Skip to main content

The Photon Wave Function

  • Conference paper
Coherence and Quantum Optics VII

Abstract

Quantization of the electromagnetic field is traditionally introduced at the level of second quantization: the classical field variables are replaced by field operators. I believe that the reasons why a first-quantized theory of photons has never been fully developed are mainly historical. Had Dirac discovered his relativistic wave equation [1] prior to his quantization of the electromagnetic field [2], he would have noticed and most probably further explored a great similarity between the wave equation for the electron (or even better for the neutrino) and the Maxwell equations. As it happened, this similarity was noticed later (for the first time apparently by Majorana [3]) and played no role in the development of the quantum theory of electromagnetism because the quantized electromagnetic field has been introduced from the very beginning and accounted for all quantum properties electromagnetic radiation. Subsequently quantum electrodynamics has become so successful in explaining with utmost accuracy all experiments within its range of applicability that there was no need to search for an alternative formulation that would employ the concept of the photon wave function. Considering our trust in quantum electrodynamics and our familiarity with its formal apparatus one may even ask if there is any justification at all for, what it essentially amounts to, a reconstruction of the notion of the photon function from QED, only to face a not so familiar object whose properties are yet to be uncovered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. A. M. Dirac, Proc. Roy. Soc.(London)A117, 610 (1928); A118, 351 (1928).

    MATH  Google Scholar 

  2. P. A. M. Dirac, Proc. Roy. Soc.(London)A114, 243 (1927).

    Google Scholar 

  3. E. Majorana (unpublished notes), quoted after R. Miguani, E. Bec. mi, and M. Baldo, Lett.Nuovo Cime ito 11, 568 (1974).

    Google Scholar 

  4. G. Wentzel, Quantum Theory of Fields, lnterscience, New York 1949.

    Google Scholar 

  5. R. London, The Quantum Theory of Light, Clarendon, Oxford 1973.

    Google Scholar 

  6. W. H. Louisell, Quantum Theory of Radiation, Wiley, New York 1990.

    MATH  Google Scholar 

  7. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms, Wiley, New York 1989.

    Google Scholar 

  8. I. Bialynicki-Birula and Z. Bialynicka-Birula, Quantum Electrodynamics, Pergamon, Oxford 1976.

    Google Scholar 

  9. P. A. M. Dirac, The Principles of Quantum Theory, Clarendon Press, Oxford 1958.

    Google Scholar 

  10. G. Baym, Lectures on Quantum Mechanics, Benjamin, Reading 1969.

    MATH  Google Scholar 

  11. II. J. Lipkin, Quantum Mechanics, North-Holland, Amsterdam 1973.

    Google Scholar 

  12. C. Cohen-’Fannoudji, B. Din, and F. Laboë, Quantum Mechanics, Vol.!, Wiley, New York 1977.

    Google Scholar 

  13. H. A. Nramers, Quantentheorie des Elektrons und der.5’trahlungin Hand-und.1ahrbuch der Chemischen Physik, Eucken-Wolf, Leipzig, 1938 (English translation Quantum Mechanics, North-Volland, Amsterdam 1957 ).

    Google Scholar 

  14. D. Bohm, Quantum Theory, Constable, London 1954.

    Google Scholar 

  15. E. A. Power, Introductory Quantum Electrodynamics, Longmans, London 1964.

    MATH  Google Scholar 

  16. L. Silberstein, Ann. d. Phys.22,579 (1907); 24, 783 (1907). After publishing his first paper Silberstein discovered that the complex form of Maxwell equations has been already known to Riemann (Die partiellen Differential-Gleichungen der mathematische Physik, Lectures by B. Riemann edited by H. Weber vol. 2, Vieweg, Braunschweig 1901 ).

    Google Scholar 

  17. H. Bateman, The Mathematical Analysis of Electrical and Optical Wave Motion on the Basis of Maxwell’s Equations, Cambridge, 1915 (reprinted by Dover, New York 1955 ).

    Google Scholar 

  18. I. Bialynicki-Birula, Acta Phys. Polon. A 86, 97 (1994).

    Google Scholar 

  19. L. D. Landau and R. Peierls, Z. Phys. 62, 188 (1930).

    Article  Google Scholar 

  20. R. J. Cook, Phys. Rev. A25, 2164 (1982); 26, 2754 (1982).

    Google Scholar 

  21. W. Pauli, Prinzipien der Quantentheorie, Handbuch der Physik, Vol.24, Springer, Berlin, 1933, (English translation: General Principles of Quantum Mechanics, Springer, Berlin, 1980 ).

    Google Scholar 

  22. H. Weyl, Z. Phys. 56, 330 (1929).

    Article  MATH  Google Scholar 

  23. R. Penrose and W. Rindler, Spinors and Space-Time,Cambridge University Press, Cambridge 1984, Vol.I, Ch. 5.

    Google Scholar 

  24. C. Itzykson and J.-B. Zuber, Quantum Field Theory, McGraw-Hill, New York 1980, p. 50.

    Google Scholar 

  25. A. Messiah, Quantum Mechanics, North-Holland, Amsterdam 1962.

    MATH  Google Scholar 

  26. L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, Addison-Wesley, Reading 1981.

    MATH  Google Scholar 

  27. A. Ashtekar, private communication.

    Google Scholar 

  28. A. Ashtekar and A.Magnon, Proc. Roy. Soc. A346, 375 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Ashtekar and A.Magnon, Gen. Rel. Gray. 12, 205 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  30. V. Bargmann and E. P. Wigner, Proc. Nat. Acad. Sci. USA 34, 211 (1948).

    Article  MathSciNet  MATH  Google Scholar 

  31. L. Gross, J. Math. Phys. 5, 687 (1964).

    Article  MATH  Google Scholar 

  32. G. Kaiser, A Friendly Guide to WaveletsBirkhäuser, Boston 1994.

    Google Scholar 

  33. J. D. Jackson, Classical Electrodynamics, Wiley, New York 1975.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this paper

Cite this paper

Bialynicki-Birula, I. (1996). The Photon Wave Function. In: Eberly, J.H., Mandel, L., Wolf, E. (eds) Coherence and Quantum Optics VII. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9742-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9742-8_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9744-2

  • Online ISBN: 978-1-4757-9742-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics