Skip to main content

Lipids of Pseudomonas

  • Chapter
Pseudomonas

Part of the book series: Biotechnology Handbooks ((BTHA,volume 10))

Abstract

Lipids are generally defined as fatty acids, alcohols, hydrocarbons, and compounds containing these substances which are soluble in organic solvents. The lipids most commonly found in bacteria are phospholipids, glycolipids, ornithine amide lipids, fatty acids, and lipopolysaccharides. Phospholipids generally constitute ~40% of the cytoplasmic membrane of bacteria and up to 25% of the outer membrane (mainly localized in the inner leaflet). A generalized structure for a Pseudomonas membrane is shown in Figure 1. It has been found that the predominant phospholipid in both the inner and outer membranes in most Pseudomonas species is phosphatidylethanolamine (Wilkinson, 1988). Ornithine amide lipids are localized in the outer membrane. Lipopolysaccharides are located in the outer leaflet of the outer membrane of gram-negative bacteria. Glycolipids are generally found as storage lipids located in intracellular inclusions but can also be found in the membranes of P. diminuta and P. vesicularis and gram-positive bacteria (Wilkinson, 1988). Carotenoids and hydrocarbons may be found in the cytoplasmic membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, A. J., and Dawes, E. A., 1990, Occurence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkoanates, Microbiol. Rev. 54: 450–472.

    CAS  PubMed  Google Scholar 

  • Bhakoo, M., and Herbert, R. A., 1989, Fatty acid and phospholipid composition of five psychrotrophic Pseudomonas species grown at different temperatures. Arch. Microbiol. 126: 51–5.

    Article  Google Scholar 

  • Bouzar, H., Jones, J. B., Stall, R. E., Hodge, N. C, Minsavage, G. V., Benedict, A. A., and Alverez, A. M., 1994, Physiological, chemical, serological, and pathogenic analysis of a worldwide collection of Xanthomonas campestris pv. vesicatoria strains, Phytopathology 84: 663–671.

    Article  CAS  Google Scholar 

  • Boulton, C. A., and Ratledge, C., 1987, Biosynthesis of lipid precursors to surfactant production, in: Biosurfactants and Biotechnology (N. Kosaric, W. L. Cairns, and N. C. C. Gray, eds.), M. Dekker, New York, pp. 47–87.

    Google Scholar 

  • Brint, J. M., and Ohman, D., 1995, Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR and RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family, J. Bacteriol. 177: 7155–7163.

    CAS  PubMed  Google Scholar 

  • Burger, M. M., Glaser, L., and Burton, R. M., 1963, The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa, J. Biol. Chem. 238: 2595–2604.

    CAS  PubMed  Google Scholar 

  • de Andres, C., Espuny, M. J., Robert, M., Mercade, M. E., Manresa, A., and Guinea, J., 1991, Cellular lipid accumulation by Pseudomonas aeruginosa 44T1, Appl. Microbiol. Biotechnol. 35: 813–816.

    Article  Google Scholar 

  • Dees, S. B., Hollis, D. G., Weaver, R. E., and Moss, C. W., 1983, Cellular fatty acid composition of Pseudomonas marginata and closely related bacteria, J. Clin. Microbiol. 18: 1073–1078.

    CAS  PubMed  Google Scholar 

  • Denny, T. P., 1988, Phenotypic diversity in Pseudomonas syringae pv. tomato, J. Gen. Microbiol. 134: 1939–1948.

    Google Scholar 

  • de Smet, M. J., Eggink, G., Witholt, B., Kingma, J., and Wynberg, H., 1983, Characterization of cellular inclusions formed by Pseudomonas oleovorans during growth on octaine, J. Bacteriol. 154: 870–878.

    PubMed  Google Scholar 

  • de Waard, P., van der Wal, H., Huijberts, G. N. M., and Eggink, G., 1993, Heteronuclear NMR analysis of unsaturated fatty acids in poly(3-hydroxyalkoanates): Study of betaoxidation in Pseudomonas putida. J. Biol. Chem. 268: 315–319.

    PubMed  Google Scholar 

  • Edwards, R. A., Dainty, R. H., and Hibbard, C. M., 1987, Volatile compounds produced by meat pseudomonads and related reference strains during growth on beef stored in air at chill temperatures, J. Appl. Bacteriol. 62: 403–412.

    Article  CAS  PubMed  Google Scholar 

  • Finnerty, W. R., 1994, Biosurfactants in environmental biotechnology. Curr. Op. Biotech. 5: 291–295.

    Article  CAS  Google Scholar 

  • Franzmann, P. D., and Tindall, B. J., 1990, A chemotaxonomic study of members of the family Halomonadaceae, Syst. Appl. Microbiol. 13: 142–147.

    Article  CAS  Google Scholar 

  • Galbraith, L., and Wilkinson, S. G., 1991, Polar lipids and fatty acids of Pseudomonas carophylli, Pseudomonas gladioli, and Pseudomonas pickettii, J. Gen. Microbiol. 137: 197–202.

    Article  CAS  Google Scholar 

  • Guckert, J. B., Ringelberg, D. B., and White, D. C., 1987, Biosynthesis of trans fatty acids from acetate inthe bacterium Pseudomonas atlantica, Can. J. Microbiol. 33: 748–754.

    Article  CAS  Google Scholar 

  • Hastie, A. T., Hingley, S. T., Higgins, M. L., Kueppers, F., and Shryok T., 1986, Rhamnolipid from Pseudomonas aeruginosa inactivates mammaliam trachéal ciliary axonemes, Cell. Motil. Cytoskeleton 6: 502–509.

    Article  CAS  PubMed  Google Scholar 

  • Heipieper, H.-J., Deifenbach, R., and Keweloh, H., 1992, Conversion of cis unsaturated ratty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas P8 from substrate toxicity, Appl. Environ. Microbiol. 58: 1847–1852.

    CAS  PubMed  Google Scholar 

  • Heipieper, H.-J., and de Bont, J. A. M., 1994, Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes, Appl. Environ. Microbiol. 60: 4440–4444.

    CAS  PubMed  Google Scholar 

  • Huijberts, G. N. M., DeRijk, T. C, de Waard, P., and Eggink G., 1994, 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkoanate) synthesis, J. Bacteriol. 176: 1661–1666.

    CAS  PubMed  Google Scholar 

  • Huijberts, G. N. M., Eggink, G., de Waard, P., Huisman, G. W, and Witholt, B., 1992, Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkoa-nates) consisting of saturated and unsaturated monomers, Appl. Environ. Microbiol. 58: 536–544.

    CAS  PubMed  Google Scholar 

  • Jacques, N. A., 1981, Studies on cyclopropane fatty acid synthesis: Correlation between the state of reduction of respiratory components and the accumulation of méthylene hexadecanoic acid by Pseudomonas denitrificans, Biochim. Biophys. Acta 665: 270–282.

    Article  CAS  PubMed  Google Scholar 

  • Jacques, N. A., and Hunt, A. L., 1989, Studies on cyclopropane fatty acid synthesis. Effect of carbon source and oxygen tension on cyclopropane fatty acid synthetase activity in Pseudomonas denitrificans, Biochim. Biphys. Acta 619: 453–470.

    Google Scholar 

  • Janse, J. D., 1991, infra and intraspecific classification of Pseudomonas solanacearum strains, using whole-cell fatty acid analysis, Syst. Appl. Microbiol. 14: 335–345.

    Article  Google Scholar 

  • Janse, J. D., 1991, Pathovar discrimination within Psendomonas syringae subsp. savastanoi using whole cell fatty acids and pathogenicity as criteria, Syst. Appl. Microbiol. 14: 79–84.

    Article  Google Scholar 

  • Karunaratne, D. N., Richards, J. C, and Hancock, R. E. W., 1992, Characterization of Lipid A from Pseudomonas aeruginosa O-antigenic B-band lipopolysaccharide by 1D and 2D NMR and mass spectral analysis, Arch. Biochem. Biophys. 299: 268–376.

    Article  Google Scholar 

  • Kenward, M. A., Alcock, S. R., and Brown, M. R., 1980, Effects of hyperbaríc oxygen on the growth and properties of Pseudomonas aeruginosa, Microbios 28: 47–60.

    CAS  PubMed  Google Scholar 

  • Kharami, A., Bibi, Z., Neilson, H., Holby, N., and Doring, G., 1989, Effect of Pseudomonas aeruginosa rhamnolipid on human neutrophil and monocyte function, APMIS 97: 1–68–1072.

    Article  Google Scholar 

  • Kieft, T. L., Ringelberg, D. B., and White D. C, 1994, Changes in ester-linked fatty acid profiles of subsurface bacteria during starvation and dessication in a porous medium, Appl. Environ. Microbiol. 60: 3292–3299.

    CAS  PubMed  Google Scholar 

  • Kochi, M., Weiss, D. W, Pugh, L. H., and Groupe, V., 1951, Viscosin, a new antibiotic, Bact. Proc. 29-30.

    Google Scholar 

  • Kropinski, A. M. B., Lewis, V., and Berry, D., 1987, Effect of growth temperature on the lipids, outer membrane proteins, and lipopolysaccharides of Pseudomonas aeruginosa PAO, J. Bacteriol. 169: 1960–1966.

    CAS  PubMed  Google Scholar 

  • Latifi, A., Winson, M. D., Foglino, M., Bycroft, B. W, Stewart, G. S., Lazdunski, A., and Williams, P., 1995, Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1, Mol. Microbiol. 17: 333–343.

    Article  CAS  PubMed  Google Scholar 

  • Laycock, M. V., Hildebrand, P. D., Thibault, P., Walter, J. A., and Wright, J. L. C, 1991, Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens, J. Agri. Food Chem. 39: 483–489.

    Article  CAS  Google Scholar 

  • Lee, E. Y., Jendrossek, D., Schirmer, A., Choi, C. Y., and Steinbuchel, A., 1995, Biosynthesis of copolyesters consisting of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids from 1,3-butanediol or from 3-hydroxybutyrate by Pseudomonas sp. A33, Appl. Microbiol. Biotechnol. 42: 901–909.

    Article  CAS  Google Scholar 

  • Mayer, H., Krauss, J. H., Urbanik-Sypniewska, T., Puvanesarajah, V., Stacey, G., and Auling, G., 1989, Lipid A with 2,3-diamino-2,3-dideoxy-glucose in lipopolysaccharides from slow-growing members of Rhizobiaceae and “Pseudomonas carboxydovarans,” Arch. Microbiol. 151: 111–116.

    Article  CAS  PubMed  Google Scholar 

  • Michea-Hamzehpour, M., Furet, Y. X., and Pechere, J.-C, 1991, Role of protein D2 and lipopolysaccharide in diffusion of quinolones through the outer membrane of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 35(10): 2091–2097.

    Article  CAS  PubMed  Google Scholar 

  • Minnikin, D. E., and Abdolrahimzadeh, H., 1974, The replacement of phosphatidylethanolamine and acidic phospholipids by an ornithine-amide lipid and a minor phosphorus-free lipid in Pseudomonas fluorescens NCMB 129, FEBS Lett. 43: 257–260.

    Article  CAS  PubMed  Google Scholar 

  • Monteoliva-Sanchez, M., and Ramos-Cormenzana, A., 1987, Cellular fatty acid composition in moderately halophilic gram-negative rods, J. Appl. Bacteriol. 62: 361–366.

    Article  CAS  Google Scholar 

  • Neu, T. R., Hartner, T., and Poralla, K., 1990, Surface active properties of viscosin: A peptidolipid antibiotic, Appl. Microbiol. Biotechnol. 32: 518–520.

    CAS  Google Scholar 

  • Norris, M. J., Rogers, D. T., and Russell, A. D., 1985, Cell envelope composition and sensitivity of Proteus Mirabilus, Pseudomonas aeruginosa, and Serratia marcescens to polymixin and other antibacterial agents, Lett. Appl. Microbiol. 1: 3–6.

    Article  CAS  Google Scholar 

  • Ochsner, U. A., and Reiser, J., 1995, Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA 92: 6424–6428.

    Article  CAS  PubMed  Google Scholar 

  • Passador, L., Cook, J. M., Gambello, M. J., Rust, L., and Iglewski, B. H., 1993, Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication, Science 260: 1127–1130.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, J. P., Passador, L., Iglewski, B. H., and Greenberg, E. P., 1995, A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA 92: 1490–1494.

    Article  CAS  PubMed  Google Scholar 

  • Pinkart, H. C, Wolfram, J., Rogers, R., and White D. C, 1995, Cell envelope changes in solvent-tolerant and solvent-sensitive Pseudomonas putida strains following exposure to o-xylene, Appl. Environ. Microbiol. 62: 1129–1132.

    Google Scholar 

  • Preusting, H., Kingma, J., Huisman, G. W, Steinbuchel, A., and Witholt, B., 1992, Formation of polyester blends by a recombinant strain of Pseudomonas oleovorans: Different poly(3-hydroxyalkoantes) are stored in separate granules, J. Environ. Polym. Degradation 1: 11–21.

    Article  Google Scholar 

  • Rendell, N. B., Taylor, G. W, Somerville, M., Todd, H., Wilson, R., and Cole, P. J., 1990, Characterization of Pseudomonas rhamnolipids, Biochim. Biophys. Acta 1045: 189–193.

    Article  CAS  PubMed  Google Scholar 

  • Rosello-Mora, R. A., Lalucat, J., Dott, W., and Kampfer, P., 1994, Biochemical and chemotaxonomic characterization of Pseudomonas stutzen genomovars, J. Appl. Bacteriol. 76: 226–233.

    Article  Google Scholar 

  • Roussel, J. and Asselineau, J., 1980, Fatty acid composition of the lipids of Pseudomonas mildenbergii: Presence of a fatty acid containing two conjugated double bonds, Biochim. Biophys. Acta 619: 689–692.

    Article  CAS  PubMed  Google Scholar 

  • Segers, P., Vancanneyt, M., Pot, B., Torck, U., Hoste, B., Dewettinck, D., Falsen, E., Kersters, K., and de Vos, P., 1994, Classification of Pseudomonas diminuta (Leifson and High 1954) and Pseudomonas vesicularis (Busing, Doll and Freytag 1953) in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively, Int. J. Syst. Bacteriol. 44: 499–510.

    Article  CAS  PubMed  Google Scholar 

  • Sikkema, J., Weber, F. J., Heipieper, H. J., and de Bont, J. A. M., 1994, Cellular toxicity of lipophilic compounds: Mechanisms, implications, and adaptations, Biocatalysis 10: 113–122.

    Article  CAS  Google Scholar 

  • Sikkema, J., de Bont, J. A. M., and Poolman, B., 1995, Mechanisms of membrane toxicity of hydrocarbons, Microbiol. Rev. 59: 201–222.

    CAS  PubMed  Google Scholar 

  • Somerville, M., Taylor, G. W, Watson, D., Rendell, N. B., Rutman, A., Todd, H., Davies, J. R., Wilson, R., Cole, P., and Richardson, P. S., 1992, Release of mucus glycoconjugates by Pseudomonas aeruginosa rhamnolipid into feline trachea in vivo and human bronchus in vitro, Am. J. Respir. Cell. Mol. Biol. 6: 116–122.

    Article  CAS  PubMed  Google Scholar 

  • Stead, D. E., 1992, Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles, Int. J. Syst. Bacteriol. 42: 281–295.

    Article  CAS  Google Scholar 

  • Steinbuchel, A., Hustede, E., Leibergesell, M., Pieper, U., Timm, A., and Valentin, H., 1992, Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria, FEMS Microbiol. Rev. 103: 217–230.

    Google Scholar 

  • Syldatk, C, Lang, S., Matulovik, U., and Wagner, F., 1985, Production of four interfacial active rhamnolipids from N-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874, Z. Naturforsch. 40: 61–67.

    CAS  Google Scholar 

  • Takeuchi, M., Sawada, W, Oyaizu, H., and Yolota, A., 1994, Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria, Int. J. Syst. Bacteriol. 44: 308–314.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, C. J., Carrick, B. J., Galbraith, L., and Wilkinson, S. G., 1993, Polar lipids of Pseudomonas diazotrophicus, FEMS Microbiol. Lett. 106: 65–70.

    Article  CAS  Google Scholar 

  • Timm, A., and Steinbuchel, A., 1992, Cloning and molecular analysis of the poly(3-hy-droxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1, FEBS Eur. J. Biochem. 209: 15–30.

    Article  CAS  Google Scholar 

  • Van Dyke, M. W., Couture, P., Brauer, M., Lee, H., and Trevors, J. T., 1993, Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: Structural characterization and their use in removing hydrophobic compounds from soil, Can. J. Microbiol. 39: 1071–1078.

    Article  PubMed  Google Scholar 

  • Wada, M., Fukunaga, N., and Sasaki, S., 1987, Effect of growth temperature on phospholipid and fatty acid composition in a phychrotrophic bacterium, Pseudomonas sp. strain E-3, Plant Cell. Physiol. 28: 1209–1217.

    CAS  Google Scholar 

  • Weber, F. J., Isken, S., and de Bont, J. A. M., 1994, Cis/trans isomerization of fatty acids as a defense mechanism of Pseudomonas putida strains to toxic concentrations of toluene, Microbiology 140: 2013–2017.

    Article  CAS  PubMed  Google Scholar 

  • White, D. C, Sutton, S. D., and Ringleberg, D. B., 1996, The genus Sphingomonas: Physiology and ecology, Current Opinion in Biotechnology, July.

    Google Scholar 

  • Wilkinson, S. G., 1988, Gram-negative bacteria, in: Microbial Lipids (C. Ratledge and S. G. Wilkinson eds.), Academic Press, San Diego, Vol. 1, pp. 333–348.

    Google Scholar 

  • Wilkinson, S. G., Galbraith, L., and Lightfoot, G. A., 1973, Cells walls, lipids, and lipopolysaccharides of Pseudomonas species, Eur. J. Biochem. 33: 158–174.

    Article  CAS  PubMed  Google Scholar 

  • Winson M. K., Camara, M., Latifi, A., Foglino, M., Chabra, S. R., Daykin, M., Bally, M., Chapon, V, Salmond, G. P., and Bycroft, B. W, 1995, Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa, Proc. Natl. Acad. Sci. USA 92: 9427–9431.

    Article  CAS  PubMed  Google Scholar 

  • Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T., and Yamamoto, Y, 1990, Proposals of Sphingomonas paucimobilis gen. nov. and comb., nov. Sphingomonas parapaucimobilis sp. Nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb, nov., and two genospecies of the genus Sphingomonas, Microbiol. Immunol. 34: 99–119.

    CAS  PubMed  Google Scholar 

  • Yabuuchi, E., Kosako, Y., Arakawa, M., Hotta, H., and Yano, I., 1992, Identification of Oklahoma isolate as a strain of Pseudomonas pseudomallei, Microbiol. Immunol. 36: 1239–1249.

    CAS  PubMed  Google Scholar 

  • Yabuuchi, E., Kosaka, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, H., Ezaki, T., and Arakawa, M., 1994, Proposal of Burkholderia gen. nov. and transfer of seven species of the Pseudomonas hoimology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb, nov., Microbiol. Immunol. 36: 1251–1275.

    Google Scholar 

  • Zhang, Y, and Miller, R. M., 1992, Enhanced octadecane dispersion and biodégradation by a Pseudomonas rhamnolipid (biosurfactant), Appl. Env. Microbiol. 58: 3276–3282.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pinkart, H.C., White, D.C. (1998). Lipids of Pseudomonas . In: Montie, T.C. (eds) Pseudomonas. Biotechnology Handbooks, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0120-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0120-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0122-4

  • Online ISBN: 978-1-4899-0120-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics