Skip to main content

Magnetic Nanoparticles as Contrast Agents for MR Imaging

An Overview

  • Chapter

Abstract

Following a brief introduction to the basic concepts of relaxation and contrast enhancement in magnetic resonance imaging (MRI), this chapter presents an overview of the use of magnetic nanoparticles as contrast agents for MRI. It covers the basic principles of preparation and characterization, including variable-field relaxometry. It is shown how a detailed understanding of Ti and T2 relaxation by magnetic nanoparticles may aid further magnetopharmaceutical development. While this overview is far from complete because of the rapid recent developments in the field, an attempt is made to give an overview of current applications and future directions of magnetic nanoparticles as MR contrast agent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koenig SH (1996). Molecular basis of magnetic relaxation of water protons in tissue. Acad Radiol 3, 597–606.

    Article  Google Scholar 

  2. Stark DD (1991). Hepatic iron overload: paramagnetic pathology. Radiology 179, 333–335.

    Google Scholar 

  3. Wolf GL, Burnett KR, Goldstein EJ, Joseph PM (1985). Contrast agents for magnetic resonance imaging. In: Magnetic Resonance Annual. Kressel H (Ed), New York, Raven Press, 231–266.

    Google Scholar 

  4. Ohgushi M, Nagayama K, Wada A (1978). Dextran magnetite: a new relaxation agent and its application to T2 measurements in gel systems. J of Magn Reson 29, 599–601.

    ADS  Google Scholar 

  5. Kiyama M (1974). Conditions for the formation of Fe04 by the air oxidation of Fe(OH) suspensions. Bull Chem Soc Japan 47, 1646–1650.

    Article  Google Scholar 

  6. Hasegawa M, Hokukoku S (1978). US Patent 4,101,435.

    Google Scholar 

  7. Molday R, Mackenzie D (1982). Immunospecific ferromagnetic iron-dextran reagents for the labelling and magnetic separation of cells. J Immunol Meth 52, 353–367.

    Article  Google Scholar 

  8. Whitehead RA, Chagnon MS, Groman EV, Josephson L (1985). US Patent 4, 554, 088.

    Google Scholar 

  9. Josephson L, Lewis J, Jacobs P, Hahn PF, Stark DD (1988). The effects of iron oxides on proton relaxivity. Magn Reson Imaging 6, 647–653.

    Article  Google Scholar 

  10. Stark DD, Weissleder R, Elizondo G et al (1988). Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168, 297–301.

    Google Scholar 

  11. Jung CW, Jacobs P (1995). Physical and chemical properties ofsuperparamagnetic iron oxide MR contrast agents: ferumoxides,,ferumoxtran, ferumoxsil. Magn Reson Imaging 13, 661–674.

    Article  Google Scholar 

  12. Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990). Ultrasmall super-paramagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175, 489–493.

    Google Scholar 

  13. McLachlan SJ, Morris MR, Lucas MA et al (1994). Phase I clinical evaluation of a new iron oxide MR contrast agent. Radiology 4, 301–307.

    Google Scholar 

  14. Shen T, Weissleder R, Papisov M, Bogdanov A Jr, Brady TJ (1993). Monocrystalline iron oxide nanocompounds (MION): Physicochemical properties. Magn Reson Med 29, 599.

    Google Scholar 

  15. Weissleder R (1996). Monocrystalline iron oxide particles for studying biological tissues. US Patent 5,492,814.

    Google Scholar 

  16. Meldrum FC, Wade VJ, Nimmo DL, Heywood BR, Mann S (1991). Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature 349, 684–687.

    Article  ADS  Google Scholar 

  17. Douglas T, Dickson DPE, Betteridge S, Chamock J, Gamer CD, Mann S (1995). Synthesis and structure of an iron(III) sulfide-ferritin bioinorganic nanocomposite. Science 269, 54–57.

    Article  ADS  Google Scholar 

  18. Hainfeld JF (1992). Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy. Proc Natl Acad Sci USA 89, 11064–11068.

    Article  ADS  Google Scholar 

  19. Meldrum FC, Heywood BR, Mann S (1992). Magnetoferritin in vitro synthesis of a novel magnetic protein. Science 257, 522–523.

    Article  ADS  Google Scholar 

  20. Douglas T, Bulte JWM, Dickson DPE et al (1995). Inorganic-protein interactions in the synthesis ofa ferrimagnetic nanocomposite. In Hybrid organic-inorganic composites. Mark JE, Lee CY-C, Bianconi PA (Eds), American Chemical Society, Washington D.C., ACS Symposium Series 585, 19–28.

    Google Scholar 

  21. Mann S (1996). Ferritin with ferrimagnetically ordered core and method. US Patent 5,491,219.

    Google Scholar 

  22. Pankhurst QA, Betteridge S, Dickson DPE, Douglas T, Mann S, Frankel RB (1994). Mössbauer spectroscopic studies of magnetoferritin. Hyperfine Interact 90, 847–851.

    Article  ADS  Google Scholar 

  23. Butte JWM, Douglas T, Mann S et al (1994). Magnetoferritin: biomineralization as a novel molecular approach in the design of iron-oxide-based magnetic resonance contrast agents. Invest Radiol 29, S214 - S216.

    Article  Google Scholar 

  24. Butte JWM, Douglas T, Mann S et al (1994). Magnetoferritin: characterization ofa novel superparamagnetic MR contrast agent. J Magn Reson Imaging 4, 497–505.

    Google Scholar 

  25. Gider S, Awschalom DD, Douglas T, Mann S, Chaparala M (1995). Classical and quantum magnetic phenomena in natural and artificial ferritin proteins. Science 268, 77–80.

    Article  ADS  Google Scholar 

  26. Vymazal J, Brooks RA, Zak O, McRill C, Shen C, Di Chiro G (1992). TI and T2 offerritin at different field strengths: effect on MRI. Magn Reson Med 27, 368–374.

    Article  Google Scholar 

  27. Vymazal J, Zak O, Butte JWM, Aisen P, Brooks RA (1996). T1 and T2 offerritin solutions: effect of loading factor. Magn Reson Med 36, 61–65.

    Article  Google Scholar 

  28. Butte JWM, Douglas T, Mann S, Vymazal J, Laughlin PG, Frank JA (1995). Initial assessment of magnetoferritin biokinetics and proton relaxation enhancement in rats. Acad Radiol 2, 871–878.

    Article  Google Scholar 

  29. Butte JWM, Vymazal J, Brooks RA, Pierpaoli C, Frank JA (1993). Frequency dependence of MR relaxation times. II. Iron oxides. Journal of Magn Reson Imaging 3, 641–648.

    Article  Google Scholar 

  30. Tiefenauer LX, Kühne G, Andres RY (1993). Antibody-magnetite nanoparticles: in vitro characterization ofa potential tumor-specific contrast agent for magnetic resonance imaging. Bioconj Chem 4, 347–352.

    Article  Google Scholar 

  31. Butte JWM, Hoekstra Y, Kamman RL et al (1992) Specific MR imaging of human lymphocytes by monoclonal antibody guided dextran-magnetite particles. Magn Reson Med 25, 148–157.

    Article  Google Scholar 

  32. Gillis P, Koenig SH (1987). Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite. Magn Reson Med 5, 323–345.

    Article  Google Scholar 

  33. Solomon I (1955). Relaxation processes in a system of two spins. Phys Rev 99, 559–565.

    Article  ADS  Google Scholar 

  34. Bloembergen N (1957). Proton relaxation times in paramagnetic solutions. J Chem Phys 27, 572–573.

    Article  ADS  Google Scholar 

  35. Muller, RN, Vallet P, Maton F et al (1990). Recent developments in design, characterization, and understanding of MRI and MRS contrast media. Invest Radiol, 25, S34 - S36.

    Article  Google Scholar 

  36. Magin RL, Bacic G, Niesman MR, Alameda JC Jr, Wright SM, Swartz HM (1991). Dextran magnetite as a liver contrast agent. Magn Reson Med 20, 1–16.

    Google Scholar 

  37. Roch A, Muller RN (1992). Longitudinal relaxation of water protons in colloidal suspensions of super-paramagnetic crystals. Proceedings of the Society of Magnetic Resonance in Medicine, Eleventh Annual Meeting, p. 1447.

    Google Scholar 

  38. Roch A (1994). Etudes theoriques et experimentales des phenomenes de relaxation protonique induits par les nanoparticules superparamagnetiques, nouveaux agents de contraste pour 1’IRM. Ph.D. thesis, University of Mons-Hainaut.

    Google Scholar 

  39. Gueron M (1975). Nuclear relaxation in macromolecules by paramagnetic ions: A novel mechanism. J Magn Reson 19, 58–66.

    ADS  Google Scholar 

  40. Roch A, Gillis P, Muller RN (1995). Longitudinal relaxation of water protons in colloidal suspensions of ultra small superparamagnetic iron oxide. Proceedings of the Society of Magnetic Resonance, Third Annual Meeting, p. 1094.

    Google Scholar 

  41. Koenig, SH, Kellar KE (1995). Theory of I/TI and 1/T2 NMRD profiles of solutions of magnetic nanoparticles. Magn Reson Med 34, 227–233.

    Article  Google Scholar 

  42. Bulte JWM, Brooks RA, Vymazal J, Frank JA (1996). 1/T1 NMRD profiles of solutions ofmonocrystalline iron oxide nanoparticles: theory and experiment. Proceedings of the International Society for Magnetic Resonance in Medicine, Fourth Annual Meeting, p. 1707.

    Google Scholar 

  43. Butte JWM, Brooks RA, Vymazal J, Frank JA (1996). 1/T2 NMRD profiles of solutions ofmonocrystalline iron oxide nanoparticles: theory and experiment. Proceedings of the International Society for Magnetic Resonance in Medicine, Fourth Annual Meeting, p. 1708.

    Google Scholar 

  44. Butte JWM, Brooks RA, Vymazal J, Frank JA (1996). Tl and T2 relaxometry ofmonocrystalline iron oxide nanoparticles (MION-46). MAGMA 4, S104.

    Google Scholar 

  45. Freed JH (1978). Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. J Chem Phys 68, 4034–4037.

    Article  ADS  Google Scholar 

  46. Weissleder R (1994). Liver MR imaging with iron oxides: toward concensus and clinical practice. Radiology 193, 593–595.

    Google Scholar 

  47. Weissleder R, Bogdanov A, Neuwelt EA, Papisov M (1995). Long-circulating iron oxides for MR imaging. Adv Drug Del Rev 16, 321–334.

    Article  Google Scholar 

  48. Josephson L, Groman EV, Menz E, Lewis JM, Bengele H (1990). A functionalized superparamagnetic iron oxide colloid as a receptor directed MR contrast agent. Magn Reson Imaging 8, 637–646.

    Article  Google Scholar 

  49. Reimer P, Weissleder R, Lee AS, Wittenberg J, Brady TJ (1990). Receptor imaging: application to MR imaging of liver cancer. Radiology 177, 729–734.

    Google Scholar 

  50. Leveille-Webster CR, Rogers J, Arias J (1996). Use of an asialoglycoprotein receptor-targeted magnetic resonance contrast agent to study changes in receptor biology during liver regeneration and endotoxemia in rats. Hepatology 23, 1631–1641.

    Article  Google Scholar 

  51. Schaffer BK, Linker C, Papisov M, et al (1993). MION-ASF: Biokinetics of an MR receptor agent. Magn Reson Imaging 11, 411–417.

    Article  Google Scholar 

  52. Dutton AH, Tokuyasu KT, Singer SJ (1979). Iron-dextran antibody conjugates: general method for simultaneous staining of two components in high-resolution immuno-electron microscopy. Proc Natl Acad Sci USA 76, 3392–3396.

    Article  ADS  Google Scholar 

  53. Renshaw PF, Owen CS, Evans AE, Leigh Jr JS (1986). Immunospecific NMR contrast agents. Magn Reson Imaging 4, 351–357.

    Google Scholar 

  54. Cerdan S, Lötscher HR, Künnecke B, Seelig J (1989). Monoclonal antibody-coated magnetite particles as contrast agents in magnetic resonance imaging of tumors. Magn Reson Med 12, 151–163.

    Article  Google Scholar 

  55. Tiefenauer LX, Tschirky A, Kühne G, Andres RY (1996). In vivo evaluation ofmagnetite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 14 391–402.

    Google Scholar 

  56. Weissleder R, Lee AS, Khaw BA, Shen T, Brady TJ (1991). Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182, 381–385.

    Google Scholar 

  57. Frank H, Weissleder R, Papisov M (1995). Darstellung and quantifizierung von akuten myokardinfarkten mittels antikòrper-gebundenem MR-kontrastmittel. Z Kardiol 84, 311–315.

    Google Scholar 

  58. Weissleder R, Lee AS, Fischman AJ et al (1991). Polyclonal human immunoglobulin G labeled with polymeric iron oxide: antibody MR imaging. Radiology 181, 245–249.

    Google Scholar 

  59. Remsen LG, McCormick CI, Roman-Goldstein S et al (1996). MR of carcinoma-specific monoclonal antibody conjugated to monocrystalline iron oxide nanoparticles: the potential for noninvasive diagnosis. Amer J Neuroradiol 17, 411–418.

    Google Scholar 

  60. Reimer P, Weissleder R, Shen T, Knoefel WT, Brady TJ (1994). Pancreatic resceptors: initial feasibility studies with a targeted contrast agent for MR imaging. Radiology 193, 527–531.

    Google Scholar 

  61. Shen TT, Bogdanov Jr. A, Bogdanova A, Poss K, Brady TJ, Weissleder R (1996). Magnetically labeled se-cretin retains receptor affinity to pancreas acinar cells. Bioconj Chemistry 7, 311–316.

    Google Scholar 

  62. Kresse M (1994). Spezifische kontrastmittel für die magnetresonanz-tomographie: herstellung and charakterisierung von superparamagnetischen transferrin-dextran-and transferrin-chondroitin-magnetiten. Thesis, Freie Universität Berlin.

    Google Scholar 

  63. Kresse M, Wagner S, Pfefferer D, Lawaczeck R, Elste V. Targeting of ultrasmall superparamagnetic iron oxides (SPIO) to tumor cells in vivo by using transferrin-receptor pathways. Magn Reson Med, in press.

    Google Scholar 

  64. Enochs WS, Schaffer B, Bhide PG et al (1993). MR imaging of slow axonal transport in vivo. Exp Neurology 123, 235–242.

    Google Scholar 

  65. Enochs WS, Weissleder R (1994). MR imaging of the peripheral nervous system. Journal of Magn Reson Imaging 4, 251–257.

    Article  Google Scholar 

  66. van Everdingen KJ, Enochs WS, Bhide PG et al (1994). Determinants of in vivo MR imaging of slow axonal transport. Radiology 193, 485–491.

    Google Scholar 

  67. Filler AG (1994). Axonal transport and MR imaging: prospects for contrast agent development. J Magn Reson Imaging 4 259–267.

    Article  Google Scholar 

  68. Petropoulos AE, Schaffer BK, Cheney ML, Enochs S, Zimmer C, Weissleder R (1995). MR imaging of neuronal transport in the guinea pig facial nerve: initial findings. Acta Otolaryngol 115, 512–516.

    Article  Google Scholar 

  69. Norman AB, Thomas SR, Pratt RG, Lu SY, Norgren RB (1992). Magnetic resonance imaging of neural transplants in rat brain using a superparamagnetic contrast agent. Brain Res 594, 279–283.

    Article  Google Scholar 

  70. Hawrylak N, Ghosh P, Broadus J, Schlueter C, Greenough WT, Lauterbur PC (1993). Nuclear magnetic resonance (NMR) imaging of iron oxide-labeled neural transplants. Exp Neurology 121, 181–192.

    Google Scholar 

  71. Butte JWM, Ma LD, Magin RL et al (1993). Selective MR imaging of labeled human peripheral blood mononuclear cells by liposome mediated incorporation of dextran-magnetite particles. Magn Reson Med 29, 32–37.

    Article  Google Scholar 

  72. Yeh T-c, Zhang W, Ildstad ST, Ho C (1993). Intracellular labeling of T-cells with superparamagnetic contrast agents. Magn Reson Med 30, 617–625.

    Article  Google Scholar 

  73. Yeh T-c, Zhang W, Ildstad ST, Ho C (1995). In vivo dynamic MRI tracking of rat T-cells labeled with superparamagnetic iron-oxide particles. Magn Reson Med 33 200–208.

    Article  Google Scholar 

  74. Butte JWM, Laughlin PG, Jordan EK, Tran VA, Vymazal J, Frank JA (1996). Tagging of T cells with super-paramagnetic iron oxide: uptake kinetics and relaxometry. Acad Radiol 3, S301–303.

    Article  Google Scholar 

  75. Butte JWM, Kalman RL, Go KG et al (1988). Assessment of dextran-magnetite particles as MRI contrast agent for cerebral malignancies: studies on cerebral uptake after blood-brain barrier disruption. Proceedings of the Society of Magnetic Resonance in Medicine, Seventh Annual Meeting, Works in progress, p. 9.

    Google Scholar 

  76. Bulte JWM, Kamman RL, Go KG et al (1989). Magnetite-enhanced MR imaging of blood-brain barrier impairment in rats. Proceedings of the Society of Magnetic Resonance in Medicine, Book of Abstracts, Eighth Annual Meeting, p. 357.

    Google Scholar 

  77. Bulte JWM, de Jonge MWA, de Leij L et al (1990). Passage of DMP across a disrupted bbb in the context of antibody-mediated MR imaging of brain metastases. Acta Neurochir S51, 43–45.

    Google Scholar 

  78. Bulte JWM, de Jonge MWA, Kamman RL et al (1993). Magnetite as a potent contrast-enhancing agent in magnetic resonance imaging to visualize blood-brain barrier disruption. Acta Neurochir S57, 30–34.

    Google Scholar 

  79. Bulte JWM (1991). Dextran-magnetite particles as a new MR contrast agent for selective MR imaging of brain metastases. Ph.D. thesis, University of Groningen.

    Google Scholar 

  80. Bulte JWM, Jonge MWA, Kamman RL et al (1992). Dextran-magnetite particles: Contrast enhanced MRI of blood-brain barrier disruption in a rat model. Magn Reson Med 23, 215–223.

    Google Scholar 

  81. Neuwelt EA, Weissleder R, Nilaver G et al (1994). Delivery of virus-sized iron oxide particles to rodent CNS neurons. Neurosurgery 34, 777–784.

    Article  Google Scholar 

  82. Zimmer C, Weissleder R, O’Connor D, LaPointe L, Brady TJ, Enochs WS (1995). Cerebral iron oxide distribution: in vivo mapping with MR imaging. Radiology 196, 521–527.

    Google Scholar 

  83. Muldoon LL, Nilaver G, Kroll RA (1995). Comparison ofintracerebral inoculation and osmotic blood-brain barrier disruption for delivery of adenovirus, herpesvirus, and iron oxide particles to normal rat brain. Amer J Pathol 147, 1840–1851.

    Google Scholar 

  84. Kroll A, Pagel MA, Muldoon LL, Roman-Goldstein S, Neuwelt EA (1996). Increasing volume of distribution to the brain with interstitial infusion: dose, rather than convection, might be the most important factor. Neurosurgery 38, 746–754.

    Google Scholar 

  85. Zimmer C, Weissleder R, Poss K, Bogdanova A, Wright Jr SC, Enochs WS (1995). MR imaging ofphagocytosis in experimental gliomas. Radiology 197, 533–538.

    Google Scholar 

  86. Xu S, Jordan EK, Bulte JWM et al (1997). MION-46L enhanced in vivo MR microscopy in the SIL relapsing remitting experimental allergic encephalomyelitis mouse model: early histopathological correlation. Proceedings of the International Society for Magnetic Resonance in Medicine, Fifth Annual Meeting, 1604.

    Google Scholar 

  87. Reisfeld B, Blackband S, Calhoun V, Grossman S, Eller S, Leong K (1993). The use of magnetic resonance imaging to track controlled drug release and transport in the brain. Magn Reson Imaging 11, 247–252.

    Google Scholar 

  88. Weissleder R, Bogdanov A, Frank H et al (1993). A drug system (PDH) for interventional radiology–Synthesis, properties, and efficacy. Invest Radiol 28, 1083–1089.

    Article  Google Scholar 

  89. Weissleder R, Poss K, Wilkinson R, Zhou C, Bogdanov Jr A(1995). Quantitation of slow drug release from an implantable and degradable gentamicin conjugate by in vivo magnetic resonance imaging. Antimicrobial Agents Chemother 39, 839–845.

    Article  Google Scholar 

  90. Rainov NG, Zimmer C, Chase M et al (1995). Selective uptake of viral and monocrystalline particles delivered intro-arterially to experimental brain neoplasms. Human Gene Therapy 6, 1543–1552.

    Article  Google Scholar 

  91. Patrizio G, Elizondo G, Fretz C, Eley CGS, Stark DD, Ferrucci JT (1989). Cancer targeted liposomes containing superparamagnetic iron oxide: FERROSOMES. Proceedings of the Society of Magnetic Resonance in Medicine, Book of Abstracts, Eighth Annual Meeting, p. 327.

    Google Scholar 

  92. White DL, Tzika AA, Aicher KP, Engelstad BL, Price DC (1990). Plasma clearance offerrosomes, a long-lived superparamagnetic MRI contrast agent. Proceedings of the Society of Magnetic Resonance in Medicine, Book of Abstracts, Ninth Annual Meeting, p. 51.

    Google Scholar 

  93. Bogdanov AA Jr., Martin C, Weissleder R, Brady Ti (1994). Trapping of dextran-coated colloids in liposomes by transient binding to aminophospholipid: preparation of ferrosomes. Biochim Biophys Acta 1193, 212–218.

    Article  Google Scholar 

  94. De Cuyper M, Joniau M (1988). Magnetoliposomes–formation and structural characterization. Eur Biophys J 15, 311–319.

    Google Scholar 

  95. Pauser S, Wagner S, Reszka R, Bernarding J, Wolf KJ (1996). MRI as a screening method for tumor-specific liposomes. MAG*MA 4, S149 - S150.

    Google Scholar 

  96. Bulte JWM, de Cuyper M, Despres D, Brooks RA, Frank JA (1997). PEGylated magnetoliposomes as long-circulating drug carriers for MR imaging. Proceedings of the International Society for Magnetic Resonance in Medicine, Fifth Annual Meeting, 1596.

    Google Scholar 

  97. Sipkins DA, Ch’en IY, Song CK, Cheresh DA, Bednarski MD, Li KCP (1995). MR imaging of tumor-induced angiogenesis using antibody-conjugated paramagnetic liposomes. Proceedings of the Society of Magnetic Resonance, Third Annual Meeting, p. 177.

    Google Scholar 

  98. Sipkins DA, Gijbels K, Tropper FD, Steinman L, Bednarski MD, Li KCP (1995). Antibody-conjugated paramagnetic liposomes (ACPLs): tissue specific contrast agents for disease processes. Proceedings of the Society of Magnetic Resonance, Third Annual Meeting, p. 1139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bulte, J.W.M., Brooks, R.A. (1997). Magnetic Nanoparticles as Contrast Agents for MR Imaging. In: Häfeli, U., Schütt, W., Teller, J., Zborowski, M. (eds) Scientific and Clinical Applications of Magnetic Carriers. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6482-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6482-6_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3283-9

  • Online ISBN: 978-1-4757-6482-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics