Skip to main content

Cellular Biology of Gangliosides

  • Chapter
Biology of the Sialic Acids

Abstract

Sialic acid-containing glycosphingolipids, or gangliosides, are hybrid molecules composed of a hydrophilic sialyl oligosaccharide and a hydrophobic ceramide moiety, the latter consisting of a sphingoid base linked to a fatty acid. Though molecular species of the fatty acids and sphingosine in the ceramide component of gangliosides are heterogeneous, more significant heterogeneity is observed in the oligosaccharide moiety, which is primarily oriented exofacially in the cell surface, positionally advantaged to interact with neighboring cells and extra-cellular materials. In the animal kingdom, the lowest order in which gangliosides as well as sialic acids generally are detected is the Deuterostomia, in particular those more developed phylogenetically than the Echinodermata, but not those of the Prostomia (Hoshi and Nagai, 1975; Sugita et al., 1982; Wiegandt, 1985; Dennis et al., 1985), although recent subtle analysis has revealed that sialic acids and their polymeric form occur also in the insect Drosophila melanogaster (Roth et al., 1992). Thus, gangliosides seem to be concerned with evolutionarily acquired functions pertinent to higher animals. In vertebrates, they are ubiquitous constituents of all tissues and cells, and their oligosaccharide structures undergo alteration during cellular development, differentiation, ontogenesis, and aging, in keeping with their functional importance (Hakomori, 1990). In fact, by application of the monoclonal antibody technique, several gangliosides were shown to be the tumor-associated antigens, which are utilized as the target molecules for immunotherapy, as well as for the diagnosis of several tumors (Saleh et al., 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acquotti, D., Fronza, G., Riboni, L., Sonnino, S., and Tettamanti, G., 1987, Ganglioside lactones: H-NMR determination of the inner ester position of GDIb-ganglioside lactone naturally occurring in human brain or produced by chemical synthesis, Glycoconjugate J. 4: 119–127.

    Article  CAS  Google Scholar 

  • Ando, S., Chang, N. C., and Yu, R. K., 1978, High performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species, Anal. Biochem. 89: 437–450.

    Article  PubMed  CAS  Google Scholar 

  • Ando, S., Yu, R. K., Scarsdale, J. N., Kusunoki, S., and Prestegard, J. H., 1989, High resolution proton NMR studies of gangliosides. Structure of two types of GD3 lactones and their reactivity with monoclonal antibody R24, J. Biol. Chem. 264: 3478–3483.

    PubMed  CAS  Google Scholar 

  • Ando, S., Hirabayashi, Y., Kon, K., Inagaki, F., Tate, S., and Whittaker, V. P., 1992, A trisialoganglioside containing a sialyla2–6-N-acetylgalactosamine residue is a cholinergic-specific antigen, J. Biochem. 111: 287–290.

    PubMed  CAS  Google Scholar 

  • Bar-Shavit, Z., Teitelbaum, S. L., Reitsman, P., Hall, A., Pegg, L. E., Trial, J., and Kahn, A., 1983, Induction of monocytic differentiation and bone resorption by la,25-dihydroxyvitamin D3, Proc. Natl. Acad. Sci. USA 80: 5907–5911.

    Article  PubMed  CAS  Google Scholar 

  • Behr, J., and Lehn, J., 1973, The binding of divalent cations by purified gangliosides, FEBS Lett. 31: 297–300.

    Article  PubMed  CAS  Google Scholar 

  • Blum, A. S., and Barnstable, C. J., 1987, O-Acetylation of a surface carbohydrate creates discrete molecular patterns during neural development, Proc. Natl. Acad. Sci. USA 84: 8716–8720.

    Google Scholar 

  • Bouchon, B., Levery, S. B., Clausen, H., and Hakomori, S.-H., 1992, Production and characterization of a monoclonal antibody (BBH5) directed to ganglioside lactone, Glycoconjugate J. 9: 27–38.

    Article  CAS  Google Scholar 

  • Bouchours, J., Bouchours, D., and Hansson, G. C., 1987, Developmental changes of gangliosides of the rat stomach. Appearance of a blood group B-active ganglioside, J. Biol. Chem. 262: 16370–16375.

    Google Scholar 

  • Bradley, W. G., 1990, Critical review of gangliosides and thyrotropin releasing hormone in peripheral neuromuscular diseases, Muscle Nerve 13: 833–842.

    Article  PubMed  CAS  Google Scholar 

  • Braun, P. E., Morel!, P., and Radin, N. S., 1970, Synthesis of C18 and C20-dihydrosphingosine, ketodihydrosphingosine and ceramides by microsomal preparations from mouse brain, J. Biol. Chem. 245: 335–341.

    PubMed  CAS  Google Scholar 

  • Breitman, T. R., Selonic, S. E., and Collins, S. J., 1980, Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid, Proc. Natl. Acad. Sci. USA 77: 2936–2940.

    Article  PubMed  CAS  Google Scholar 

  • Callies, R., Schwarzmann, G., Radsak, K., Siegert, R., and Wiegandt, H., 1977, Characterization of the cellular binding of exogenous gangliosides, Eur. J. Biochem. 80: 425–432.

    Article  PubMed  CAS  Google Scholar 

  • Ceccarelli, B., Aporti, F., and Finesso, M., 1976, Effects of brain gangliosides on functional recovery in experimental regeneration and reinnervation, Adv. Exp. Med. Biol. 71: 275–293.

    PubMed  CAS  Google Scholar 

  • Chatterjee, H., Chakraborty, M., and Anderson, G. M., 1992, Differentiation of Neuro2a neuroblastoma cells by an antibody to GM3 ganglioside, Brain Res. 583: 31–44.

    Article  PubMed  CAS  Google Scholar 

  • Chege, N. W., and Pfeffer, S. R., 1990, Decompartmentation of the Golgi complex. Brefeldin A distinguishes trans-Golgi cisternae from the trans-Golgi network, J. Cell Biol. 111: 893–899.

    Article  PubMed  CAS  Google Scholar 

  • Chiba, A., Kusunoki, S., Shimizu, T., and Kanazawa, I., 1992, Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller Fisher syndrome, Ann. Neurol. 31: 677–679.

    Article  PubMed  CAS  Google Scholar 

  • Collins, S. J., Rusetti, F. W., Gallagher, R. E., and Gallo, R. C., 1978, Terminal differentiation of human promyelocytic leukemia cells induced by dimethylsulfoxide and other polar compounds, Proc. Natl. Acad. Sci. USA 75: 2458–2462.

    Article  PubMed  CAS  Google Scholar 

  • Corti, M., DeGiorgio, V., Ghidoni, R., Sonnino, S., and Tettamanti, G., 1980, Laser-light scattering investigation of the micellar properties of gangliosides, Chem. Phys. Lipids 26: 225–238.

    Article  PubMed  CAS  Google Scholar 

  • Cuatrecasas, P., 1973, Gangliosides and membrane receptors for cholera toxin, Biochemistry 12: 3558–3566.

    Article  PubMed  CAS  Google Scholar 

  • Czamiecki, M. F., and Thomton, E. R., 1977, C-NMR chemical shift titration of metal ion—carbohydrate complexes. An unexpected dichotomy for Cat+-binding between anomeric derivatives of N-acetylneuraminic acid, Biochem. Biophys. Res. Commun. 74: 553–558.

    Article  Google Scholar 

  • Dennis, R. D., Geyer, R., and Egge, H., 1985, Glycosphingolipids in insects. Chemical structure of ceramide tetra-, penta-, hexa- and heptasaccharides from Calliphora vicina pupae, J. Biol. Chem. 260: 5370–5375.

    PubMed  CAS  Google Scholar 

  • Doherty, P., Ashton, S. V., Skaper, S. D., Leon, A., and Walsh, F. S., 1992, Ganglioside modulation of neural cell adhesion molecule and N-cadherin-dependent neunte outgrowth, J. Cell Biol. 117: 1093–1099.

    Article  PubMed  CAS  Google Scholar 

  • Feigner, P. L., Freire, E., Barenholz, Y., and Thompson, T. E., 1981, Asymmetric incorporation of trisialoganglioside into dipalmitoylphosphatidyl choline vesicles, Biochemistry 20: 2168–2172.

    Article  Google Scholar 

  • Fentie, I. H., and Roisen, F. J., 1993, The effects of cytoskeletal altering agents on the surface topography of GM1 in Neuro2a neuroblastoma cell membranes, J. Neurochem. 22: 498–506.

    CAS  Google Scholar 

  • Ferrari, G., Fabris, M., and Gorio, A., 1983, Gangliosides enhance neurite outgrowth in PC12 cells, Dev. Brain Res. 8: 215–221.

    Article  CAS  Google Scholar 

  • Ferrari, G., Fabris, M., Fiori, M. G., Gabellini, N., and Volonte, C., 1992, Gangliosides prevent the inhibition by k-252a of NGF responses in PC 12 cells, Deg. Brain Res. 65: 35–42.

    Article  CAS  Google Scholar 

  • Formisano, S., Lee, G., Aloj, S. M., and Edelhoch, H. H., 1979, Critical micellar concentration of gangliosides, Biochemistry 18: 1119–1124.

    Article  PubMed  CAS  Google Scholar 

  • Fredman, P., Mansson, J. E., Wikstrand, C. J., Vrionis, F. D., Rynmark, B. M., Bigner, D. D., and Svennerholm, L., 1989, A new ganglioside of the lactoseries, GalNAc-3’-isoLM1, detected in human meconium, J. Biol. Chem. 264: 12122–12125.

    PubMed  CAS  Google Scholar 

  • Furukawa, K., Chait, B. T., and Lloyd, K. O., 1988, Identification of N-glycolylneuraminic acid- containing gangliosides of cat and sheep erythrocytes, J. Biol. Chem. 263: 14939–14947.

    PubMed  CAS  Google Scholar 

  • Geisler, F. H., Dorsey, F. C., and Coleman, W. P., 1991, Recovery of motor function after spinal cord injury: A randomized, placebo-controlled trial with GM1 ganglioside, N. Engl. J. Med. 324: 1829–1838.

    Article  PubMed  CAS  Google Scholar 

  • Gillard, B. K., Heath, J. P., Thurmon, L. T., and Marcus, D. M., 1991, Association of glycosphingolipids with intermediate filaments of human umbilical vein endothelial cells, Exp. Cell Res. 192: 433–444.

    Article  PubMed  CAS  Google Scholar 

  • Gillard, B. K., Thurmon, L. T., and Marcus, D. M., 1992, Association of glycosphingolipids with intermediate filaments of mesenchymal, epithelial, glial and muscle cells, Cell Motil. Cytoskel. 21: 255–271.

    Article  CAS  Google Scholar 

  • Gross, S. K., Williams, M. A., and McCluer, R., 1980, Alkali labile, sodium borohydride-reducible ganglioside sialic acid residues in brain, J. Neurochem. 34: 1351–1361.

    Article  PubMed  CAS  Google Scholar 

  • Hakomori, S., 1990, Bifunctional roles of glycosphingolipids. Modulators of transmembrane signalling and mediators for cellular interactions, J. Biol. Chem. 265: 18713–18716.

    PubMed  CAS  Google Scholar 

  • Haraguchi, M., Yamashiro, S., Yamamoto, A., Furukawa, K., Takamiya, K., Lloyd, K., Shiku, H., and Furukawa, K., 1944, Isolation of G13 synthase gene by expression cloning of GM3 a2,8sialyltransferase cDNA using anti-GD2 monoclonal antibody, Proc. Natl. Acad. Sci. USA 91: 10455–10459.

    Article  Google Scholar 

  • Hashimoto, Y., Otsuka, H., Sudo, K., Suzuki, K., Suzuki, A., and Yamakawa, T., 1983, Genetic regulation of GM2 expression in liver of mouse, J. Biochem. 93: 895–901.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, K., and Katagiri, A., 1974, Studies on the interaction between gangliosides, protein and divalent cations, Biochim. Biophys. Acta 337: 107–117.

    Article  PubMed  CAS  Google Scholar 

  • Hidari, K.I.-P., Irie, F., Suzuki, M., Kon, K., Ando, S., and Hirabayashi, Y., 1993, A novel ganglioside with a free amino group in bovine brain, Biochem. J. 296: 259–263.

    PubMed  CAS  Google Scholar 

  • Higashi, H., and Yamagata, T., 1992, Mechanism for ganglioside-mediated modulation of a calmodulin-dependent enzyme, J. Biol. Chem. 267: 9839–9843.

    PubMed  CAS  Google Scholar 

  • Higashi, H., Omori, A., and Yamagata, T., 1992, Calmodulin, a ganglioside-binding protein, J. Biol. Chem. 267: 9831–9838.

    PubMed  CAS  Google Scholar 

  • Hilbig, R., and Rahmann, H., 1980, Variability in brain gangliosides of fishes, J. Neurochem. 34: 236–240.

    Article  PubMed  CAS  Google Scholar 

  • Hilbush, B. S., and Levine, J. M., 1992, Modulation of a Ca2+-signalling pathway by GM1 ganglioside in PC12 cells, J. Biol. Chem. 267: 24789–24795.

    PubMed  CAS  Google Scholar 

  • Hirabayashi, Y., Hirota, M., Matsumoto, M., Tanaka, H., Obata, K., and Ando, S., 1988, Developmental changes of C-series polysialogangliosides in chick brains revealed by mouse monoclonal antibodies M6704 and M7163 with different epitope specificities, J. Biochem. 104: 973–979.

    PubMed  CAS  Google Scholar 

  • Hirabayashi, Y., Hirota, M., Suzuki, Y., Matsumoto, M., Obata, K., and Ando, S., 1989, Developmentally expressed 0-acetylated ganglioside GT3 in fetal rat cerebral cortex, Neurosci. Lett. 106: 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Hirabayashi, Y., Hyogo, A., Nakao, T., Tsuchiya, K., Suzuki, Y., Matsumoto, M., Kon, K., and Ando, S., 1990, Isolation and characterization of extremely minor gangliosides GM 1 b and GD1a in adult bovine brains as developmentally regulated antigens, J. Biol. Chem. 265: 8144–8151.

    PubMed  CAS  Google Scholar 

  • Hirabayashi, Y., Nakao, T., Irie, F., Whittaker, V. P., Kon, K., and Ando, S., 1992, Structural characterization of a novel cholinergic neuron-specific ganglioside in bovine brain, J. Biol. Chem. 267: 12973–12978.

    PubMed  CAS  Google Scholar 

  • Holmgren, J., 1973, Comparison of the tissue receptors for Vibrio cholerae and Escherichia coli enterotoxins by means of gangliosides and natural cholerea toxoid, Infect. Immun. 8: 851–859.

    PubMed  CAS  Google Scholar 

  • Hoshi, M., and Nagai, Y., 1970, Biochemistry of mucolipids of sea urchin gametes and embryos: III. Mucolipids during early development, Jpn. J. Exp. Med. 40: 361–365.

    PubMed  CAS  Google Scholar 

  • Hoshi, M., and Nagai, Y., 1975, Novel sialosphingolipids from spermatozoa of the sea urchin, Arthocidaris crassispina, Biochim. Biophys. Acta 388: 152–162.

    Article  PubMed  CAS  Google Scholar 

  • Iber, H., Echten, G. V., Klein, R. A., and Sandhoff, K., 1990, pH dependent changes of ganglioside biosynthesis in neuronal cell culture, Eur. J. Cell Biol. 52: 236–240.

    Google Scholar 

  • Ichikawa, S., Nakajo, N., Sakiyama, H., and Hirabayashi, Y., 1994, A mouse B-16 melanoma mutant deficient in glycolipids, Proc. Natl. Acad. Sci. USA 91: 2703–2707.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, M., Waki, H., Hirota, M., Hirabayashi, Y., Obata, K., and Ando, S., 1990, Differences in lipid composition between isolated growth cones from the forebrain and those from the brain-stem in the fetal rat, Dey. Brain Res. 51: 1–9.

    Article  CAS  Google Scholar 

  • Inokuchi, J., and Radin, N., 1987, Preparation of active isomer of 1-phenyl-2-decanoylamino-3morpholino-l-propanol, inhibitor of murine glucoceramide synthetase, J. Lipid Res. 28: 565–571.

    PubMed  CAS  Google Scholar 

  • Isono, Y., and Nagai, Y., 1966, Biochemistry of glycolipids of sea urchin gametes: I. Separation and characterization of new type of sulfolipid and sialoglycolipid, Jpn. J. Exp. Med. 36: 461–476.

    PubMed  CAS  Google Scholar 

  • Ito, M., and Yamagata, T., 1990, Endoglycoceramidase from Rhodococcus sp., Methods Enzymol. 179: 488–497.

    Article  Google Scholar 

  • Ito, M., Ikegami, Y., and Yamagata, T., 1991, Activator proteins for glycosphingolipid hydrolysis by endoglycoceramidase: Elucidation of biological functions of cell-surface glycosphingolipids in situ by endoglycoceramidase made possible using these activator proteins, J. Biol. Chem. 266: 7919–7926.

    PubMed  CAS  Google Scholar 

  • Ito, M., Ikegami, Y., Tai, T., and Yamagata, T., 1993a, Specific hydrolysis of intact erythrocyte cell-surface glycosphingolipids by endoglycoceramidase, Eur. J. Biochem. 218: 637–643.

    Article  PubMed  CAS  Google Scholar 

  • Ito, M., Ikegami, Y., and Yamagata, T., 1993b, Kinetics of endoglycoceramidase action toward cell-surface glycosphingolipids of erythrocytes, Eur. J. Biochem. 218: 645–649.

    Article  PubMed  CAS  Google Scholar 

  • Iwamori, M., and Nagai, Y., 1979, Ganglioside composition of brain in Tay—Sachs disease. Increased amounts of GD2 and N-acetylgalactosaminyl GD1a gangliosides, J. Neurochem. 32: 767–777.

    Article  PubMed  CAS  Google Scholar 

  • Iwamori, M., and Nagai, Y., 1981, Comparative study on ganglioside compositions of various rabbit tissues. Tissue-specificity in ganglioside molecular species of rabbit thymus, Biochim. Biophys. Acta 665: 214–220.

    Article  PubMed  CAS  Google Scholar 

  • Iwamori, M., Harpin, M. L., Lachapelle, F., and Baumann, N., 1985, Brain gangliosides of quaking and Shiverer mutants: Qualitative and quantitative changes of monosialogangliosides in quaking brain, J. Neurochem. 45: 73–78.

    Article  PubMed  CAS  Google Scholar 

  • Iwamori, M., Noguchi, M., Yamamoto, T., Yago, M., Nozawa, S., and Nagai, Y., 1988, Selective terminal a2–3 and a2–6 sialylation of glycosphingolipids with lacto-series type 1 and 2 chains in human meconium, FEBS Lett. 233: 134–138.

    Article  PubMed  CAS  Google Scholar 

  • Jacques, L. W., Riesco, B. F., and Weltner, W., 1980, NMR spectroscopy and calcium binding of sialic acids: N-glycolylneuraminic acid and periodate-oxidized N-acetylneuraminic acid, Carbohydr. Res. 83: 21–32.

    Article  Google Scholar 

  • Jolivet-Reynaud, C., and Alouf, J. E., 1983, Binding of Clostridium perfringens 125 1-labeled 8-toxin to erythrocytes, J. Biol. Chem. 258: 1871–1877.

    PubMed  CAS  Google Scholar 

  • Jolivet-Reynaud, C., Estrade, J., West, L. A., Alouf, J. E., and Chedid, L., 1993, Targeting of GM2-bearing tumor cells with the cytolytic Clostridium perfringens 8 toxin, Anticancer Drugs 4: 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Kanda, S., Inoue, K., Nojima, S., Utsumi, H., and Wiegandt, H., 1982, Incorporation of spin labeled ganglioside analogues into cell and liposomal membranes, J. Biochem. 91: 1707–1718.

    PubMed  CAS  Google Scholar 

  • Kannagi, R., Nudelman, E., and Hakomori, S., 1982, Possible role of ceramide in defining structure and function of membrane glycolipids, Proc. Natl. Acad. Sci. USA 79: 3470–3474.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, K. A., 1970, Sphingolipid long chain bases, Lipids 5: 878–891.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, K.-A., 1989, Animal glycosphingolipids as membrane attachment sites for bacteria, Annu. Rev. Biochem. 58: 309–350.

    Article  PubMed  CAS  Google Scholar 

  • Kato, I., and Naiki, M., 1976, Ganglioside and rabbit erythrocyte membrane receptor for Staphylococcal alpha-toxin, Infect. Immun. 13: 289–291.

    PubMed  CAS  Google Scholar 

  • Kawashima, I., Ozawa, H., Kotani, M., Suzuki, M., Kawano, T., Gomibuchi, M., and Tai, T., 1993, Characterization of ganglioside expression in human melanoma cells: Immunological and biochemical analysis, J. Biochem. 114: 186–193.

    PubMed  CAS  Google Scholar 

  • Kawashima, I., Kotani, M., Ozawa, H., Suzuki, M., and Tai, T., 1994, Generation of monoclonal antibodies specific for ganglioside lactones: Evidence of the expression of lacatone on human melanoma cells, Int. J. Cancer 58: 263–268.

    Article  PubMed  CAS  Google Scholar 

  • Kiguchi, K., Chubb, C.B.H., and Huberman, E., 1990, Glycosphingolipid patterns of peripheral blood lymphocytes, monocytes and granulocytes are cell specific, J. Biochem. 107: 8–16.

    PubMed  CAS  Google Scholar 

  • Kimhi, Y., Palfrey, C., Spector, I., Barak, Y., and Littauer, V. Z., 1976, Maturation of neuroblastoma cells in the presence of dimethylsulfoxide, Proc. Natl. Acad. Sci. USA 73: 462–466.

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa, S., Nojiri, H., Nakamura, M., Gallagher, R. E., and Saito, M., 1989, Human myelogenous leukemia cell line HL-60 cells resistant to differentiation induction by retinoic acid, J. Biol. Chem. 264: 16149–16154.

    PubMed  CAS  Google Scholar 

  • Kitajima, K., Inoue, Y., and Inoue, S., 1986, Polysialoglycoproteins of Salmonidae fish eggs: Complete structure of 200-kDa polysialoglycoprotein from the unfertilized eggs of rainbow trout (Salmo gairdneri), J. Biol. Chem. 261: 5262–5269.

    PubMed  CAS  Google Scholar 

  • Kochetkov, N. K., and Smirnova, G. P., 1983, A disialoglycolipid with two sialic acid residues located in the inner part of the oligosaccharide chain from hepatopancreas of the starfish Patina pectiria pectinifera, Biochim. Biophys. Acta 759: 192–198.

    Article  CAS  Google Scholar 

  • Kojima, S., Kurosawa, N., Nishi, T, Hanai, N., and Tsuji, S., 1994, Induction of cholinergic differentiation with neurite sprouting by de novo biosynthesis and expression of GD3 and b-series gangliosides in Neuro 2a cells, J. Biol. Chem. 269: 30451–30456.

    PubMed  CAS  Google Scholar 

  • Komai, K., Kaplan, M., and Peeples, M. E., 1988, The Vero cell receptor for the hepatitis B virus small S protein is a sialogylcoprotein, Virology 163: 629–634.

    Article  PubMed  CAS  Google Scholar 

  • Korhonen, T. K., Baisanen-Rheu, V., Rhen, M., Pere, A., Parkkinen, A., and Finne, J., 1984, Escherichia coli fimbriae recognizing sialyl galactosides, J. Bacteriol. 159: 762–766.

    CAS  Google Scholar 

  • Kotani, M., Ozawa, H., Kawashima, I., Ando, S., and Tai, T., 1992, Generation of one set of monoclonal antibodies specific for a-pathway ganglio-series gangliosides, Biochim. Biophys. Acta 1117: 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Kotani, M., Kawashima, I., Ozawa, H., Terashima, T., and Tai, T., 1993, Differential distribution of major gangliosides in rat central nervous system detected by specific monoclonal antibodies, Glycobiology 3: 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Kotani, M., Hosoya, H., Kubo, H., Itoh, K., Sakuraba, H., Kusubata, M., Inagaki, M., Yazaki, K., Suzuki, Y., and Tai, T., 1994, Evidence for direct binding of intracellularly distributed ganglioside GM2 to isolated vimentin intermediate filaments in normal and Tay—Sachs disease human fibroblasts, Cell Struct. Funct. 19: 81–87.

    Article  PubMed  CAS  Google Scholar 

  • Kracun, I., Rosner, H., Cosovic, C., and Stavljenic, A., 1984, Topographical atlas of the gangliosides of the adult human brain, J. Neurochem. 43: 979–989.

    Article  PubMed  CAS  Google Scholar 

  • Kusunoki, S., Chiba, A., Hirabayashi, Y., Irie, F., Kotani, M., Kawashima, I., Tai, T., and Nagai, Y., 1993, Generation of a monoclonal antibody specific for a new class of minor ganglioside antigens, GQlba and GTlaa: its binding to dorsal and lateral horn of human thoracic cord, Brain Research 623: 83–88.

    Article  PubMed  CAS  Google Scholar 

  • Kyogashima, M., Ginsberg, V., and Krivan, H. C., 1989, Escherichia coli K99 binds to N-glycolylsialoparagloboside and N-glycolyl GM3 found in piglet small intestine, Arch. Biochem. Biophys. 270: 391–397.

    CAS  Google Scholar 

  • Ledeen, R. W., 1984, Biology of gangliosides, neuritogenic and neurotrophic properties, J. Neurosci. Res. 12: 147–159.

    Article  PubMed  CAS  Google Scholar 

  • Levery, S. B., Roberts, C. E., Salyan, M.E.K., Bouchon, B., and Hakomori, S., 1990, Strategies for characterization of ganglioside inner esters. II. Gas chromatography/mass spectrometry, Biomed. Environ. Mass Spectrosc. 19: 311–318.

    Article  CAS  Google Scholar 

  • Levine, J. M., Beasley, L., and Stallcup, W. B., 1984, The D1.1 antigen: A cell surface marker for germinal cells of the central nervous system, J. Neurosci. 4: 820–831.

    PubMed  CAS  Google Scholar 

  • Li, S.-C., DeGasperi, R., Muldrey, J. E., and Li, Y.-T., 1986, A unique glycosphingolipid-splitting enzyme (ceramide-glycanase from leech) cleaves the linkage between the oligosaccharide and the ceramide, Biochem. Biophys. Res. Commun. 141: 346–352.

    Article  PubMed  CAS  Google Scholar 

  • Lipsky, N. G., and Pagano, R. E., 1985, Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: Endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi en route to the plasma membrane, J. Cell Biol. 100: 27–34.

    Article  PubMed  CAS  Google Scholar 

  • Mahadik, S. P., and Karpiak, S. K., 1988, Gangliosides in treatment of neural injury and disease, Drug. Dev. Res. 15: 337–360.

    Article  CAS  Google Scholar 

  • Markwell, M. A., Svennerholm, L., and Paulson, J. C., 1981, Specific gangliosides as host cell receptors for Sendai virus, Proc. Natl. Acad. Sci. USA 78: 5406–5410.

    Article  PubMed  CAS  Google Scholar 

  • Markwell, M. A., Moss, J., Horn, B. E., Fishman, P. H., and Svennerholm, L., 1986, Expression of gangliosides as receptors at the cell surface controls. Infection of NCTC2071 cells by Sendai virus, Virology 155: 356–364.

    Article  PubMed  CAS  Google Scholar 

  • Masserini, M., and Freire, E., 1987, Kinetics of ganglioside transfer between liposomal and synaptosomal membranes, Biochemistry 26: 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Matta, S. G., Yorke, G., and Roisen, F. J., 1986, Neuritogenic and metabolic effects of individual gangliosides and their interaction with nerve growth factor in cultures of neuroblastoma and pheochromocytoma, Dev. Brain Res. 27: 243–252.

    Article  CAS  Google Scholar 

  • Merrill, A. H., Sereni, A. M., Stevens, V. L., Hannun, Y. A., Bell, R. M., and Kinkade, J. M., 1986, Inhibition of phorobol ester-dependent differentiation of human promyelocytic leukemic (HL-60) cells by sphinganine and other long chain bases, J. Biol. Chem. 261: 12610–12615.

    PubMed  CAS  Google Scholar 

  • Merrill, A. H., Wang, E., and Mullins, R. E., 1988, Kinetics of long chain (sphingoid) base biosynthesis in intact LM cells: Effects of varying the extracellular concentration of serine and fatty acid precursors of this pathway, Biochemistry 27: 340–345.

    Article  PubMed  CAS  Google Scholar 

  • Momoi, T., and Yokota, J., 1983, Alterations of glycolipid of human leukemia cell line HL-60 during differentiation, J. Natl. Cancer Inst. 70: 229–236.

    PubMed  CAS  Google Scholar 

  • Momoi, T., Shinmoto, M., Kasuya, J., Senoo, H., and Suzuki, Y., 1986, Activation of CMPN-acetylneuraminic acid:lactosylceramide sialyltransferase during the differentiation of HL-60 cells induced by 12–0-tetradecanoyl phorbol-13-acetate, J. Biol. Chem. 261: 16270–16273.

    PubMed  CAS  Google Scholar 

  • Morell, A. G., Gregoriadis, G., and Scheinberg, I. H., 1971, The role of sialic acid in determining the survival of glycoproteins in the circulation, J. Biol. Chem. 246: 1461–1467.

    PubMed  CAS  Google Scholar 

  • Morita, A., Tsao, D., and Kim, Y. S., 1980, Identification of cholera toxin binding glycoprotein in rat intestinal microvillus membranes, J. Biol. Chem. 255: 2549–2553.

    PubMed  CAS  Google Scholar 

  • Mraz, M., Schwarzmann, G., Sattler, J., Seeman, B., Momoi, T., and Wiegandt, H., 1980, Aggregate formation of gangliosides at low concentrations in aqueous media, Hoppe-Seyler’s Z. Physiol. Chem. 361: 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Muramoto, K., Kobayashi, K., Nakanishi, S., Matsuda, Y., and Kuroda, Y., 1988, Functional synapse formation between cultured neurons of rat cerebral cortex: Block by a protein kinase inhibitor which does not permeate the cell membrane, Proc. Jpn. Acad. Ser. B 64: 319–322.

    Article  Google Scholar 

  • Muramoto, K., Kawahara, M., Kobayashi, K., Ito, M., Yamagata, T., and Kuroda, Y., 1994, Endoglycoceramidase treatment inhibits synchronous oscillations of intercellular Cat+ in cultured cortical neurons, Biochem. Biophys. Res. Commun. 202: 398–402.

    Article  PubMed  CAS  Google Scholar 

  • Nagai, Y., and Tsuji, S., 1988, Cell biological significance of gangliosides in neural differentiation and development: Critique and proposals, in: New Trends in Ganglioside Research: Neurochemical and Neuroregenerative Aspects, Fidia Research Series, Vol. 14, ( R. W. Ledeen, E. L. Hogan, G. Tettamanti, A. J. Yates, and R. K. Yu, eds.), Liviana Press/Springer-Verlag, Padova/Berlin, pp. 329–350.

    Google Scholar 

  • Nagai, Y., and Tsuji, S., 1994, Significance of ganglioside-mediated glycosignal transduction in neuronal differentiation and development, Prog. Brain Res. 101: 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Nagai, Y., Momoi, T., Saito, M., Mitsuzawa, E., and Ohtani, S., 1976, Ganglioside syndrome, a new autoimmune neurologic disorder, experimentally induced with brain gangliosides, Neurosci. Lett. 2: 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Nagai, Y., Uchida, T., Takeda, S., and Ikuta, F., 1978, Restoration of activity for induction of experimental allergic peripheral neuritis by a combination of myelin basic protein P2 and gangliosides from peripheral nerve, Neurosci. Lett. 8: 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Nagai, Y., Ikuta, F., and Nagai, Y., 1980a, Neuropathological comparative studies on experimental allergic neuritis (EAN) induced in rabbits by P2 protein—ganglioside complexes, Jpn. J. Exp. Med. 50: 453–462.

    PubMed  Google Scholar 

  • Nagai, Y., Sakakibara, K., and Uchida, T., 1980b, Immunomodulatory roles of gangliosides in EAE and EAN, in: Search for the Cancer of Multiple Sclerosis and Other Chronic Diseases of Central Nervous System, ( A. Boese, ed.), Verlag Chemie, Weinheim, pp. 127–138.

    Google Scholar 

  • Nagashima, K., Nakanishi, S., and Matsuda, Y., 1991, Inhibition of nerve growth factor-induced neurite outgrowth of PC12 cells by a protein kinase inhibitor which does not permeate the cell membrane, FEBS Lett. 293: 119–123.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima, J., Tsuji, S., and Nagai, Y., 1986, Bioactive gangliosides: Analysis of functional structures of the tetrasialoganglioside GQIb which promotes neurite outgrowth, Biochim. Biophys. Acta 876: 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, M., Ogino, H., Nojiri, H., Kitagawa, S., and Saito, M., 1989, Characteristic incorporation of ganglioside GM3, which induces monocytic differentiation in human myelogenous leukemia HL-60 cells, Biochem. Biophys. Res. Commun. 161: 782–789.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, K., Hashimoto, Y., Moriwaki, K., Yamakawa, T., and Suzuki, A., 1990a, Genetic regulation of GM4 (NeuAc) expression in mouse erythrocytes, J. Biochem. 107: 3–7

    PubMed  CAS  Google Scholar 

  • Nakamura, M., Kirito, K., Yamamori, J., Nojiri, H., and Saito, M., 1990b, Gangliosides GM3 can induce megakaryocytoid differentiation of human leukemia cell, Cancer Res. 51: 1940–1945.

    Google Scholar 

  • Nakamura, M., Tsunoda, A., Sakoe, K., Gu, J., Nishikawa, A., Taniguchi, N., and Saito, M., 1992, Total metabolic flow of glycosphingolipid biosynthesis is regulated by UDP-G1cNAc: lactosylceramide 01–3N-acetylglucosaminyltransferase in human hematopoietic cell line HL-60 during differentiation, J. Biol. Chem. 267: 23507–23514.

    PubMed  CAS  Google Scholar 

  • Nara, K., Watanabe, Y., Maruyama, K., Kasahara, K., Nagai, Y., and Sanai, Y., 1994, Expression cloning of a CMP-NeuAc:NeuAca2–3Ga1ß1–4GIcβ1–4Glcβ1-l’Cer a2,8-sialyltransferase (GD3 synthase) from human melanoma cells, Proc. Natl. Acad. Sci. USA 91: 7952–7956.

    Article  PubMed  CAS  Google Scholar 

  • Nohara, K., Suzuki, M., Inagaki, F., Ito, H., and Kaya, K., 1990, Identification of novel gangliosides containing lactosaminyl-GM1 structure from rat spleen, J. Biol. Chem. 265: 14335–14339.

    PubMed  CAS  Google Scholar 

  • Nohara, K., Suzuki, M., Inagaki, F., Sano, T., and Kaya, K., 1992, A novel disialoganglioside in rat spleen lymphocytes, J. Biol. Chem. 267: 14982–14986.

    PubMed  CAS  Google Scholar 

  • Nojiri, H., Takaku, H., Tetsuka, T., Motoyoshi, K., Miura, Y., and Saito, M., 1984, Characteristic expression of glycosphingolipid profiles in the bipotential cell differentiation of human promyelocytic leukemia cell line HL-60, Blood 64: 534–541.

    PubMed  CAS  Google Scholar 

  • Nojiri, H., Takaku, F., Ohta, M., Miura, Y., and Saito, M., 1985, Changes in glycosphingolipid composition during differentiation of human leukemic granulocytes in chronic myelogenous leukemia compared with in vitro granulocytic differentiation of human promyelocytic leukemia cell line HL-60, Cancer Res. 45: 6100–6106.

    PubMed  CAS  Google Scholar 

  • Nojiri, H., Takaku, F., Terui, Y., Miura, Y., and Saito, M., 1986, Ganglioside GM3: An acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937, Proc. Natl. Acad. Sci. USA 83: 782–786.

    Article  PubMed  CAS  Google Scholar 

  • Nojiri, H., Kitagawa, S., Nakamura, M., Kirito, K., Enomoto, Y., and Saito, M., 1988, Neolactoseries gangliosides induce granulocytic differentiation of human leukemic cell line HL-60, J. Biol. Chem. 263: 7443–7446.

    PubMed  CAS  Google Scholar 

  • Nudelman, E. D., Mandel, V., Levery, S. B., Kaizu, T., and Hakomori, S., 1987, A series of disialogangliosides with binary 2–3 sialosyl lactosamine structure defined by monoclonal antibody NVH2 are oncodevelopmentally regulated antigens, J. Biol. Chem. 264: 18719–18725.

    Google Scholar 

  • Obata, K., and Tanaka, H., 1988, Molecular differentiation of the otic vesicle and neural tube in the chick embryo demonstrated by monoclonal antibodies, Neurosci. Res. 6: 131–142.

    Article  PubMed  CAS  Google Scholar 

  • Obata, K., Oide, M., and Handa, S., 1977, Effects of glycolipids on in vitro development of neuromuscular junction, Nature 266: 369–371.

    Article  PubMed  CAS  Google Scholar 

  • Ochanda, J. O., Syuto, B., Ohishi, I., Naiki, M., and Kubo, S., 1986, Binding of Clostridium botulinum neurotoxin to gangliosides, J. Biochem. 100: 27–33.

    PubMed  CAS  Google Scholar 

  • Ohsawa, T., and Nagai, Y., 1975, Immunological evidence for the localization of sialoglycosphingo- lipids at the cell surface of sea urchin spermatozoa, Biochim. Biophys. Acta 389: 69–83.

    Article  CAS  Google Scholar 

  • Okazaki, T., Bielawska, A., Bell, R. M., and Hannun, Y. A., 1990, Role of ceramides as a lipid mediator of 1a,25-dihydroxyvitamin D3-induced HL-60 cell differentiation, J. Biol. Chem. 265: 15823–15831.

    PubMed  CAS  Google Scholar 

  • Ozawa, H., Kawashima, I., and Tai, T., 1992a, Generation of murine monoclonal antibodies specific for N-glycolylneuraminic acid-containing gangliosides. Arch. Biochem. Biophys. 294: 423–433.

    Article  Google Scholar 

  • Ozawa, H., Kotani, M., Kawashima, I., Numata, M., Ogawa, T., Terashima, T., and Tai, T., 1993, Generation of a monoclonal antibody specific for ganglioside GM4: Evidence for GM4 expression on astrocytes in Chicken cerebellum, J. Biochem. 114: 5–8.

    PubMed  CAS  Google Scholar 

  • Pohlentz, G., Klein, D., Schwarzmann, G., Schmitz, D., and Sandhoff, K., 1988, Both GA2, GM2 and GD2 syntheses and GMIb, GDIa and GTIb syntheses are single enzymes in Golgi vesicles from rat liver, Proc. Natl. Acad. Sci. USA 85: 7044–7048.

    Article  PubMed  CAS  Google Scholar 

  • Polley, M. J., Phillips, M. L., Wayer, E., Nudelman, A., Singhal, K., Hakomori, S., and Paulson, J. C., 1991, CD62 and endothelial cell leukocyte adhesion molecule 1(ELAM-1) recognize the same ligand, sialyl Lewis X, Proc. Natl. Acad. Sci. USA 88: 6224–6228.

    Article  PubMed  CAS  Google Scholar 

  • Ponce, R. H., Yanagimachi, R., Urch, U. A., Yamagata, T., and Ito, M., 1993, Retention of hamster oolema fusibility with spermatozoa after various enzyme treatments: A search for the molecules involved in sperm—egg fusion, Zygotes 1: 163–171.

    CAS  Google Scholar 

  • Prieto, P. A., and Smith, D. F., 1985, A new ganglioside in human meconium detected by antiserum against the human milk sialyl oligosaccharide, LS-tetrasaccharide b, Arch. Biochem. Biophys. 241: 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Purpura, D. P., and Suzuki, K., 1976, Distortion of neuronal geometry and formation of abberant synapses in neuronal storage disease, Brain Res. 116: 1–21.

    Article  PubMed  CAS  Google Scholar 

  • Purpura, D. P., and Baker, H., 1977, Meganeurites and other aberrant processes of human neurons in feline GM1 gangliosidosis, Brain Res. 143: 13–26.

    Article  Google Scholar 

  • Radin, N., Shayman, J. E., and Inokuchi, J., 1993, Metabolic effects of inhibiting glycosylceramide synthesis with PDMP and other substances, Adv. Lipid Res. 26: 183–213.

    PubMed  CAS  Google Scholar 

  • Rahmann, H., 1985, Gedachtnisbilgung durch molekulare Bahnung in Synapsen mit Gangliosiden, Funkt. Biol. Med. 4: 249–261.

    CAS  Google Scholar 

  • Riboni, L., Sonnino, S., Acquotti, D., Malesci, A., Ghidoni, R., Egge, H., Mingrino, S., and Tettamanti, G., 1986, Natural occurrence of gangliosides lactones: Isolation and characterization of GDIb inner ester from adult human brain, J. Biol. Chem. 261, 8514–8519.

    PubMed  CAS  Google Scholar 

  • Rogers, G. N., Herrler, G., Paulson, J. C., and Klenk, H. D., 1986, Influenza C virus uses 9–0acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells, J. Biol. Chem. 261: 5947–5951.

    PubMed  CAS  Google Scholar 

  • Roisen, F. J., Bartfeld, H., Nagele, R., and Yorke, G., 1981, Ganglioside stimulation of axonal sprouting in vitro, Science 214: 577–578.

    Article  PubMed  CAS  Google Scholar 

  • Rösner, H., Rahmann, H., Reuter, G., Schauer, R., Peter-Katalinic, J., and Egge, H., 1985a, Mass spectrometric identification of the pentasialoganglioside GP1c of embryonic chicken brain, Biol. Chem. Hoppe-Seyler 366: 1177–1181.

    Article  PubMed  Google Scholar 

  • Rösner, H., Al-Aqtum, M., and Henke-Fahle, S., 19856, Developmental expression of GD3 and polysialogangliosides in embryonic chicken nervous tissue reacting with monoclonal antiganglioside antibodies, Dev. Brain Res. 18: 85–95.

    Google Scholar 

  • Roth, J., Kempf, A., Reuter, G., Schauer, R., and Gehring, W. J., 1992, Occurrence of sialic acids in Drosophila melanogaster, Science 256: 673–675.

    Article  PubMed  CAS  Google Scholar 

  • Rovera, G., O’Brien, T. G., and Diamond, L., 1979, Induction of differentiation of human promyelocytic leukemia cells by tumor promoters, Science 204: 868–870.

    Article  PubMed  CAS  Google Scholar 

  • Saito, M., Saito, M., and Rosenberg, A., 1984, Action of monensin, a monovalent cationophore, on cultured human fibroblast: Evidence that it induces high cellular accumulation of glucosyl- and lactosylceramide (gluco- and lactocerebroside), Biochemistry 23: 1043–1046.

    Article  PubMed  CAS  Google Scholar 

  • Saito, M., Terui, Y., and Nojiri, H., 1985, An acidic glycosphingolipid, monosialoganglioside GM3 is a potent physiological inducer for monocytic differentiation of human promyelocytic leukemia cell line HL-60 cells, Biochem. Biophys. Res. Commun. 132: 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Saito, M., Nojiri, H., Ogino, H., Tao, A., Ogura, H., Itoh, M., Tomita, K., Ogawa, T., Nagai, Y., and Kitagawa, S., 1990, Synthetic sialyl glycolipids (sialo-cholesterol and sialo-diglyceride) induce granulocytic differentiation of human myelogenous leukemia cell line HL-60, FEBS Lett. 271: 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Saito, T., Natomi, H., Zhao, W., Okuzumi, K., Sugano, K., Iwamori, M., and Nagai, Y., 1991, Identification of glycolipid receptors for Helicobacter pylori by TLC-immunostaining, FEBS Lett. 282: 385–387.

    Article  Google Scholar 

  • Sakaizumi, M., Hashimoto, Y., Suzuki, A., Yamakawa, T., Kiuchi, Y., and Moriwaki, K., 1988, The locus controlling liver GM1 (NeuGc) expression is mapped 1 cM centromeric to H-2K, Immunogenetics 27: 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara, K., Momoi, T., Uchida, T., and Nagai, Y., 1981a, Evidence for association of glycosphingolipid with a colchicine-sensitive microtubule-like cytoskeletal structure of cultured cells, Nature 239: 76–79.

    Article  Google Scholar 

  • Sakakibara, K., Iwamori, M., Uchida, T., and Nagai, Y., 1981b, Immunohistochemical localization of galactocerebroside in kidney, liver and lung of golden hamster, Experientia 37: 712–714.

    Article  PubMed  CAS  Google Scholar 

  • Sakuraba, H., Itoh, K., Kotani, M., Tai, T., Yamada, H., Kurosawa, K., Kuroki, Y., Suzuki, H., Utsunomiya, T., Inoue, H., and Suzuki, Y., 1993, Prenatal diagnosis of GM2-gangliosidosis: Immunofluorescence analysis of GM2 in cultured amniocytes by confocal laser scanning microscopy, Brain Dev. 15: 278–282.

    Article  PubMed  CAS  Google Scholar 

  • Saleh, M. N., Khazaeli, M. B., Wheeler, R. H., Dropcho, E., Liu, T. P., Urist, M., Miller, D. M., Lawson, S., Dixon, P., Russell, C. H., and Lobuglio, C., 1992, Phase 1-trial of the murine monoclonal anti-GD2 antibody 14G2a in metastatic melanoma, Cancer Res. 52: 4342–4347.

    PubMed  CAS  Google Scholar 

  • Sariola, H., Aufderheide, E., Bernhard, H., Henke-Fahle, S., Dippold, W., and Ekbolm, P., 1988, Antibodies to cell surface ganglioside GD3 perturb inductive epithelial—mesenchymal interactions, Cell 54: 235–245.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, K., Kurata, K., Kojima, N., Kurosawa, N., Ohta, S., Hanai, N., Tsuji, S., and Nishi, T., 1994, Expression cloning of a GM3-specific a2,8-sialyltransferase (GD3 synthase), J. Biol. Chem. 269 (22): 15950–15956.

    PubMed  CAS  Google Scholar 

  • Schengrund, C., 1989, The role of gangliosides in neural differentiation and repair: A perspective, Brain Res. Bull. 24: 131–141.

    Article  Google Scholar 

  • Schwartz, M., and Spirman, N., 1982, Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified antiganglioside antibodies, Proc. Natl. Acad. Sci. USA 79: 6080–6083.

    Article  PubMed  CAS  Google Scholar 

  • Seifert, W., 1981, Gangliosides in Nerve Cell Cultures, Raven Press, New York, pp. 99–117.

    Google Scholar 

  • Sekine, M., Nakamura, K., Suzuki, M., Inagaki, F., Yamakawa, T., and Suzuki, A., 1988, A single autosomal gene controlling the expression of the extended globoglycolipid carrying SSEA-1 determinant is responsible for the expression of two extended globogangliosides, J. Biochem. 103: 722–729.

    PubMed  CAS  Google Scholar 

  • Sekine, M., Sakaizumi, M., Moriwaki, K., Yamakawa, T., and Suzuki, A., 1989, Two genes controlling the expression of extended globoglycolipids in mouse kidney are closely linked to each other on chromosome 19, J. Biochem. 105: 680–683.

    PubMed  CAS  Google Scholar 

  • Seybold, U., and Rahmann, H., 1985, Brain gangliosides with different types of postnatal development (nidifugous and nidicolous type), Dev. Brain Res. 17: 201–208.

    Article  CAS  Google Scholar 

  • Seyfried, T., 1987, Ganglioside abnormalities associated with failed neural differentiation in a T-locus mutant mouse embryo, Dev. Biol. 123: 286–291.

    Article  PubMed  CAS  Google Scholar 

  • Seyfried, T. N., Yu, R. K., and Miyazawa, N., 1982, Differential cellular enrichment of gangliosides in the mouse cerebellum: Analysis using neurological mutants, J. Neurochem. 38: 551–559.

    Article  PubMed  CAS  Google Scholar 

  • Sillerud, L. O., Prestegard, J. H., Yu, R. K., Schafer, D. E., and Konigsberg, W. H., 1978, Assignment of the ‘3C nuclear magnetic resonance spectrum of aqueous ganglioside GM1 micelles, Biochemistry 17: 2619–2628.

    Article  PubMed  CAS  Google Scholar 

  • Sjoberg, E. R., Manzi, A. E., Khoo, K. H., Dell, A., and Varki, A., 1992, Structure that GD2 is an acceptor for ganglioside 0-acetyltransferase in human melanoma cells, J. Biol. Chem. 267: 16200–16211.

    PubMed  CAS  Google Scholar 

  • Skaper, S. D., Leon, A., and Toffano, G., 1989, Ganglioside function in the development and repair of the nervous system, Mol. Neurobiol. 3: 173–199.

    Article  PubMed  CAS  Google Scholar 

  • Smirnova, G. P., Kochetkov, N. K., and Sadovskaya, V. L., 1989, Gangliosides of the starfish Apelastevias japonica, evidence for a new linkage between two N-glycolylneuraminic acid residues through the hydroxyl group of the glycolic acid residue, Biochim. Biophys. Acta 920: 47–55.

    Google Scholar 

  • Song, Y., Kitajima, K., Inoue, S., and Inoue, Y., 1991, Isolation and structural elucidation of a novel type of ganglioside. Deaminated neuraminic acid (KDN)-containing glycosphingolipids from rainbow trout sperm, J. Biol. Chem. 266: 21929–21935.

    PubMed  CAS  Google Scholar 

  • Stallcup, W. B., Beasley, L., and Levine, J., 1983, Cell surface molecules that characterize different stages in the development of cerebellar interneurons, Cold Spring Harbor Symp. Quant. Biol. 48: 761–774.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, A., Weller, M., and Wietholter, H., 1993, A characteristic ganglioside antibody pattern in the CSF of patients with amyotrophic lateral sclerosis, J. Neurol. Neurosurg. Psychiat. 56: 361–364.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, V. L., Winton, E. F., Smith, E. E., Owens, N. E., Kinkade, J. M., and Merrill, A. F., 1989, Differential effects of long chain (sphingoid) bases on the monocytic differentiation of human leukemia (HL-60) cells induced by phorbol esters, la,25-dihydroxyvitamin D3 or ganglioside GM3, Cancer Res. 49: 3229–3234.

    PubMed  CAS  Google Scholar 

  • Stromberg, N., and Karlsson, K.-A., 1990, Characterization of the binding of Actinomyces naeslundii (ATCC 12104) andActinomyces viscosuo (ATCC 19246) to glycosphingolipids using a solid-phase overlay approach, J. Biol. Chem. 265: 11251–11258.

    PubMed  CAS  Google Scholar 

  • Stromberg, N., Deal, C., Nyberg, G., Normaek, S., So, M., and Karlsson, K.-A., 1988, Identification of carbohydrate structures that are possible receptors for Neisseria gonorrhoeae, Proc. Natl. Acad. Sci. USA 85: 4902–4906.

    Article  PubMed  CAS  Google Scholar 

  • Stults, C. L., Sweeley, C. C., and Macher, B. A., 1989, Glycosphingolipids: Structure, biological source and properties, Methods Enzymol. 179: 167–214.

    Article  PubMed  CAS  Google Scholar 

  • Sugita, M., 1979, Studies on the glycosphingolipids of the starfish, Asternia pectinifera. III. Isolation and structural studies of two novel gangliosides containing internal sialic acid residues, J. Biochem. 86: 765–772.

    PubMed  CAS  Google Scholar 

  • Sugita, M., Iwasaki, Y., and Hori, T., 1982, Studies on glycosphingolipids of larvae of the green bottle fly, Lusilia caeser. II. Isolation and structural studies on three glycosphingolipids with novel sugar sequences, J. Biochem. 92: 881–887.

    PubMed  CAS  Google Scholar 

  • Suzuki, Y., Suzuki, T., Matsunaga, M., and Matsumoto, M., 1985, Gangliosides as paramyxovirus receptor. Structural requirement of sialo-oligosaccharides in receptors for haemagglutinating virus of Japan (Sendai virus) and Newcastle disease virus, J. Biochem. 97: 1189–1199.

    PubMed  CAS  Google Scholar 

  • Suzuki, Y., Nagao, Y., Kato, H., Matsumoto, M., Nerome, K., Nakajima, K., and Nobusawa, E., 1986, Human influenza A virus hemagglutinin distinguishes sialyloligosaccharides in membrane-associated gangliosides as its receptor which mediates the adsorption and fusion processes of virus infection, J. Biol. Chem. 261: 17057–17061.

    PubMed  CAS  Google Scholar 

  • Suzuki, Y., Nagao, Y., Kato, H., Suzuki, T., Matsumoto, M., and Maruyama, J., 1987, The hemagglutinins of the human influenza viruses A and B recognize different receptor microdomains, Biochim. Biophys. Acta 903: 417–424.

    Article  PubMed  CAS  Google Scholar 

  • Svennerholm, L., Bostrom, K., Fredman, P., Mansson, J. E., Rosengren, B., and Rynmark, B. M., 1989, Human brain gangliosides: Developmental changes from early fetal stage to advanced age, Biochim. Biophys. Acta 1005: 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Tai, T., Kawashima, I., Tada, N., and Ikegami, S., 1988, Different reactivities of monoclonal antibodies to ganglioside lactones, Biochim. Biophys. Acta 958: 134–138.

    Article  PubMed  CAS  Google Scholar 

  • Takamizawa, K., Iwamori, M., Kozaki, S., Sakaguchi, G., Tanaka, R., Takayama, H., and Nagai, Y., 1986, TLC-immunostaining characterization of Clostridium botulinum type A neurotoxin binding to gangliosides and free fatty acids, FEBS Lett. 201: 229–232.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, Y., Takeda, T., Honda, T., and Miwatani, T., 1976, Inactivation of the biological activities of the thermostable direct hemolysin of Vivrio parahaemolyticus by ganglioside GT1, Infect. Immun. 14: 1–5.

    PubMed  CAS  Google Scholar 

  • Taki, T., Rokukawa, C., Kasama, T., Kon, K., Ando, S., Abe, T., and Handa, S., 1992a, Human meconium gangliosides. Characterization of a novel 1-type ganglioside with the NeuAca2–6Gal, J. Biol. Chem. 267: 11811–11817.

    PubMed  CAS  Google Scholar 

  • Taki, T., Rokukawa, C., Kasama, T., and Handa, S., 1992b, Human hepatoma gangliosides. Occurrence of a novel type glycolipid with NeuAca2–6Gal structure, Cancer Res. 52: 4805–4811.

    PubMed  CAS  Google Scholar 

  • Tettamanti, G., and Riboni, L., 1993, Gangliosides and modulation of the function of neural cells, Adv. Lipid Res. 25: 235–267.

    PubMed  CAS  Google Scholar 

  • Thorn, J. J., Levery, S. B., Salyan, M.E.K., Stroud, M. R., Cedergren, B., Nilsson, B., Hakomori, S., and Clausen, H., 1992, Structural characterization of X2glycosphingolipid. Its extended form and its sialosyl derivatives—Accumulation associated with the rare blood group phenotype, Biochemistry 31: 6509–6517.

    Article  PubMed  CAS  Google Scholar 

  • Toffano, G., Benvegnu, D., Bonetti, A. C., Facci, L., Leon, A., Orlando, P., Ghidoni, R., and Tettamanti, G., 1980, Interactions of GM1 ganglioside with crude rat brain neuronal membranes, J. Neurochem. 35: 861–866.

    Article  PubMed  CAS  Google Scholar 

  • Trinchera, M., and Ghidoni, R., 1989, Two glycosphingolipid sialyltransferases are localized in different sub-Golgi compartments in rat liver, J. Biol. Chem. 264: 15766–15769.

    PubMed  CAS  Google Scholar 

  • Tsuji, S., Arita, M., and Nagai, Y., 1983, GQIb. A bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in two neuroblastoma cell lines, J. Biochem. 94: 303–306.

    PubMed  CAS  Google Scholar 

  • Tsuji, S., Yamashita, T., and Nagai, Y., 1988, A novel, carbohydrate signal-mediated cell surface protein phosphorylation: Ganglioside GQIb stimulates ecto-protein kinase activity on the cell surface of a human neuroblastoma cell line, GOTO, J. Biochem. 104: 498–503.

    PubMed  CAS  Google Scholar 

  • Tsuji, S., Yamashita, T., Tanaka, M., and Nagai, Y., 1988, Synthetic sialylcompounds as well as natural gangliosides induce neuritogenesis in a mouse neuroblastoma cell line (Neuro 2a), J. Neurochem. 50: 414–423.

    Article  PubMed  CAS  Google Scholar 

  • Tsuji, S., Yamashita, T., Matsuda, Y., and Nagai, Y., 1992, A novel glycosignaling system: GQ1bdependent neuritogenesis of human neuroblastoma cell line, goto, is closely associated with GQ1b-dependent ecto-type protein phosphorylation, Neurochem. Int. 21 (4): 549–554.

    Article  PubMed  CAS  Google Scholar 

  • Ulrich-Bott, B., and Wiegandt, H., 1984, Micellar properties of glycosphingolipids in aqueous media, J. Lipid Res. 25: 1233–1245.

    PubMed  CAS  Google Scholar 

  • Van Echten, G., and Sandhoff, K., 1989, Modulation of ganglioside biosynthesis in primary cultured neurons, J. Neurochem. 52: 207–214.

    Article  PubMed  Google Scholar 

  • Van Echten, G., Iber, H., Stotz, H., Takasuki, A., and Sandhoff, K., 1990, Uncoupling of ganglioside biosynthesis by brefeldin A, Eur. J. Biochem. 51: 135–139.

    Google Scholar 

  • Van Heyningen, W. E., 1974, Gangliosides as membrane receptors for tetanus toxin, cholera and serotonin, Nature 249: 415–417.

    Article  Google Scholar 

  • Varki, A., Hooshmand, F., Diaz, S., Varki, N. M., and Hedrick, S. M., 1991, Developmental abnormalities in transgenic mice expressing a sialic acid-specific 9–0-acetyl esterase, Cell 65: 65–74.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, W., Brown, J. H., Cusack, S., Paulson, J. C., Skehel, J. J., and Wiley, D. C., 1988, Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid, Nature 333: 426431.

    Google Scholar 

  • Wiegandt, H., 1985, Gangliosides, Elsevier, Amsterdam, pp. 199–260.

    Google Scholar 

  • Xia, X., Gu, X., Santorelli, A. C., and Yu, R. K., 1989, Effects of inducers of differentiation on protein kinase C and CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase activities of HL-60 leukemia cells, J. Lipid Res. 30: 181–188.

    PubMed  CAS  Google Scholar 

  • Yamamoto, H., Tsuji, S., and Nagai, Y., 1990, Tetrasialoganglioside GQlb reactive monoclonal antibodies: Their characterization and application of GQlb in some cell lines of neuronal and adrenal origin, J. Neurochem. 54: 513–517.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., Tsuji, S., and Nagai, Y., 1991, Sialyl cholesterol is translocated into cell nuclei and it promotes neurite outgrowth in a mouse neuroblastoma cell line, Glycobiology 1: 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Yamato, K., and Yoshida, A., 1992, Biosynthesis of lactosylceramide and paragloboside by human lactose synthase A protein, J. Biochem. 92: 1123–1127.

    Google Scholar 

  • Yohe, H. C., Roark, D. E., and Rosenberg, A., 1976, C20-sphingosine as a determining factor in aggregation of gangliosides, J. Biol. Chem. 251: 7083–7087.

    PubMed  CAS  Google Scholar 

  • Yoshino, H., Miyatani, N., Saito, M., Ariga, T., Lugaresi, A., Latov, N., Kushi, Y., Kasama, T., and Yu, R. K., 1992, Isolated bovine spinal motorneurons have specific ganglioside antigens recognized by sera from patients with motor neuron disease and motor neuropathy, J. Neurochem. 59: 1681–1691.

    Article  Google Scholar 

  • Young, W. W., Lutz, M. S., Mills, S. E., and Lechler-Osborn, E., 1990, Use of Brefeldin A to define sites of glycosphingolipid synthesis: GA2/GM2/GD2 synthase in trans to the Brefeldin A block, Proc. Natl. Acad. Sci. USA 87: 6838–6842.

    Article  PubMed  CAS  Google Scholar 

  • Yu, R. K., and Igbal, K., 1979, Sialosylgalactosyl ceramides as a specific marker for human myelin and oligodendroglial perikarya: Gangliosides of human myelin, oligodendroglia and neurons, J. Neurochem. 32: 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Yu, R. K., Macala, L. J., Taki, T., Weinfeld, H., and Yu, F. S., 1988, Developmental changes in ganglioside composition and synthesis in embryonic rat brain, J. Neurochem. 50: 1825–1829.

    Article  PubMed  CAS  Google Scholar 

  • Yuki, N., Handa, S., Taki, T., Kasama, T., Takahashi, M., Saito, K., and Miyatake, T., 1992, Cross-reactive antigen between nervous tissue and a bacterium elicits Guillain—Barré syndrome. Molecular mimicry between ganglioside GM 1 and liposaccharide from Penner’s serotype 19 of Campylobacter jejuni, Biomed. Res. 13: 451–453.

    CAS  Google Scholar 

  • Yuki, N., Taki, T., Kasama, T., Takahashi, M., Saito, K., Handa, S., and Miyatake, T., 1993, A bacterium lipopolysaccharide that elicits Guillain—Barré syndrome has a GMI ganglioside-like structure, J. Exp. Med. 178: 1771–1775.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, M. Z., Fang, H., Tsuruoka, T., Tsuji, T., Sasaki, T., and Hakomori, S., 1993, Regulatory role of GM3 ganglioside in a5131 integrin receptor for fibronectin mediated adhesion of FUA169 cells, J. Biol. Chem. 268: 2217–2222.

    PubMed  CAS  Google Scholar 

  • Zhou, B., Li, X-C., Laine, R. A., Huang, R.T.C., and Li, Y.-T., 1989, Isolation and characterization of ceramide glycanase from the leech, Macrobdella decora, J. Biol. Chem. 264: 12272–12277.

    CAS  Google Scholar 

  • Zimmer, G., Reuter, G., and Schauer, R., 1992, Use of influenza C-virus for detection of 9–0acetylated sialic acid on immobilized glycoconjugates by esterase activity, Eur. J. Biochem. 204: 209–215.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nagai, Y., Iwamori, M. (1995). Cellular Biology of Gangliosides. In: Rosenberg, A. (eds) Biology of the Sialic Acids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9504-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9504-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9506-6

  • Online ISBN: 978-1-4757-9504-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics