Skip to main content

Water Structure of PEG Solutions by Differential Scanning Calorimetry Measurements

  • Chapter
Poly(Ethylene Glycol) Chemistry

Part of the book series: Topics in Applied Chemistry ((TAPP))

Abstract

As this volume attests, poly(ethylene glycol) or PEG is a material of growing importance in the biomedical world. It has been used in free solution as an agent for cell fusion1 and protein precipitation.2 It has also been conjugated to proteins and drugs to reduce immunological responses and control pharmacodynamics.3 Finally, it has been used in biocompatible materials, either as a coating or incorporated into a hydrogel.4 These surfaces are expected to be highly biocompatible because protein adsorption to them is low.4,5 Both the amount of protein adsorption and the magnitude of other biochemical events, such as platelet adhesion, rapidly decline as the PEG molecular weight rises.6,7 This decline is most marked at molecular weights up to 1000, after which the biointeractions tend to level out gradually.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. L. Davidson and P. S. Gerald, Methods Cell Biol. 15, 325 (1977).

    Article  PubMed  CAS  Google Scholar 

  2. M. Fried and P W. Chun, Methods Enzymol. 22, 238 (1971).

    Article  Google Scholar 

  3. A. Abuchowski, G. M. Kazo, C. R. Verhoest, T. van Es, D. Kafkewitz, M. L. Nucci, A. T. Viau, and F. F. Davis, Cancer Biochem. Biophys. 7, 175 (1984).

    PubMed  CAS  Google Scholar 

  4. J. S. Beckman, R. L. Minor, Jr., C. W. White, J. E. Repine, G. M. Rosen, and B. A. Freeman, J. Biol. Chem. 263, 6884 (1988).

    PubMed  CAS  Google Scholar 

  5. F. F. Davis, A. Abuchowski, T. van Es, N. C. Palczuk, R. Chen, K. Savoca, and K. Wieder, in: Enzyme Engineering (G. B. Brown, G. Nanecke, and L. B. Wingard, Jr., eds.), Vol. 4, p. 169, Plenum Press, New York (1978).

    Chapter  Google Scholar 

  6. N. V. Katre, M. J. Knauf, and W. J. Laird, Proc. Natl. Acad. Sci. U.S.A. 84, 1487 (1987).

    Article  PubMed  CAS  Google Scholar 

  7. E. W. Merrill and E. W. Salzman, ASAIO J. 6, 60 (1983).

    CAS  Google Scholar 

  8. S. Nagaoka, Y. Mori, H. Takiuchi, K. Yokota, H. Tanzawa, and S. Nishiumi, Polym. Preprints 24, 67 (1983).

    CAS  Google Scholar 

  9. S. Nagaoka, H. Takiuchi, K. Yokota, Y. Mori, H. Tanzawa, and T. Kikuchi, Kobunshi Ronbunshu 39, 165 (1982).

    Article  CAS  Google Scholar 

  10. S. Nagaoka, Y. Mori, H. Takiuchi, K. Yokota, H. Tanzawa, and S. Nishiumi, in: Polymers as Biomaterials (S. W. Shalaby, A. S. Hoffman, B. D. Ratner, and T. A. Horbett, eds.), p. 361, Plenum Press, New York (1984).

    Chapter  Google Scholar 

  11. Y. Mori, S. Nagaoka, H. Takiuchi, T. Kikuchi, N. Noguchi, H. Tanzawa, and Y. Noishiki, Trans. Am. Soc. Artif. Intern. Organs 28, 459 (1982).

    PubMed  CAS  Google Scholar 

  12. J. Breen, D. Huis, J. de Bleijser, and J. C. Leyte, J. Chem. Soc, Faraday Trans. 184, 293 (1988).

    Google Scholar 

  13. G. N. Ling and R. C. Murphy, Physiol. Chem. Phys. 14, 209 (1982).

    PubMed  CAS  Google Scholar 

  14. V. D. Zinchenko, V. V. Mank, V. A. Moiseev, and F. D. Ovcharenko, Kolloidn. Zh. 38, 44 [Chem. Abstr. 84, 136208] (1976).

    CAS  Google Scholar 

  15. S. L. Hager and T. B. MacRury, J. Appl. Polym. Sci. 25, 1559 (1980).

    Article  CAS  Google Scholar 

  16. B. Bogdanov and M. Mihailov, J. Polym. Sci., Polym. Phys. Ed. 23, 2149 (1985).

    Article  CAS  Google Scholar 

  17. N. B. Graham, M. Zulfiqar, N. E. Nwachuku, and A. Rashid, Polymer 30, 528 (1989).

    Article  CAS  Google Scholar 

  18. T. de Vringer, J. G. H. Joosten, and H. E. Junginger, Colloid Polym. Sci. 264, 623 (1986).

    Article  Google Scholar 

  19. C. P. S. Tilcock and D. Fisher, Biochim. Biophys. Acta 688, 645 (1982).

    Article  PubMed  CAS  Google Scholar 

  20. R. Kjellander and E. Florin, J. Chem. Soc., Faraday Trans. 177, 2053 (1981).

    Google Scholar 

  21. Z. L. Zhang and G. N. Ling, Physiol. Chem. Phys. Med. NMR 15, 407 (1983).

    PubMed  CAS  Google Scholar 

  22. F. Franks, in: Water: A Comprehensive Treatise (F. Franks, ed.), Vol. 7, p. 215, Plenum Press, New York (1982).

    Google Scholar 

  23. J. H. Awbery, in: International Critical Tables (E. W. Washburn, ed.), Vol. 5, p. 95, McGraw-Hill, New York (1929).

    Google Scholar 

  24. G. N. Malcolm and J. S. Rowlinson, Tans. Faraday Soc. 53, 921 (1957).

    Article  CAS  Google Scholar 

  25. H. Vink, Eur. Polym. J. 7, 1411 (1971).

    Article  CAS  Google Scholar 

  26. V. Hlady, R. A. Van Wagenen, and J. D. Andrade, in: Surface and Interfacial Aspects of Biomedical Polymers (J. D. Andrade, ed.), Vol. 2, p. 81, Plenum Press, New York (1985).

    Google Scholar 

  27. K. Bergstrom, K. Holmberg, A. Safranj, A. S. Hoffman, M. J. Edgell, B. A. Hovanes, and J. M. Harris, “Reduction of Fibrinogen Adsorption on PEG-Coated Polystyrene Surfaces,” Biomaterials, in press.

    Google Scholar 

  28. D. H. Atha and K. C. Ingham, J. Biol. Chem. 256, 12108 (1981).

    PubMed  CAS  Google Scholar 

  29. A. Altmeyer, V.-H. Karl, and K. Ueberreiter, Makromol. Chem. 182, 3311 (1981).

    Article  CAS  Google Scholar 

  30. G. G. Hammes and P. B. Roberts, J. Am. Chem. Soc. 90, 7119 (1968).

    Article  CAS  Google Scholar 

  31. S. Saeki, N. Kuwahara, M. Nakata, and M. Koneko, Polymer 17, 685 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Antonsen, K.P., Hoffman, A.S. (1992). Water Structure of PEG Solutions by Differential Scanning Calorimetry Measurements. In: Harris, J.M. (eds) Poly(Ethylene Glycol) Chemistry. Topics in Applied Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0703-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0703-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0705-9

  • Online ISBN: 978-1-4899-0703-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics