Skip to main content

Environmental Processes Influencing the Rate of Abiotic Reduction of Nitroaromatic Compounds in the Subsurface

  • Chapter
Biodegradation of Nitroaromatic Compounds

Part of the book series: Environmental Science Research ((ESRH,volume 49))

Abstract

Numerous synthetic chemicals contain one or several nitro groups that are bound to an aromatic ring. Figure 1 shows the structures of some prominent representatives of such nitroaromatic compounds (NACs). The high toxicity of some NACs, particularly the mutagenic and carcinogenic potential of some nitrated polycyclic aromatic hydrocarbons (PAHs), has led to considerable interest in the fate of such compounds in the environment. Due to their widespread use, NACs are ubiquitous contaminants, especially in aqueous environments. In addition to contamination originating from agricultural use, from production facilities, and waste disposal sites, diffuse input into the pedosphere via the atmosphere has been documented (21, 27, 36, 37, 59, 65, 69, 80, 81). Atmospheric production of significant quantities of NACs by photochemical processes has been reported (19, 29, 42, 80). Table 1 lists some typical concentrations of NACs that have been measured in various compartments of the environment. Very high concentrations of nitroaromatic explosives (2,4,6-trinitrotoluene (TNT) and by-products) have been found especially in soil and subsurface systems. At those sites, significant concentrations of substituted aromatic amines that may have been formed from the reduction of NACs are frequently encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhya, T. K., B. Sudhakar, and N. Sethunathan. 1981. Fate of fenitrothion, methylparathion, and parathion in anoxic, sulfur-containing soil systems. Pestic. Biochem. Physiol. 16:14–20.

    Article  CAS  Google Scholar 

  2. Agrawal, A., and P. G. Tratnyek. 1994. Abiotic remediation of nitro-aromatic groundwater contaminants by zero-valent iron, p. 492–494. In ACS, Extended Abstract Book. American Chemical Society, San Diego, CA.

    Google Scholar 

  3. Barker, J. F., J. S. Tessmann, P. E. Plotz, and M. Reinhard. 1986. The organic geochemistry of a landfill leachate plume. J. Contam. Hydrol. 1:171–189.

    Article  CAS  Google Scholar 

  4. Bartha, R. 1971. Fate of herbicide-derived chloroanilines in soil. J. Agr. Food Chem. 19:385–387.

    Article  CAS  Google Scholar 

  5. Bartha, R., and D. Pramer. 1967. Pesticide transformation to aniline and azo compounds in soil. Science 156:1617–1618.

    Article  PubMed  CAS  Google Scholar 

  6. Bollag, J. M. 1992. Decontaminating soil with enzymes. Environ. Sci. Technol. 26:1876–81.

    Article  CAS  Google Scholar 

  7. Bollag, J. M. 1992. Enzymes catalyzing oxidative coupling reactions of pollutants, p. 205–17. In H. Siegel and A. Siegel (ed.), Metal ions in biological systems. Degradation of environmental pollutants by microorganisms and their metalloenzymes. Marcel Dekker, New York.

    Google Scholar 

  8. Bollag, J. M., and C. Myers. 1992. Detoxification of aquatic and terrestrial sites through binding of pollutants to humic substances. Sci. Total Environ. 117:357–66.

    Article  Google Scholar 

  9. Bollag, J. M., C. J. Myers, and R. D. Minard. 1992. Biological and chemical interactions of pesticides with soil organic matter. Sci. Total Environ 123:205–17.

    Article  PubMed  Google Scholar 

  10. Delgado, M. C., and N. L. Wolfe. 1992. Structure-activity relationships for the reduction of p-substituted nitrobenzenes in anaerobic sediments. In ACS, Extended Abstract Books. American Chemical Society, San Francisco, CA.

    Google Scholar 

  11. Dunnivant, F. M., R. P. Schwarzenbach, and D. L. Macalady. 1992. Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environ. Sci. Technol. 26:2133–2141.

    Article  CAS  Google Scholar 

  12. Eberson, L. 1987. Electron transfer reactions in organic chemistry. Springer Verlag, Berlin.

    Book  Google Scholar 

  13. Ewing, B. B., E. S. K. Chian, J. C. Cook, C. A. Evans, P. K. Hopke, and E. G. Perkins. 1977. Monitoring to detect previously unrecognized pollutants in surface waters. US Environmental Protection Agency, Technical Report, Washington, DC.

    Google Scholar 

  14. Fishbein, L. 1984. Aromatic Amines, p. 1–40. In O. Hutzinger (ed.), The handbook of environmental chemistry — anthropogenic compounds. Springer Verlag, Berlin.

    Google Scholar 

  15. Gaillard, G., A. Mermoud, and S. B. Haderlein. Fate of DNOC and 1,4-dinitrobenzene in two unsaturated soils — comparison of lysimeter and batch experiments. Submitted for publication.

    Google Scholar 

  16. Geer, R. D. 1978. Predicting the anaerobic degradation of organic chemical pollutants in waste water treatment plants from their electrochemical behavior. Montana Univ. Joint Water Resouces Research Center, Bozeman, Montana.

    Google Scholar 

  17. Glaus, M. A., C. G. Heijman, R. P. Schwarzenbach, and J. Zeyer. 1992. Reduction of nitroaromatic compounds mediated by Sreptomyces sp. exudates. Appl. Environ. Microbiol. 58:1945–1951.

    CAS  Google Scholar 

  18. Gorontzy, T., J. Küver, and K.-H. Blotevogel. 1993. Microbial transformation of nitroaromatic compounds under anaerobic conditions. J. Gen. Microbiol. 139:1331–1336.

    Article  PubMed  CAS  Google Scholar 

  19. Grosjean, D. 1985. Reactions of o-cresol and nitrocresol with NOX in sunlight and with ozone-nitrogen dioxide mixtures in the dark. Environ. Sci. Technol. 19:968–974.

    Article  CAS  Google Scholar 

  20. Haas, R., and G. Stork. 1989. Konzept zur Untersuchung von Rüstungsaltlasten. Fresenius Z. Anal. Chem. 335:839–846.

    Article  CAS  Google Scholar 

  21. Haas, R., and E. von Löw. 1986. Grundwasserbelastung durch eine Altlast. Die Folgen einer ehemaligen Sprengstoffproduktion für die heutige Trinkwassergewinnung. Forum Städte-Hygiene. 37:33–43.

    CAS  Google Scholar 

  22. Haderlein, S. B., and R. P. Schwarzenbach. 1993. Adsorption of substituted nitrobenzenes and nitrophenols to mineral surfaces. Environ. Sci. Technol. 27:316–26.

    Article  CAS  Google Scholar 

  23. Haderlein, S. B., K. Weissmahr, and R. P. Schwarzenbach. Specific adsorption of nitroaromatic explosives and pesticides to clay minerals. Submitted.

    Google Scholar 

  24. Hallas, L. E., and M. Alexander. 1983. Microbial transformation of nitroaromatic compounds in sewage effluent. Appl. Environ. Microbiol. 45:1234–1241.

    PubMed  CAS  Google Scholar 

  25. Heijman, C. G., E. Grieder, C. Holliger, and R. P. Schwarzenbach. Abiotic reduction of nitroaromatic compounds coupled to microbial iron reduction in laboratory aquifer columns. Environ. Sci. Technol. 29:775-783.

    Google Scholar 

  26. Heijman, C. G., C. Holliger, M. A. Glaus, R. P. Schwarzenbach, and J. Zeyer. 1993. Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl. Environ. Microbiol. 59:4350–4353.

    PubMed  CAS  Google Scholar 

  27. Helling, C. S. 1976. Dinitroaniline herbicides in soils. J. Environ. Qual. 5:1–15.

    Article  CAS  Google Scholar 

  28. Helling, C. S., and A. E. Krivonak. 1978. Physicochemical characteristics of bound dinitroaniline herbicides in soils. J. Agric. Food Chem. 26:1156–1163.

    Article  CAS  Google Scholar 

  29. Helmig, D., J. López-Cancio, J. Arey, W. P. Harger, and R. Atkinson. 1992. Quantification of ambient nitrodibenzopyranones: further evidence for atmospheric mutagen formation. Environ. Sci. Technol. 26:2207–2213.

    Article  CAS  Google Scholar 

  30. Herterich, R. 1991. Vorkommen und atmosphärischer Eintrag von Herbiziden und phytotoxischen Nitrophenolen an zwei emissionsfernen Waldstandorten in Bayern. Ph.D. thesis, Univ. Bayreuth, FRG.

    Google Scholar 

  31. Hsu, T.-S., and R. Bartha. 1974. Interaction of pesticide-derived chloroaniline residues with soil organic matter. Soil Science 116:444–452.

    Article  Google Scholar 

  32. Hsu, T.-S., and R. Bartha. 1976. Hydrolyzable and nonhydrolyzable 3,4-dichloroaniline-humus complexes and their respective rates of biodegradation. J. Agric. Food Chem. 24:118–122.

    Article  PubMed  CAS  Google Scholar 

  33. Jafvert, C. T. 1990. Sorption of organic acids to sediments: initial model development. Environ. Toxicol. Chem. 9:1259–1268.

    Article  CAS  Google Scholar 

  34. Jenkins, T., M. E. Walsh, P. W. Schumacher, and P. H. Miyares. 1989. Liquid Chromatographie method for determination of extractable nitroaromatic and nitramine residues in soil. J. Assoc. Off. Anal. Chem. 72:890–899.

    CAS  Google Scholar 

  35. Jenkins, T. E, D. C. Leggett, C. L. Grant, and C. F. Bauer. 1986. Reversed-phase high-performance liquid Chromatographie determination of nitroorganics in munitions wastewater. Anal. Chem. 58:170–175.

    Article  CAS  Google Scholar 

  36. Kearny, P. C, and D. D. Kaufman. 1975. Herbicides: chemistry, degradation, and mode of action. Dekker, New York.

    Google Scholar 

  37. Kjeldsen, P., J. Kjølhold, B. Schultz, T. H. Christensen, and J. C. Tjell. 1990. Sorption and degradation of chlorophenols, nitrophenols, and organophosphorous pesticides in the subsoil under landfills — laboratory studies. J. Contam. Hydrol. 6:165–184.

    Article  CAS  Google Scholar 

  38. Klausen, J. W, S. Tröber, S. B. Haderlein, and R. P. Schwarzenbach. Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions. Submitted.

    Google Scholar 

  39. Laha, S., and R. G. Luthy. 1990. Oxidation of aniline and other primary aromatic amines by manganese dioxide. Environ. Sci. Technol. 24:363–373.

    Article  CAS  Google Scholar 

  40. Lanz, K., and R. P. Schwarzenbach. 1988. Unpublished data.

    Google Scholar 

  41. Larson, R. A., and E. J. Weber. 1994. Reaction mechanisms in environmental organic chemistry. Lewis Publishers, Boca Raton.

    Google Scholar 

  42. Leuenberger, C., W. Giger, R. Coney, J. W. Graydon, and E. Molnar-Kubica. 1987. Nitrated phenols in rain: atmospheric occurence of phytotoxic pollutants. Chemosphere 17:511–515.

    Article  Google Scholar 

  43. Lyman, W. J., W. F. Rheel, and D. H. Rosenblatt. 1982. Handbook of chemical property estimation methods. McGraw-Hill Inc., New York.

    Google Scholar 

  44. Macalady, D. L., P. G. Tratnyek, and T. J. Grundl. 1986. Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems: a critical review. J. Contam. Hydrol. 1:1–28.

    Article  CAS  Google Scholar 

  45. Macalady, D. L., and L. N. Wolfe. 1992. Hydrophobie effects in the reduction of anthropogenic organic chemicals by natural organic matter. In ACS, Extended Abstract Book. American Chemical Society, San Francisco, CA.

    Google Scholar 

  46. March, J. 1992. Advanced organic chemistry. John Wiley & Sons Inc., New York.

    Google Scholar 

  47. Meisel, D., and P. Neta. 1975. One-electron redox potentials of nitro compounds and radiosensitizers. J. Am. Chem. Soc. 97:5198–5203.

    Article  CAS  Google Scholar 

  48. Mulla, M. S., L. S. Mian, and J. A. Kawecki. 1981. Distribution and transport of the insecticides malathion and parathion in the environment. Residue Reviews 81:1–136.

    Article  PubMed  CAS  Google Scholar 

  49. Neta, P., and D. Meisl. 1976. Substituent effects of nitroaromatic radical anions in aqueous solution. J. Physical. Chem. 80:519–524.

    Article  CAS  Google Scholar 

  50. Neumeier, W., R. Haas, and E. v.Löw. 1989. Mikrobieller Abbau von Nitroaromaten aus einer ehemaligen Sprengstoffproduktion. Forum Städte-Hygiene 40:32–37.

    CAS  Google Scholar 

  51. O’Connor, G. A., J. R. Lujan, and Y. Jin. 1990. Adsorption, degradation, and plant availability of 2,4-dinitrophenol in sludge amended calcareous soils. J. Environ. Qual. 19:587–593.

    Article  Google Scholar 

  52. Ou, T.-Y, L. H. Carreira, R. W. Schottman, and N. L. Wolfe. 1992. Nitroreduction of 2,4,6-trinitrotoluene (TNT) in contaminated soils. In ACS, Extended Abstract Book. American Chemical Society, San Francisco, CA.

    Google Scholar 

  53. Parris, G. E. 1980. Environmental and metabolic transformations of primary aromatic amines and related compounds. Residue Rev. 76:1–24.

    Article  PubMed  CAS  Google Scholar 

  54. Perlinger, J. A. 1994. Reduction of polyhalogenated alkanes by electron transfer mediators in homogeneous aqueous solution. Ph.D thesis, ETH Zurich, Switzerland.

    Google Scholar 

  55. Pillai, P., C. S. Helling, and J. Dragun. 1982. Soil-catalyzed oxidation of aniline. Chemosphere 11:299–317.

    Article  CAS  Google Scholar 

  56. Preuss, A., J. Fimpel, and G. Diekert. 1993. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch. Microbiol. 159:345–353.

    Article  PubMed  CAS  Google Scholar 

  57. Reitermayer, E. 1991. Identifizierung und Bestimmung von aromatischen Aminen in Wasserproben aus dem Bereich einer Rüstungsaltlast mit Hilfe der HPLC. Ph.D. thesis, Philips Univ., Marburg, FRG.

    Google Scholar 

  58. Rippen, G., E. Zietz, R. Frank, T. Knacker, and W. Kloepfer. 1987. Do airborne nitrophenols contribute to forest decline? Environ. Technol. Lett. 8:475–482.

    Article  CAS  Google Scholar 

  59. Rosenblatt, D. H., E. P. Burrows, W. R. Mitchell, and D. L. Parmer. 1991. Organic explosives and related compounds, p. 195–237. In O. Hutzinger (ed.), The handbook of environmental chemistry — anthropogenic compounds. Springer Verlag, Berlin.

    Google Scholar 

  60. Scheffer, F., and P. Schachtschabel. 1984. Lehrbuch der Bodenkunde. Enke Verlag, Stuttgart.

    Google Scholar 

  61. Schneider, U. 1990. Sanierung der Rüstungsaltlast Hessisch Lichtenau-Hirschhagen — Dokumentation. Planungsgesellschaft Boden & Umwelt mbH, Kassel, FRG; Technical Report; Hessisches Ministerium für Umwelt und Reaktorsicherheit, Wiesbaden, FRG.

    Google Scholar 

  62. Schnell, S., and B. Schink. 1991. Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini. Arch. Microbiol. 155:183–190.

    Article  CAS  Google Scholar 

  63. Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden. 1993. Environmental organic chemistry. John Wiley & Sons Inc., New York.

    Google Scholar 

  64. Schwarzenbach, R. P., R. Stierli, K. Lanz, and J. Zeyer. 1990. Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution. Environ. Sci. Technol. 24:1566–1574.

    Article  CAS  Google Scholar 

  65. SDC, and AATCC. 1956. Colour index, Society of Dyers and Colourists and American Association of Textile Chemists and Colorists, Badford, Yorkshire, England; Lowell, MA.

    Google Scholar 

  66. Smith, J. G., and M. Fieser. 1990. Collective index for volumes 1–12 of Fieser and Fieser’s reagents for organic synthesis. John Wiley & Sons Inc., New York.

    Google Scholar 

  67. Somasundram, L., and J. R. Coats (eds.). 1991. Pesticide transformation products — fate and significance in the environment. American Chemical Society, Washington, DC.

    Google Scholar 

  68. Spain, J. C. Bacterial degradation of nitroaromatic compounds under aerobic conditions, (this volume).

    Google Scholar 

  69. Spalding, R. F., and J. W. Fulton. 1988. Groundwater munition residues and nitrate near Grand Island, Nebraska, USA. J. Contam. Hydrol. 2:139–153.

    Article  CAS  Google Scholar 

  70. Spanggord, R. J., W. R. Mabey, T. W. Chou, and J. H. Smith. 1985. Environmental fate of selected nitroaromatic compounds in the aquatic environment, p. 15–33. In D. E. Rickert (ed.), Toxicity of nitroaromatic compounds. Hemisphere Publishing Corp., Washington, DC.

    Google Scholar 

  71. Striebel, T., J. Daub, and R. Hermann. 1992. Charakterisierung und Analyse der Verschmutzung des Niederschlages und des Niederschlagsabflusses, p. 113–145. In H. H. Hahn and C. Xanthopoulos (ed.), Niederschlagsbedingte Schmutzbelastung der Gewässer aus städtischen befestigten Flächen (Phase I) — Niederschlag. BMFT, Karlsruhe, FRG.

    Google Scholar 

  72. Stumm, W. 1992. Chemistry of the solid-water interface, John Wiley & Sons Inc., New York.

    Google Scholar 

  73. Stumm, W, and J. J. Morgan. 1981. Aquatic chemistry. John Wiley & Sons Inc., New York.

    Google Scholar 

  74. Sublette, K. L., P. Cho, A. Maule, S. Schwartz, and D. Pak. 1991. Microbial and biomimetic degradation of nitrobodies, p. 756-763. In B. Nath (ed.), Proc. Int. Conf. Environ. Pollut. Interscience Enterprises Ltd.

    Google Scholar 

  75. Tatsumi, K., A. Freyer, R. D. Minard, and J. M. Bollag. 1994. Enzyme-mediated coupling of 3,4-dichloroaniline and ferulic acid: a model for pollutant binding to humic materials. Environ. Sci. Technol. 28:210–15.

    Article  PubMed  CAS  Google Scholar 

  76. Tatsumi, K., S. Y. Liu, and J. M. Bollag. 1992. Enzyme-catalyzed complex formation of chlorinated anilines with humic substances. Water Sci. Technol. 25:57–60.

    CAS  Google Scholar 

  77. Tatsumi, K., S. Wada, H. Ichikawa, S. Y. Liu, and J.-M. Bollag. 1992. Cross-coupling of a chloroaniline and phenolic acids catalyzed by a fungal enzyme. Wat. Sci. Tech. 26:2157–2160.

    CAS  Google Scholar 

  78. Tratnyek, P. G., and D. L. Macalady. 1989. Abiotic reduction of nitroaromatic pesticides in anaerobic laboratory systems. J. Agric. Food Chem. 37:248–254.

    Article  CAS  Google Scholar 

  79. Tratnyek, P. G., and N. L. Wolfe. 1990. Characterization of the reducing properties of anaerobic sediment slurries using redox indicators. Environ. Toxicol. Chem. 9:289–295.

    Article  CAS  Google Scholar 

  80. Tremp, J. 1992. Sources and fate of nitrated phenols in the atmospheric environment. Ph.D thesis, ETH Zurich, Switzerland.

    Google Scholar 

  81. Urbansky, T. 1984. Chemistry and technology of explosives. Pergamon Press, Oxford, UK.

    Google Scholar 

  82. Voudrias, E. A., and M. Reinhard. 1986. Abiotic organic reactions at mineral surfaces, p. 463-486. In J. A. Davis and K. F. Hayes (ed.), Geochemical processes at mineral surfaces. ACS Symposium Series, 323. American Chemical Society.

    Google Scholar 

  83. Wade, R. S., R. Havlin, and C. E. Castro. 1969. The oxidation of iron(II) porphyrins by organic molecules. J. Am. Chem. Soc. 91:7530–7534.

    Article  PubMed  CAS  Google Scholar 

  84. Wahid, P. A., C. Ramakrishna, and N. Sethunathan. 1980. Instantaneous degradation of parathion in anaerobic soils. J. Environ. Qual. 9:127–130.

    Article  CAS  Google Scholar 

  85. WHO. 1993. Methyl Parathion. World Health Organization, Geneva.

    Google Scholar 

  86. Wolfe, N. L. 1992. Abiotic transformations of pesticides in natural waters and sediments, p. 93–104. In J. L. Schnoor (ed.), Fate of pesticides and chemicals in the environment. John Wiley & Sons, Inc., New York.

    Google Scholar 

  87. Wolfe, N. L., and D. R. Burris. 1992. Abiotic redox transformations of organic contaminants in aquifer materials, p. 2–16. In AWMA, 85th Annual meeting. Air & Waste Management Association, Kansas City.

    Google Scholar 

  88. Wolfe, N. L., B. E. Kitchens, D. L. Macalady, and T. J. Grundl. 1986. Physical and chemical factors that influence the anaerobic degradation of methyl parathion in sediment systems. Environ. Toxicol. Chem. 5:1019–1026.

    Article  CAS  Google Scholar 

  89. Wolfe, N. L., and D. L. Macalady. 1992. New perspectives in aquatic redox chemistry: abiotic transformations of pollutants in groundwater and sediments. J. Contam. Hydrol. 9:17–34.

    Article  CAS  Google Scholar 

  90. Wujcik, W. J., W. L. Lowe, P. J. Marks, and W. E. Sisk. 1992. Granular activated carbon pilot treatment studies for explosives removal from contaminated groundwater. Environ. Prog. 11:178–89.

    Article  CAS  Google Scholar 

  91. Yu, S. Y, and G. W. Bailey. 1992. Reduction of nitrobenzene by four sulfide minerals: kinetics, products, and solubility. J. Environ. Qual. 21:86–94.

    Article  CAS  Google Scholar 

  92. Zepp, R. G., and L. N. Wolfe. 1987. Abiotic transformation of organic chemicals at the particle-water interface, p. 423–455. In W. Stumm (ed.), Aquatic surface chemistry. John Wiley & Sons Inc., New York.

    Google Scholar 

  93. Zeyer, J. 1988. Abbau aromatischer Nitroverbindungen. GWF Wasser Abwasser 129:25–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haderlein, S.B., Schwarzenbach, R.P. (1995). Environmental Processes Influencing the Rate of Abiotic Reduction of Nitroaromatic Compounds in the Subsurface. In: Spain, J.C. (eds) Biodegradation of Nitroaromatic Compounds. Environmental Science Research, vol 49. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9447-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9447-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9449-6

  • Online ISBN: 978-1-4757-9447-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics