Skip to main content

Membrane-Membrane Interactions via Intermediates in Lamellar-to-Inverted Hexagonal Phase Transitions

  • Chapter
Cell Fusion

Abstract

Recent theoretical work (Siegel, 1984, 1986a-c)shows that vesicles whose lipids can undergo the Lα/HII(lamellar-to-inverted hexagonal) phase transition should be especially susceptible to three membrane-membrane interactions: fusion, aggregation-induced vesicle leakage, and intervesicular lipid exchange. This chapter describes this model as well as experimental results derived from relevant systems. The model shows that in HII-forming systems the relative rates of the three membrane-membrane interactions may be determined by the lipid-phase behavior and the dynamics of the Lα/HIIphase transition, i.e., the rate at which A. given lipid system can execute the Lα/HIIphase transition under given conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, A. D., Sen, A., and Yeagle, P. L., 1984, The effect of calcium on the bilayer stability of lipids from bovine rod outer segment disk membranes, Biochim. Biophys. Acta 771:28–34.

    Article  PubMed  CAS  Google Scholar 

  • Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, J. D., 1983, Molecular Biology of the Cell, Garland, New York.

    Google Scholar 

  • Bally, M. B., Tilcock, C. P. S., Hope, M. J., and Cullis, P. R., 1983, Polymorphism of phosphatidylethanolamine-phosphatidylserine model systems: Influence of cholesterol and Mg2+on Ca2+-triggered bilayer to hexagonal (HII) transitions, Can. J. Biochem. Cell Biol 61:346–352.

    Article  PubMed  CAS  Google Scholar 

  • Bearer, E. L., Düzgünes, N., Friend, D. S., and Papahadjopoulos, D., 1982, Fusion of phospholipid vesicles arrested by quick-freezing: The question of lipidic particles as intermediates in membrane fusion, Biochim. Biophys. Acta 693:93–98.

    Article  PubMed  CAS  Google Scholar 

  • Bentz, J., Ellens, H., Lai, M. Z., and Szoka, F. C., 1985, On the correlation between HIIphase and contact-induced destabilization of membranes, Proc. Natl. Acad. Sci. USA.82:5742–5745.

    Article  PubMed  CAS  Google Scholar 

  • Bentz, J., Ellens, H., Szoka, F. C., Oliver, J., and Siegel, D., 1986, Membrane fusion, isotropic intermediates and the La/HIIphase transition, Biophys. J.49:17a.

    Google Scholar 

  • Boni, L. T., and Hui, S. W., 1983, Polymorphic phase behaviour of dilinoleoylphosphatidyl-ethanolamine and palmitoyloleoylphosphatidylcholine mixtures: Structural changes between hexagonal, cubic, and bilayer phases, Biochim. Biophys. Acta 731:177–185.

    Article  PubMed  CAS  Google Scholar 

  • Borovjagin, V. L., Veraga, J. A., and Macintosh, T. J., 1982, Morphology of intermediate stages of the lamellar to hexagonal lipid transition,J. Membrane Biol.69:199–212.

    Article  CAS  Google Scholar 

  • Brentel, I., Selstam, E., and Lindblom, G., 1985, Phase equilibria of mixtures of plant galac-tolipids: The formation of A. bicontinuous cubic phase, Biochim. Biophys. Acta 812:816–826.

    Article  CAS  Google Scholar 

  • Caffrey, M., 1985, Kinetics and mechanism of the lamellar gel/lamellar liquid-crystal and lamellar/inverted hexagonal phase transition in phosphatidylethanolamine: A. realtime X-ray diffraction study using synchrotron radiation, Biochemistry 24:4826–4844.

    Article  PubMed  CAS  Google Scholar 

  • Connor, J., and Huang, L., 1985, Efficient cytoplasmic delivery of A. fluorescent dye by pH-sensitive immunoliposomes, J. Cell Biol.101:582–589.

    Article  PubMed  CAS  Google Scholar 

  • Connor, J., Yatvin, M. B., and Huang, L., 1984, pH-sensitive liposomes: Acid-induced liposome fusion, Proc. Natl. Acad. Sci. USA. 81:1715–1718.

    Article  PubMed  CAS  Google Scholar 

  • Crowe, L. M., and Crowe, J. H., 1982, Hydration-dependent hexagonal phase lipid in A. biological membrane, Arch. Biochem. Biophys.217:582–587.

    Article  PubMed  CAS  Google Scholar 

  • Cullis, P. R., and De Kruijff, B., 1978, The polymorphic phase behavior of phosphatidyl-ethanolamines of natural and synthetic origin, Biochim. Biophys. Acta 513:31–42.

    Article  PubMed  CAS  Google Scholar 

  • Cullis, P. R., and Hope, M. J., 1978, Effects of fusogenic agents on membrane structure of erythrocyte ghosts and the mechanism of membrane fusion, Nature (Lond.) 271:672–674.

    Article  CAS  Google Scholar 

  • Cullis, P. R., Verkleij, A. J., and Ververgaert, P. H. J. Th., 1978a, Polymorphic phase behavior of cardiolipin as detected by 31P-NMR and freeze-fracture techniques: Effects of calcium, dibucaine, and chloropromazine, Biochim. Biophys. Acta 513:11–20.

    Article  PubMed  CAS  Google Scholar 

  • Cullis, P. R., Van Dijck, P. W. M., De Kruijff, B., and De Gier, J., 1978, Effects of cholesterol on the properties of equimolar mixtures of synthetic phosphatidylethanolamine and phosphatidylcholine, Biochim. Biophys. Acta 513:21–30.

    Article  PubMed  CAS  Google Scholar 

  • Das, S., Rand, R. P., 1985, Diacylglycerol, A. product of phosphatidylinositol metabolism, causes major structural perturbations in lipid bilayers, Biophys. J. 41:41a.

    Google Scholar 

  • Dawson, R. M. C., Irvine, R. F., Bray, J., and Quinn, P. J., 1984, Long-chain unsaturated diacylglycerols cause A. perturbation in the structure of phospholipid bilayers rendering them susceptible to phospholipase attack, Biochem. Biophys. Res. Commun.125:836–842.

    Article  PubMed  CAS  Google Scholar 

  • Dekker, C. J., Guerts van Kessel, W. S. M., Klomp, J. P. G., Pieters, J., and De Kruijff, B., 1983, Synthesis and polymorphic phase behavior of polyunsaturated phosphatidylcholines and phosphatidylethanolamines, Chem. Phys. Lipids 33:93–106.

    Article  PubMed  CAS  Google Scholar 

  • DeKruijff, B., Verkleij, A. J., Van Echteld, C. J. A., Gerritsen, W. J., Mombers, C., Noordam, P. C., and De Gier, J., 1979, The occurrence of lipidic particles in lipid bilayers as seen by 31P-NMR and freeze-fracture electron microscopy, Biochim. Biophys. Acta 555:200–209.

    Article  CAS  Google Scholar 

  • DeKruijff, B., Verkleij, A. J., Leunissen-Bijvelt, J., Van Echteld, C. J. A., Hille, J., and Rijnbout, H., 1982, Further aspects of the Ca2+-dependent polymorphism of bovine heart cardiolipin, Biochim. Biophys. Acta 693:1–12.

    Article  CAS  Google Scholar 

  • Düzgünec, N., and Papahadjopoulos, D., 1983, Ionotropic effects on phospholipid membranes: Calcium/magnesium specificity in binding, fluidity, and fusion, Membrane Fluid. Biol 2:187–216.

    Google Scholar 

  • Düzgünes, N., Straubinger, R. M., Balswin, P. A., Friend, D. S., and Papahadjopoulos, D., 1985, Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes, Biochemistry 24:3091–3098.

    Article  PubMed  Google Scholar 

  • Ellens, H., Bentz, J., and Szoka, F. C., 1984, pH-induced destabilization of phosphatidyl-ethanolamine-containing liposomes: Role of bilayer contact, Biochemistry 23:1532–1538.

    Article  PubMed  CAS  Google Scholar 

  • Ellens, H., Bentz, J., and Szoka, F. C., 1985a, H+- and Ca2+-induced fusion and destabilization of liposomes, Biochemistry 24:3099–3106.

    Article  PubMed  CAS  Google Scholar 

  • Ellens, H., Bentz, J., and Szoka, F. C., 1985b, Destabilization of phosphatidylethanolamine liposomes at the hexagonal phase transition temperature, Biochemistry 25:285–294.

    Article  Google Scholar 

  • Ellens, H., Bentz, J., and Szoka, F. C., 1986, Fusion of phosphatidylethanolamine liposomes and the mechanism of the La/HIIphase transition, Biochemistry 25:4141–4147.

    Article  PubMed  CAS  Google Scholar 

  • Gagné, J. L., Stamatatos, L., Diacovo, T., Hui, S. W., Yeagle, P. L., and Silvius, J. R., 1985, Physical properties of membranes containing N-methylated phosphatidylethanolamines, Biochemistry 24:4400–4408.

    Article  PubMed  Google Scholar 

  • Gordon-Kamm, W. J., and Steponkus, P. L., Lamellar-to-hexagonalIIphase transitions in the plasma membrane of isolated protoplasts after freeze induced dehydration, Proc. Natl Acad. Sci. USA.81:6373–6377.

    Article  Google Scholar 

  • Gounaris, K., Brain, A. P. R., Quinn, P. J., and Williams, W. P., 1983a, Structural and functional changes associated with heat-induced phase-separations of non-bilayer lipids in chloroplast thylakoid membranes, FEBS Lett.153:47–52.

    Article  CAS  Google Scholar 

  • Gounaris, K., Sen, A., Brain, A. P. R., Quinn, P. J., and Williams, W. P., 1983b, The formation of structures in total polar lipid extracts of chloroplast membranes, Biochim. Biophys. Acta 728:129–139.

    Article  CAS  Google Scholar 

  • Gounaris, K., Mannock, D. A., Sen, A., Brain, A. P. R., Williams, W. P., and Quinn, P. J., 1983c, Polyunsaturated fatty acyl residues of galactolipids are involved in the control of bilayer/non-bilayer lipid transitions higher plant chloroplasts, Biochim. Biophys. Acta 732:229–242.

    Article  CAS  Google Scholar 

  • Gruner, S. M., Rothschild, K. J., and Clark, N. A., 1982, X-ray diffraction and electron microscope study of phase separation in rod outer segment photoreceptor membrane multilayers, Biophys. J.39:241–251.

    Article  PubMed  CAS  Google Scholar 

  • Gruner, S. M., 1985, Intrinsic curvature hypothesis for biomembrane lipid composition: A. role for nonbilayer lipids, Proc. Natl. Acad. Sci. USA.82:3665–3669.

    Article  PubMed  CAS  Google Scholar 

  • Gruner, S. M., Cullis, P. R., Hope, M. J., and Tilcock, C. P. S., 1985, Lipid polymorphism: The molecular basis of nonbilayer phases, Annu. Rev. Biophys. Biophys. Chem.142:211–238.

    Article  Google Scholar 

  • Gutman, H., Arvidson, G., Fontell, K., and Lindblom, G., 1984,31P-NMR and 2H-NMR studies of phase equilibria in the three component system monoolein-dioleoylphos-phatidylcholine-water, in: Surfactants in Solution, Vol. 1 (K. L. Mittal and B. Lindman, eds.), pp. 143–152, Plenum Press, New York.

    Google Scholar 

  • Ho, R. J. Y., and Huang, L., 1985, Interactions of antigen-sensitized liposomes with immobilized antibody: A. homogeneous solid-phase immunoliposome assay,J. Immunol.134:4035–4040.

    PubMed  CAS  Google Scholar 

  • Hong, K., Baldwin, P. A., Allen, T. M., and Papahadjopoulos, D., 1986, Fluorometric detection of bilayer to hexagonal phase transitions in liposomes, Biochim. Biophys. Acta (submitted).

    Google Scholar 

  • Hope, M. J., Walker, D. C., and Cullis, P. R., 1983, Ca2+and pH-induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively-charged phospholipids: A. freeze-fracture study, Biochem. Biophys. Res. Commun.110:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Hui, S. W., and Stewart, T. P., 1981, “Lipidic Particles” are intermembrane attachment sites, Nature (Lond.) 290:427–428.

    Article  CAS  Google Scholar 

  • Hui, S. W., Stewart, T. P., Yeagle, P. L., and Albert, A. D., 1981, Bilayer to non-bilayer transition in mixtures of phosphatidylethanolamine and phosphatidylcholine: Implications for membrane properties, Arch. Biochem. Biophys.207:227–240.

    Article  PubMed  CAS  Google Scholar 

  • Hui, S. W., Stewart, T. P., and Boni, L. T., 1983, The nature of lipidic particles and their roles in polymorphic transitions. Chem. Phys. Lipids 33:113–126.

    Article  PubMed  CAS  Google Scholar 

  • Kirk, G. L., Gruner, S. M., and Stein, D. L., 1984, A. thermodynamic model of the lamellar to inverse hexagonal phase transition of lipid membrane-water systems, Biochemistry 23:1093–1102.

    Article  CAS  Google Scholar 

  • Lai, M. Z., Vail, W. J., and Szoka, F. C., 1985, Acid and calcium-induced structural changes in phosphatidylethanolamine membranes stabilized by cholesterylhemisuccinate, Biochemistry 24:1654–1661.

    Article  PubMed  CAS  Google Scholar 

  • Lawaczeck, R., Kainosho, M., and Chan, S. I., 1976, The formation and annealing of structural defects in lipid bilayer vesicles, Biochim. Biophys. Acta 443:313–330.

    PubMed  CAS  Google Scholar 

  • Lis, L., McAlister, M., Fuller, N., Rand, R. P., and Parsegian, V A., 1982, Interactions between neutral phospholipid membranes, Biophys. J.37:657–666.

    PubMed  CAS  Google Scholar 

  • Mandersloot, J. G., Gerritsen, W. J., Leunissen-Bijvelt, J., Van Echteld, C. J. A., Noordam, P. C., and De Gier, J., 1981, Ca2+-induced changes in the barrier properties of cardiolipin/ phosphatidylcholine bilayers, Biochim. Biophys. Acta 640:106–113.

    Article  PubMed  CAS  Google Scholar 

  • Majerus, P. W., Neufeld, E. J., and Wilson, D. B., 1984, Production of phosphoinositide-derived messengers, Cell 37:701–703.

    Article  PubMed  CAS  Google Scholar 

  • Nicolay, K., Van der Neut, R., Fok, J. J., and De Kruijff, B., 1985, Effects of adriamycin on lipid polymorphism in cardiolipin-containing model and mitochondrial membranes, Biochim. Biophys. Acta 819:55–65.

    Article  PubMed  CAS  Google Scholar 

  • Nicolussi, A., Massari, S., and Colonna, R., 1982, Effect of lipid mixing on the permeability and fusion of saturated lecithin membranes, Biochemistry 21:2134–2140.

    Article  PubMed  CAS  Google Scholar 

  • Nir, S., Bentz, J., Wilschut, J., and Düzgünes, N., 1983, Aggregation and fusion of phospholipid vesicles, Prog. Surface Sci.13:1–124.

    Article  CAS  Google Scholar 

  • Papahadjopoulos, D., Vail, W. J., Newton, C., Nir, S., Jacobson, N., Poste, G., and Lazo, R., 1977, Studies of membrane fusion. III. The role of calcium-mediated phase changes, Biochim. Biophys. Acta 465:579–598.

    Article  PubMed  CAS  Google Scholar 

  • Portis, A., Newton, C., Pangborn, W., and Papahadjopoulos, D., 1979, Studies on the mechanism of membrane fusion: Evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+, and inhibition by spectrin, Biochemistry 18:780–790.

    Article  PubMed  CAS  Google Scholar 

  • Quinn, P. J., and Williams, W. P., 1983, The structural role of lipids in photosynthetic membranes, Biochim. Biophys. Acta 737:223–266.

    Article  CAS  Google Scholar 

  • Ranck, J. L., Letellier, L., Schecter, E., Krop, B., Pernot, P., and Tardieu, A., 1984, X-ray analysis of the kinetics of E. coli lipid and membrane structural transitions, Biochemistry 23:4955–4961.

    Article  PubMed  CAS  Google Scholar 

  • Rand, R. P., and Sengupta, S., 1972, Cardiolipin forms hexagonal structures with divalent cations, Biochim. Biophys. Acta 255:484–492.

    Article  PubMed  CAS  Google Scholar 

  • Reiss-Husson, F., 1968, Structure des phases liquide-crystalline de différents phospholipides, monoglycerides, sphingolipides, anhydres ou en presence d’eau, J. Mol. Biol.25:363–382.

    Article  Google Scholar 

  • Seddon, J. M., Kaye, R. D., and Marsh, D., 1983, Induction of the lamellar-inverted hexagonal phase transition in cardiolipin by protons and monovalent cations, Biochim. Biophys. Acta 734:347–352.

    Article  CAS  Google Scholar 

  • Siegel, D. P., 1984, Inverted micellar structures in bilayer membranes, Biophys. J.45:399–420.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, D. P., 1986a, Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. I. Mechanism of the La-HIIphase transitions, Biophys. J.49:1155–1170.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, D. P., 1986b, Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. II. Implications for membrane-membrane interactions and membrane fusion, Biophys. J.49:1171–1183.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, D. P., 1986c, Inverted micellar intermediates and the transitions between lamellar, cubic, and inverted hexagonal lipid phases. III. Isotropic and inverted cubic state formation via intermediates in transitions between Laand HIIphases, Chem. Phys. Lipids(in press).

    Google Scholar 

  • Straubinger, R. M., Düzgünes, N., and Papahadjopoulos, D., 1985, pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated contents, FEBS Lett. 179:148–154.

    Article  PubMed  CAS  Google Scholar 

  • Struck, D. K., Hoekstra, D., and Pagano, R. E., 1981, Use of resonance energy transfer to monitor membrane fusion, Biochemistry 20:4093–4099.

    Article  PubMed  CAS  Google Scholar 

  • Tilcock, C. P. S., and Cullis, P. R., 1982, The polymorphic phase behavior and miscibility properties of synthetic phosphatidylethanolamines, Biochim. Biophys. Acta 684:212–218.

    Article  CAS  Google Scholar 

  • Tilcock, C. P. S., Bally, M. B., Farren, S. B., and Cullis, P. R., 1982, Influence of cholesterol on the structural preferences of dioleoylphosphatidylethanolamine-dioleoylphospha-tidylethanolamine systems: A. 31P-NMR and 2H-NMR Study, Biochemistry 21:4596–4601.

    Article  PubMed  CAS  Google Scholar 

  • Tilcock, C. P. A., Hope, M. J., and Cullis, P. R., 1984, Influence of cholesterol esters of varying unsaturation on the polymorphic phase preferences of egg phosphatidylethanolamine, Chem. Phys. Lipids 35:363–370.

    Article  CAS  Google Scholar 

  • Valtersson, C., Van Duyn, G., Verkleij, A. J., Chojnacki, T., De Kruijff, B., and Dalner, G., 1985, The influence of dolichol, dolichol esters, and dolichol phosphate on phospholipid polymorphism and fluidity in model membranes,J. Biol. Chem.260:2742–2751.

    PubMed  CAS  Google Scholar 

  • Van Venetië, R., and Verkleij, A. J., 1982, Possible role of non-bilayer lipids in the structure of mitochondria: A. freeze-fracture electron microscopy study, Biochim. Biophys. Acta 692:397–405.

    Article  PubMed  Google Scholar 

  • Verkleij, A. J., 1984, Lipidic intramembranous particles, Biochim. Biophys. Acta 779:43–64.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij, A. J., Mombers, C., Leunissen-Bijvelt, J., and Ververgaert, P. H. J., 1979a, Lipidic intramembranous particles, Nature (Lond.) 279:162–163.

    Article  CAS  Google Scholar 

  • Verkleij, A. J., Mombers, C., Gerritsen, W. J., Leunissen-Bijvelt, L., and Cullis, P. R., 1979b, Fusion of phospholipid vesicles in association with the appearance of lipidic particles as visualized by freeze fracturing, Biochim. Biophys. Acta 555:358–361.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij, A. J., Van Echteld, C. J. A., Gerritsen, W. J., Cullis, P. R., and De Kruijff, B. D., 1980, The lipidic particle as an intermediate structure in membrane fusion processes and bilayer to hexagonal (HII) transitions, Biochim. Biophys. Acta 600:620–624.

    Article  PubMed  CAS  Google Scholar 

  • Verkleij, A. J., De Maagd, R., Leunissen-Bijvelt, J., and De Kruijff, B., 1982, Divalent cations and chloropromazine can induce non-bilayer structures in phosphatidic acid-containing bilayers, Biochim. Biophys. Acta 684:255–262.

    Article  PubMed  CAS  Google Scholar 

  • Wilschut, J., Duzgune§, N., Fraley, R., and Papahadjopoulos, D., 1980, Studies on the mechanism of membrane fusion: Kinetics of calcium ion induced fusion of phosphati-dylserine vesicles followed by A. new assay for mixing of aqueous contents, Biochemistry 19:6011–6021.

    Article  PubMed  CAS  Google Scholar 

  • Wilschut, J., Holsappel, M., and Jansen, R., 1982, Ca2+-induced fusion of cardiolipin/ phosphatidylcholine vesicles monitored by mixing of aqueous contents, Biochim. Biophys. Acta 690:297–301.

    Article  PubMed  CAS  Google Scholar 

  • Wilschut, J., Nir, S., Scholma, J., and Hoekstra, D., 1985, Kinetics of Ca2+-induced fusion of cardiolipin-phosphatidylcholine vesicles: Correlation between vesicle aggregation, bilayer destabilization, and fusion, Biochemistry 24:4630–4636.

    Article  PubMed  CAS  Google Scholar 

  • Yager, P., and Chang, E. L., 1983, Destabilization of A. lipid non-bilayer phase by high pressure, Biochim. Biophys. Acta 731:491–494.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Siegel, D.P. (1987). Membrane-Membrane Interactions via Intermediates in Lamellar-to-Inverted Hexagonal Phase Transitions. In: Sowers, A.E. (eds) Cell Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9598-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9598-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9600-1

  • Online ISBN: 978-1-4757-9598-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics