuscular Fatigue, pp 139–146. Amsterdam: Royal Netherlands Academy of Arts and Sciences.

    Google Scholar 

  • Kernell D & Monster AW (1982). Motoneurone properties and motor fatigue. An intracellular study of gastrocnemius motoneurones of the cat. Experimental Brain Research 46, 197–204.

    CAS  Google Scholar 

  • Kirsch RF & Rymer WZ (1992). Neural compensation for fatigue-induced changes in muscle stiffness during perturbations of elbow angle in human. Journal of Neurophysiology 68, 449–470.

    PubMed  CAS  Google Scholar 

  • Kukulka CG, Moore MA & Russell AG (1986). Changes in human a-motoneuron excitability during sustained maximum isometric contractions. Neuroscience Letters 68, 327–333.

    Article  PubMed  CAS  Google Scholar 

  • Lenman AJR, Tulley FM, Vrbova G, Dimitrijevic MR & Towle JA (1989). Muscle fatigue in some neurological disorders. Muscle & Nerve 12, 938–942.

    Article  CAS  Google Scholar 

  • Macefield G, Hagbarth K-E, Gorman R, Gandevia SC & Burke D (1991). Decline in spindle support to a-motoneurones during sustained voluntary contractions. Journal of Physiology (London) 440, 497–512.

    CAS  Google Scholar 

  • Marsden CD, Meadows JC & Merton PA (1983). “Muscular wisdom” that minimizes fatigue during prolonged effort in man: peak rates of motoneuron discharge and slowing of discharge during fatigue. In: Desmedt JE (ed.), Motor Control Mechanisms in Health and Disease, pp. 169–211. New York: Raven Press.

    Google Scholar 

  • McKenzie DK, Bigland-Ritchie B, Gorman RB & Gandevia SC (1992). Central and peripheral fatigue of human diaphragm and limb muscles assessed by twitch interpolation. Journal of Physiology (London) 454, 643–656.

    CAS  Google Scholar 

  • Mense S (1986). Slowly conducting afferent fibers from deep tissues-neurobiological properties and central nervous actions. In: Ottoson D (ed.), Progress in Sensory Physiology, Vol. 6, pp. 139–219. Berlin: Springer-Verlag.

    Google Scholar 

  • Miller RG, Green AT, Moussavi RS, Carson PJ & Weiner MW (1990) Excessive muscular fatigue in patients with spastic paraparesis. Neurology 40, 1271–1274

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annual Review of Neuroscience 16, 265–297.

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG & Collins DF (1993). Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. Journal of Neurophysiology 70, 1009–1017.

    PubMed  CAS  Google Scholar 

  • Powers RK & Binder MD (1991). Effects of low-frequency stimulation on the tension-frequency relations of fast-twitch motor units in the cat. Journal of Neurophysiology 66, 905–918.

    PubMed  CAS  Google Scholar 

  • Pratt CA & Jordan LM (1987). Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion. Journal of Neurophysiology 57, 56–71.

    PubMed  CAS  Google Scholar 

  • Rotto DM & Kaufmann MP (1988). Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. Journal of Applied Physiology 64, 2306–2313.

    PubMed  CAS  Google Scholar 

  • Rudomin P (1990). Presynaptic inhibition of muscle spindle and tendon organ afferents in the mammalian spinal cord. Trends in Neurosciences 13, 499–505.

    Article  PubMed  CAS  Google Scholar 

  • Sillar KT (1991) Spinal pattern generation and sensory gating mechanisms. Current Opinion in Neurobiology 1, 583–589.

    Article  PubMed  CAS  Google Scholar 

  • Sinoway LI, Hill, JM, Pickar, JG & Kaufman, MP (1993). Effects of contraction and lactic acid on the discharge of group III muscle afferents in cats. Journal of Neurophysiology 69, 1053–1059.

    PubMed  CAS  Google Scholar 

  • Spielmann JM, Laouris Y, Nordstrom MA, Robinson GA, Reinking RM & Stuart DG (1993). Adaptation of cat motoneurons to sustained and intermittent extracellular activation. Journal of Physiology (Lon-don) 464, 75–120.

    CAS  Google Scholar 

  • Stuart DG & Callister RJ (1993). Afferent and spinal reflex aspects of muscle fatigue: issues and speculations. In: Sargeant AJ, Kernell D (eds), Neuromuscular Fatigue, pp. 169–180. Amsterdam: Royal Netherlands Academy of Arts and Sciences.

    Google Scholar 

  • Vøllestad NK, Sejersted OM, Bahr R, Woods JJ & Bigland-Ritchie B (1988). Motor drive and metabolic responses during repeated submaximal voluntary contractions in man. Journal of Applied Physiology 64, 1421–1427.

    PubMed  Google Scholar 

  • Windhorst U (1988) How Brain-like is the Spinal Cord? Interacting Cell Assemblies in the Spinal Cord. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Windhorst U & Kokkoroyiannis T (1991). Interaction of recurrent inhibitory and muscle spindle afferent feedback during muscle fatigue. Neuroscience 43, 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Woods JJ, Furbush F & Bigland-Ritchie B (1987). Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates. Journal of Neurophysiology 58, 125–137.

    PubMed  CAS  Google Scholar 

  • Yang JF & Stein RB (1990). Phase-dependent reflex reversal in human leg muscles during walking. Journal of Neurophysiology 63, 1109–1117.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Windhorst, U., Boorman, G. (1995). Overview: Potential Role of Segmental Motor Circuitry in Muscle Fatigue. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics