Skip to main content

Introduction to Biotechnical and Biomedical Applications of Poly(Ethylene Glycol)

  • Chapter
Poly(Ethylene Glycol) Chemistry

Part of the book series: Topics in Applied Chemistry ((TAPP))

Abstract

At first glance, the polymer known as poly(ethylene glycol) or PEG appears to be a simple molecule. It is a linear or branched, neutral polyether, available in a variety of MWs, and soluble in water and most organic solvents. Despite its apparent simplicity,

$${HO - {{\left( {C{H_2}C{H_2}O} \right)}_n} - C{H_2}C{H_2}OH} \hfill \\ {poly(ethylene\,glycol)}$$

this molecule is the focus of much interest in the biotechnical and biomedical communities. Primarily this is because PEG is unusually effective at excluding other polymers from its presence when in an aqueous environment. This property translates into protein rejection, formation of two-phase systems with other polymers, nonimmunogenicity, and nonantigenicity. In addition, the polymer is nontoxic and does not harm active proteins or cells although it interacts with cell membranes. It is subject to ready chemical modification and attachment to other molecules and surfaces, and when attached to other molecules it has little effect on their chemistry but controls their solubility and increases their size. These properties, which are described in more detail below, have led to a variety of important biotechnical and biomedical applications, a summary of which is also presented below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Poison, G. M. Potgieter, J. E Largier, G. E. Mears, and E J. Joubert, Biochim. Biophys. Ada 82, 463 (1964).

    Article  Google Scholar 

  2. M. Zeppezauer and S. Brishammar, Biochim. Biophys. Acta 94, 581 (1965).

    Article  PubMed  CAS  Google Scholar 

  3. P W. Chun, M. Fried, and E. E Ellis, Anal. Biochem. 19, 481 (1967).

    Article  PubMed  CAS  Google Scholar 

  4. P-Ã…. Albertsson, Partition of Cell Particles and Macromolecules, 3rd ed., Wiley, New York (1986).

    Google Scholar 

  5. K. N. Kao, E. Constabel, M. R. Michayluck, and O. L. Gamborg, Planta 120, 215 (1974).

    Article  CAS  Google Scholar 

  6. Q. F. Ahkong, D. Fisher, W. Tampion, and J. A. Lucy, Nature 253, 194 (1975).

    Article  PubMed  CAS  Google Scholar 

  7. G. Pontecorvo, Somat. Cell Genet. 1, 397 (1975).

    Article  PubMed  CAS  Google Scholar 

  8. A. Abuchowski, T. van Es, N. C. Palczuk, and E. E. Davis, J. Biol. Chem. 252, 3578 (1977).

    PubMed  CAS  Google Scholar 

  9. Y. Mori, S. Nagaoka, H. Takiuchi, T. Kikuchi, N. Noguchi, H. Tanzawa, and Y. Noishiki, Trans. Am. Soc. Artif. Internal Organs 28, 459 (1982).

    CAS  Google Scholar 

  10. E E. Bailey, Jr. and J. V Koleske, Poly(Ethylene Oxide), Academic Press, New York (1976).

    Google Scholar 

  11. E E. Bailey, Jr. and J. V. Koleske, Alkylene Oxides and Their Polymers, Marcel Dekker, New York (1991).

    Google Scholar 

  12. J. M. Dust, Z.-H. Fang, and J. M. Harris, Macromolecules 23, 3742 (1990).

    Article  CAS  Google Scholar 

  13. J. M. Harris and M. G. Case, J. Org. Chem. 48, 5390 (1983).

    Article  CAS  Google Scholar 

  14. J. M. Harris, N. H. Hundley, T. G. Shannon, and E. C. Struck, J. Org. Chem. 47, 4789 (1982).

    Article  CAS  Google Scholar 

  15. J. M. Harris, N. H. Hundley, T. G. Shannon, and E. C. Struck, in: Crown Ethers and Phase Transfer Catalysis in Polymer Science (L. Mathias and C. E. Carreher, eds.), p. 371, Plenum Press, New York (1984).

    Chapter  Google Scholar 

  16. C. Starks and C. Liotta, Phase Transfer Catalysis, Academic Press, New York (1978).

    Google Scholar 

  17. S. Nagaoka, Y. Mori, H. Takiuchi, K. Yokota, H. Tanzawa, and S. Nishiumi, in: Polymers as Biomaterials (S. W. Shalaby, A. S. Hoffman, B. D. Ratner, and T. A. Horbett, eds.), p. 361, Plenum Press, New York (1985).

    Google Scholar 

  18. K. Hellsing, J. Chromatogr. 36, 270 (1968).

    Google Scholar 

  19. A. P Ryle, Nature 206, 1256 (1965).

    Article  PubMed  CAS  Google Scholar 

  20. D. E. Brooks, K. A. Sharp, and D. Fisher, in: Partitioning in Aqueous Two-Phase Systems (H. Walter, D. E. Brooks, and D. Fisher, eds.), Chap. 2, Academic Press, New York (1985).

    Google Scholar 

  21. A. Gustafsson, H. Wennerstrom, and F Tjerneld, Polymer 27, 1768 (1986).

    Article  CAS  Google Scholar 

  22. J. N. Baskir, T. A. Hatton, and U. W. Suter, J. Phys. Chem. 93, 2111 (1989).

    Article  CAS  Google Scholar 

  23. C. A. Haynes, R. A. Beynon, R. S. King, H. W. Blanch, and J. M. Prausnitz, J. Phys. Chem. 93, 5612 (1989).

    Article  CAS  Google Scholar 

  24. J. M. Harris, J. Macromol. Sci. Rev. Macromol. Chem. Phys. C25, 325 (1985).

    Article  CAS  Google Scholar 

  25. K. Yoshinaga, S. G. Shafer, and J. M. Harris, J. Bioact. Compatible Polym. 2, 49 (1987).

    Article  CAS  Google Scholar 

  26. L. J. Karr, P A. Harris, D. M. Donnely, and J. M. Harris, unpublished results.

    Google Scholar 

  27. L. J. Karr, J. M. Van Alstine, R. S. Snyder, S. G. Shafer, and J. M. Harris, J. Chromatogr. 442, 219 (1988).

    Article  PubMed  CAS  Google Scholar 

  28. K. Bergström, K. Holmberg, A. Safranj, A. S. Hoffman, M. J. Edgell, B. A. Hovanes, and J. M. Harris, J. Biomed. Mater. Res. (in press).

    Google Scholar 

  29. D. A. Herold, K. Keil, and D. E. Bruns, Biochem. Pharmacol. 38, 73 (1989).

    Article  PubMed  CAS  Google Scholar 

  30. H. F Smyth, Jr., C. P. Carpenter, and C. S. Weil, J. Am. Pharm. Assoc. 39, 349 (1950).

    CAS  Google Scholar 

  31. A. J. Johnson, M. H. Darpatkin, and J. Newman, Br. J. Hematol. 21, 21 (1971).

    Article  CAS  Google Scholar 

  32. C. B. Shaffer and F. H. Critchfield, J. Am. Pharm. Assoc. 36, 152 (1947).

    CAS  Google Scholar 

  33. A. Abuchowski and F. F. Davis, in: Enzymes as Drugs (J. Holsenberg and J. Roberts, eds.), p. 367, Wiley, New York (1981).

    Google Scholar 

  34. A. W. Richter and E. Ã…kerblom, Int. Arch. Allergy Appl. Immunol. 70, 124 (1983).

    Article  PubMed  CAS  Google Scholar 

  35. A. W. Richter and E. Ã…kerblom, Int. Arch. Allergy Appl. Immunol. 74, 36 (1984).

    Article  PubMed  CAS  Google Scholar 

  36. I. N. Topchieva, Russ. Chem. Rev. 49, 494 (1980).

    Article  CAS  Google Scholar 

  37. R A. Harris, F. Tjerneld, A. A. Kozlowski, and J. M. Harris, unpublished results.

    Google Scholar 

  38. S.-S. Suh, M. E. Van Dam, G. E. Wuenschell, S. Plunkett, and F H. Arnold, in: Protein Purification (M. R. Ladisch, R. C. Willson, C. C. Painton, and S. E. Builder, eds.), Chap. 10, Am. Chem. Soc. (1990).

    Google Scholar 

  39. R. Heusch, Biotech-Forum 31 (1986).

    Google Scholar 

  40. W. Muller, Eur. J. Biochem. 155, 213 (1986).

    Article  PubMed  CAS  Google Scholar 

  41. J. S. Beekman, R. L. Minor, C. W. White, J. E. Repine, G. M. Rosen, and B. A. Freeman, J. Biol. Chem. 263, 6884 (1988).

    Google Scholar 

  42. A. Abuchowski, G. M. Kazo, C. R. Verhoest, Jr., T. Van Es, D. Kafkewitz, M. L. Nucci, A. T. Viau, and E. E. Davis, Cancer Biochem. Biophys. 7, 175 (1984).

    PubMed  CAS  Google Scholar 

  43. M. S. Herschfield, R. H. Buckley, M. L. Greenberg, A. L. Melton, R. Schiff, C. Hatem, J. Kurtzberg, M. L. Markert, R. H. Kobayashi, A. L. Kobayashi, and A. Abuchowski, N. Engl. J. Med. 316, 589 (1987).

    Article  Google Scholar 

  44. P. S. Norman, J. B. Alexander, T. P. King, P. S. Crettcos, A. K. Sobotka, and L. M. Lichtenstein, J. Allergy Clin. Immunol. 69, 99 (1982).

    Article  Google Scholar 

  45. S. Zalipsky, C. Gilon, and A. Zilka, Eur. Polym. J. 19, 1177 (1983).

    Article  CAS  Google Scholar 

  46. N. V. Katre, M. J. Knauf, and W. J. Laird, Proc. Natl. Acad. Sci. U.S.A. 84, 1487 (1987).

    Article  PubMed  CAS  Google Scholar 

  47. Y. Inada, A. Matsushima, Y. Kodera, and H. Nishimura, J. Bioact. Compt. Polym. 5, 343 (1990).

    Article  CAS  Google Scholar 

  48. J. Senior, C. Delgado, D. Fisher, C. Tilcock, and G. Gregoriadis, Biochim. Biophys. Acta 1062, 77 (1991).

    Article  PubMed  CAS  Google Scholar 

  49. A. L. Klibanov, K. Maruyama, A. M. Beckerleg, V. P Torchilin, and L. Huang, Biochim. Biophys. Acta 1062, 142 (1991).

    Article  PubMed  CAS  Google Scholar 

  50. G. M. Bonora, C. L. Scremin, F. P. Colonna, and A. Garbesi, Nucleic Acids Res. 18, 3155 (1990).

    Article  PubMed  CAS  Google Scholar 

  51. B. J. Herren, S. G. Shafer, J. M. Van Alstine, J. M. Harris, and R. S. Snyder, J. Colloid Interface Sci. 51, 46 (1987).

    Article  Google Scholar 

  52. J. M. Van Alstine, J. M. Harris, S. Shafer, R. S. Snyder, and B. Herren, US Patent, 4,690,749 (1987).

    Google Scholar 

  53. G. J. M. Bruin, J. P Chang, R. H. Kuhlman, K. Zegers, J. C. Kraak, and H. Poppe, J. Chromatogr. 21, 385 (1989).

    Google Scholar 

  54. M. Yamazaki and T. Ito, Biochemistry 29, 1309 (1990).

    Article  PubMed  CAS  Google Scholar 

  55. L. T. Boni, J. S. Hah, S. W. Hui, P. Mukherjee, J. T. Ho, and C. Y. Jung, Biochem. Biophys. Acta 775, 409 (1984).

    Article  PubMed  CAS  Google Scholar 

  56. P. Caliceti, O. Schiavon, A. Mocali, and E M. Veronese, Il Farmaco 44, 711 (1989).

    PubMed  CAS  Google Scholar 

  57. G. D. Bittner, M. L. Ballinger, and M. A. Raymond, Brain Res. 367, 351 (1986).

    Article  PubMed  CAS  Google Scholar 

  58. T. L. Krause and G. D. Bittner, Proc. Natl. Acad. Sci. U.S.A. 87, 1471 (1990).

    Article  PubMed  CAS  Google Scholar 

  59. N. Geron and H. Meiri, Biochim. Biophys. Acta 819, 258 (1985).

    Article  PubMed  CAS  Google Scholar 

  60. G. L. Clifton, B. G. Lyeth, L. W. Jenkins, W. C. Taft, R. J. DeLorenzo, and R. L. Hayes, J. Neurotrauma 6, 71 (1989).

    Article  PubMed  CAS  Google Scholar 

  61. M. Bundgaard and H. F. Cserr, Brain Res. 206, 71 (1981).

    Article  PubMed  CAS  Google Scholar 

  62. M. K. Spigelman, R. A. Zappulla, J. Johnson, S. J. Goldsmith, L. I. Malis, and J. F. Holland, J. Neurosurg. 61, 674 (1984).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Harris, J.M. (1992). Introduction to Biotechnical and Biomedical Applications of Poly(Ethylene Glycol). In: Harris, J.M. (eds) Poly(Ethylene Glycol) Chemistry. Topics in Applied Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0703-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0703-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0705-9

  • Online ISBN: 978-1-4899-0703-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics