Skip to main content

Methionine Deprivation Regulates the Translation of Functionally-Distinct c-Myc Proteins

  • Chapter
Book cover Diet and Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 354))

Abstract

Numerous studies have demonstrated a critical role for the c-myc gene in the control of cellular growth. Alterations of the c-myc gene have been found associated with many different types of tumors in several species, including humans. The increased synthesis of one of the major forms of c-Myc protein, c-Myc 1, upon methionine deprivation provides a link between the regulation of oncogenes and the nutritional status of the cell. While deregulation or overexpression of the other major form, c-Myc 2, has been shown to cause tumorigenesis, the synthesis of c-Myc 1 protein is lost in many tumors. This suggests that the c-Myc 1 protein is necessary to keep the c-Myc 2 protein “in check” and prevent certain cells from becoming tumorigenic. Indeed, we have shown that overproduction of c-Myc 1 can inhibit cell growth. We have also shown that c-Myc 1 and 2 proteins have a differential molecular function in the regulation of transcription through a new binding site for Myc/Max heterodimers. We have also recently identified new translational forms of the c-Myc protein which we term Δ-c-Myc. These proteins arise from translational initiation at downstream start sites which yield N-terminally-truncated c-Myc proteins. Since these proteins lack a significant portion of the transactivation domain of c-Myc, they behave as dominant-negative inhibitors of the full-length c-Myc 1 and 2 proteins. The synthesis of Δ-c-Myc proteins is also regulated during cell growth and is repressed by methionine deprivation. Therefore, the synthesis of c-Myc 1 and Δ-c-Myc proteins are reciprocally regulated by methionine availability. We have also found some tumor cell lines which synthesize high levels of the Δ-c-Myc proteins. Taken together, our data suggest that c-Myc function is dependent on the levels of these different translational forms of c-Myc protein which are regulated by the nutritional status of the cell during growth.

Numerous reports have demonstrated a fundamental and diverse role for the myc gene in cellular events, including proliferation, differentiation and apoptosis (Cole 1986; Spencer and Groudine 1991; Askew et al. 1991; Evan et al. 1992). This is dramatically illustrated by the frequent occurrence of a variety of tumors in many species having alterations of myc genes and the transduction of c-myc sequences by retroviruses (Spencer and Groudine 1991). The diverse biological activity of myc is demonstrated by its ability to contribute to cellular proliferation (Spencer and Groudine 1991), inhibit terminal differentiation (Cole 1986), and promote apoptosis (Evan et al. 1992). Despite intensive study, however, the mechanism by which Myc proteins perform such diverse cellular roles is unknown (Luscher and Eisenman 1990).

A distinctive feature of the myc gene is that it encodes multiple N-terminally-distinct proteins. Alternative translational forms of the Myc protein exist for all species of c-Myc examined thus far (Hann and Eisenman 1984; Hann et al, 1988), as well as for N-Myc (Ramsay et al. 1986) and L-Myc proteins (Dosaka-Akita et al. 1991). The c-Myc 1 and 2 proteins have been found in all vertebrate species examined (Hann et al. 1988). In mammalian and avian cells, c-Myc 1 protein arises from an upstream non-AUG translational start site and thus contains an N-terminal extension of 14 amino acids compared to c-Myc 2 protein (Hann et al. 1988). Recently we have found that human, murine and avian cells also express smaller-sized c-Myc proteins to the full-length c-Myc 1 and 2 proteins (Spotts and Hann unpublished). These smaller-sized proteins, which we term Δ-c-Myc proteins, arise from translational initiation at a doublet of AUG codons downstream of the initiation sites for c-Myc 1 and 2 yielding proteins lacking the first 100 amino acids of c-Myc 2. Figure 1 diagrams the initiation of the different c-Myc proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • J. Abastado, P.F. Miller, and A.G. Hinnebusch, A quantitative model for translational control of the GCN4 gene of Saccharomyces cerevisiae. The New Biologist 3: 511–524 (1991).

    PubMed  CAS  Google Scholar 

  • B., Amati, M.W. Brooks, N. Levy, T. Littlewood, G. Evan, and H Land, Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72: 233–245 (1993).

    Article  Google Scholar 

  • C. Amin, A. Wagner, and N. Hay, Sequence-specific transactivation by myc and repression by max. Mol.Biol.Cell. 13: 383–390 (1993).

    CAS  Google Scholar 

  • D. Askew, R. Ashmun, B. Simmons, and J. Cleveland, Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and apoptosis. Oncogene 6: 1915–1922 (1991).

    PubMed  CAS  Google Scholar 

  • D.E. Ayer, L. Kretzner, and R.N. Eisenman, Mad: A heterodimeric partner for Max that antagonizes myc transcriptional activity. Cell 72: 211–222 (1993).

    Article  PubMed  CAS  Google Scholar 

  • H.L. Beckmann, L.K. Su, and T. Kadesch, TFE3: Ahelix-loop-helix protein that activates transcription through the immunoglobulin enhancer 43 motif. Genes and Dey. 4: 167–179 (1990).

    Google Scholar 

  • J. Bigler, W. Hokanson, and R.N. Eisenman, Thyroid hormone receptor transcriptional activity is potentially autoregulated by truncated forms of the receptor. Mol. Cell. Biol. 12: 2406–417 (1992).

    PubMed  CAS  Google Scholar 

  • T.K. Blackwell, L. Kretzner, E.M. Blackwood, R.N. Eisenman, and H. Weintraub, Sequence-specific DNA binding by the c-myc protein. Science 250: 1149–1151 (1990).

    Article  PubMed  CAS  Google Scholar 

  • T.K. Blackwell, J. Huang, A. Ma, L. Kretzner, F. Alt, R.N. Eisenman, and H. Weintraub, Binding of Myc proteins to canonical and non-canonical DNA sequences. Mol. Cell. Biol. 13: 5216–5224 (1993).

    PubMed  CAS  Google Scholar 

  • E.M. Blackwood, and R.N. Eisenman, Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with myc. Science 251: 1211–1217 (1991).

    Article  PubMed  CAS  Google Scholar 

  • E. Blackwood, T. Lugo, L. Kretzner, M. King, A. Street, O. Witte, and R.N. Eisenman, Functional analysis of the AUG- and CUG-initiated forms of the c-Myc protein. Mol. Biol. Cell, 5: 597–609 (1994)

    PubMed  CAS  Google Scholar 

  • Z. Cao, R. Umek, and S. McKnight, Regulated expression of three C/EBP isoforms during adipose conversion of 3T3-LI cells. Genes Dey. 5: 1538–1552 (1991).

    Article  CAS  Google Scholar 

  • C.S. Carr, and P.A. Sharp, A helix-loop-helix protein related to immunoglobulin E box-binding proteins. Mol. Cell. Biol. 10: 4384–4388 (1990).

    CAS  Google Scholar 

  • M.D. Cole, The myc oncogene:its role in transformation and differentiation. Ann. Rev. Genet. 20: 361–384 (1986).

    Article  PubMed  CAS  Google Scholar 

  • P. Descombes, and U. Schibler, A liver-enriched transcriptional activator protein, LAP, and a transcriptional inhibitory protein, LIP, are translated from the same mRNA. Cell 67: 569–579 (1991).

    Article  PubMed  CAS  Google Scholar 

  • T.F. Donahue, A.M. Cigan, E.K. Pabich, and B.C. Valavicius, Mutations at a Zn(II) finger motif in the yeast eIF-2f3 gene alter ribosomal start-site selection during the scanning process. Cell 54: 621–632 (1988).

    Article  PubMed  CAS  Google Scholar 

  • H. Dosaka-Akita, R.K. Rosenberg, J.D. Minna, and M.J. Birrer, A complex pattern of translational initiation and phosphorylation in L-Myc proteins. Oncogene 6: 371–378 (1991).

    PubMed  CAS  Google Scholar 

  • G. Evan, A.H. Wyllie, C. Gilbert, T. Littlewood, H. Land, M. Brooks, C. Waters, L. Penn, and D. Hancock, Induction of apoptosis in fibroblasts by c-myc protein. Cell 69: 119–128 (1992).

    Article  PubMed  CAS  Google Scholar 

  • N.S. Foulkes, and P. Sassone-Corsi, More is better: activators and repressors from the same gene. Cell 68: 411–414 (1992).

    Article  PubMed  CAS  Google Scholar 

  • S.O. Freytag, and T.J. Geddes, Reciprocal regulation of adipogenesis by myc and C/EBPa. Science 256: 379–382 (1992).

    Article  PubMed  CAS  Google Scholar 

  • P.D. Gregor, M. Sawadogo, and R.G. Roeder, The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory and binds to DNA as a dimer. Genes and Dey. 4: 1730–1740 (1990).

    Article  CAS  Google Scholar 

  • W. Gu, K. Cechova, V. Tassi, and R. Dalla-Favera, Opposite regulation of gene transcription and cell proliferation by c-Myc and Max. Proc. Natl. Acad. Sci. 90: 2935–2939 (1993).

    Article  PubMed  CAS  Google Scholar 

  • W. Gu, K. Bhatia, I. Magrath, C. Dang, and R. Dalla-Favera, Binding and suppression of the Myc transcriptional activation domain by p107. Science 264: 251–254 (1994).

    Article  PubMed  CAS  Google Scholar 

  • S.R. Hann, M. Dixit, R. Sears, and L. Sealy, The alternatively-initiated c-Myc proteins differentially regulate transcription through a noncanonical DNA binding site. Genes and Dey. 8: 2441–2452 (1994).

    Article  CAS  Google Scholar 

  • S.R. Hann, and R.N. Eisenman, Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol. Cell. Biol. 4: 2486–2497 (1984).

    PubMed  CAS  Google Scholar 

  • S.R. Hann, M.W. King, D.L. Bentley, C.W. Anderson, and R.N. Eisenman, A non-AUG translational initiation in c-myc exon I generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt’s lymphomas. Cell 34: 185–195 (1988).

    Article  Google Scholar 

  • S.R. Hann, K. Sloan-Brown, and G. Spotts, Translational activation of the non-AUG-initiated c-myc I protein at high cell densities due to methionine deprivation. Genes and Dey. 6: 1229–1240 (1992).

    Article  CAS  Google Scholar 

  • G. Hateboer, H. Timmers, A. Rustgi, M. Billaud, L. Van ‘T Veer, and R. Bernards, TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E la protein. Proc. Natl. Acad. Sci. 90: 8489–8493 (1993).

    Article  CAS  Google Scholar 

  • J.W.B Hershey, Translational control in mammalian cells. Ann. Rev. Biochem. 60: 717–755 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Y.F. Hu, B. Luscher, A. Admon, N. Mermod, and R. Tjian, Transcription factor AP-4 contains multiple dimerization domains that regulate dimer specificity. Genes and Dey. 4: 1741–1752 (1990).

    Article  CAS  Google Scholar 

  • G.J. Kato, J. Barrett, M. Villa-Garcia, and C.V. Dang, An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol. Cell. Biol. 10: 5914–5920 (1990).

    PubMed  CAS  Google Scholar 

  • M. Kozak, Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292 (1986).

    Article  PubMed  CAS  Google Scholar 

  • M. Kozak, Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems. Mol. Cell. Biol. 9: 5073–5080 (1989).

    PubMed  CAS  Google Scholar 

  • M. Kozak, Regulation of translation in eukaryotic systems. Ann. Rev. Cell Biol. 8: 197–225 (1991).

    Article  Google Scholar 

  • L. Kretzner, E.M. Blackwood, and R.N. Eisenman, Myc and Max proteins possess distinct transcriptional activities. Nature 359: 426–429 (1992).

    Article  PubMed  CAS  Google Scholar 

  • B. Lewin, Oncogenic conversion by regulatory changes in transcription factors. Cell 64: 303–312 (1991).

    Article  PubMed  CAS  Google Scholar 

  • B. Luscher, and R.N. Eiseman New light on myc and myb. Part I. myc. Genes and Dey. 4: 2025–2035 (1990).

    Article  CAS  Google Scholar 

  • S. Maheswaran, H. Lee, and G. Sonenshein, Intracellular association of the protein product of the c-myc oncogene with the TATA-binding protein. Mol. Cell. Biol. 14: 1147–1152 (1994).

    PubMed  CAS  Google Scholar 

  • T.P. Makela, P.J. Koskinen, I. Vastrik, and K. Alitalo, Alternative forms of Max as enhancers or suppressors of Myc-Ras cotransformation. Science 256: 373–376 (1992).

    Article  PubMed  CAS  Google Scholar 

  • D.S. Peabody, Translation initiation at non-AUG triplets in mammalian cells. J. Biol. Chem. 264: 5031–5035 (1989).

    PubMed  CAS  Google Scholar 

  • H. Persson, L. Hennighausen, R. Taub, W. DeGrado, and P. Leder, Antibodies to human c-myc gene product: evidence of an evolutionarily conserved protein induced during cell proliferation. Science 225: 687–693 (1984).

    Article  PubMed  CAS  Google Scholar 

  • G.C. Prendergast, and E.B. Ziff, Methylation-sensitive sequence-specific DNA binding by the c-myc basic region. Science 251: 186–189 (1991).

    Article  PubMed  CAS  Google Scholar 

  • M. Ramirez, R.C. Wek, and A.G. Hinnenbusch, Ribosome association of GCN2 protein kinase, a translational activator of the GCN4 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 3027–3036 (1991).

    PubMed  CAS  Google Scholar 

  • G. Ramsay, L. Stanton, M. Schwab, and J.M. Bishop, The human proto-oncogene N-myc encodes nuclear proteins that bind DNA. Mol. Cell. Biol. 6: 4450–4457 (1986).

    PubMed  CAS  Google Scholar 

  • L.M. Resar, C. Dolde, J.F. Barrett, C.V. and Dang, B-Myc inhibits neoplastic transformation and transcriptional activation by c-Myc. Mol. Cell. Biol. 13: 1130–1136 (1993).

    PubMed  CAS  Google Scholar 

  • A. Roy, C. Carruthers, T. Gutjahr, and R.G. Roeder, Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature 365: 359–361 (1993).

    Article  PubMed  CAS  Google Scholar 

  • L. Sealy, and R. Chalkley, At least two nuclear proteins bind specifically to the Rous sarcoma virus long terminal repeat enhancer. Mol. Cell. Biol. 7: 787–798 (1987).

    Google Scholar 

  • R.C. Sears, and L. Sealy, Characterization of nuclear proteins that bind the EFH enhancer sequence in the Rous sarcoma virus LTR. J. 1 iron. 66: 6338–6352 (1992).

    CAS  Google Scholar 

  • A. Shrivastava, S. Saleque, G.V. Kalpana, S. Artandi, S.P. Goff, and K. Calame, Inhibition of transcriptional regulator Yin-Yang-1 association with c-Myc. Science 262: 24796–24804 (1993).

    Article  Google Scholar 

  • C.A. Spencer, and M. Groudine, Control of c-myc regulation in normal and neoplastic cells. Adv. Cancer Res. 56: 1–48 (1991).

    Article  PubMed  CAS  Google Scholar 

  • J. Stone, T. DeLange, G. Ramsay, E. Jakobovits, J.M. Bishop, H. Varmus, and W. Lee, Definition of regions of human c-myc that are involved in transformation and nuclear localization. Mol. Cell. Biol. 7: 1967–1709 (1987).

    Google Scholar 

  • D. Tzamarias, I. Roussou, and G. Thireos, Coupling of GCN4 mRNA translational activation with decreased rates of polypeptide chain initiation. Cell 57: 947–954 (1989).

    Article  PubMed  CAS  Google Scholar 

  • R.M. Umek, A.D. Friedman, and S.L. McKnight, CCAAT/enhancer binding protein: a component of a differentiation switch. Science 251: 288–292 (1991).

    Article  PubMed  CAS  Google Scholar 

  • R.C. Wek, B.M. Jackson, and A.G. Hinnebusch, Juxtaposition of domains homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein suggests a mechanism for coupling GCN4 expression to amino acid availability. Proc. Natl. Acad. Sci. USA 86: 4579–4583 (1989).

    Article  PubMed  CAS  Google Scholar 

  • N.P. Williams, A.G. Hinnebusch, and T.F. Donahue, Mutations in the structural genes for eukaryotic initiation factors 2a and 2ß of Saccharomyces cerevisiae disrupt translational control of GCN4 mRNA. Proc. Natl. Acad. Sci. USA 86: 7515–751 (1989).

    Article  PubMed  CAS  Google Scholar 

  • A.S. Zervos, J. Gyuris, and R. Brent, Mxi1, a protein that specifically interacts with Max to bind Myc/Max recognition sites. Cell 72: 223–232 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hann, S.R. (1995). Methionine Deprivation Regulates the Translation of Functionally-Distinct c-Myc Proteins. In: Diet and Cancer. Advances in Experimental Medicine and Biology, vol 354. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0949-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0949-7_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0951-0

  • Online ISBN: 978-1-4899-0949-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics