Skip to main content

Type 2 Diabetes Mellitus: Etiology, Pathogenesis and Clinical Manifestations

  • Chapter
Principles of Diabetes Mellitus
  • 437 Accesses

Abstract

Type 2 diabetes mellitus affects about 3% of the population or 100 million people worldwide. The prevalence is higher in Europe and the USA, affecting 5–7% of the population and is increasing. Many cases (30% or more) are undiagnosed. Although common, its pathogenesis remains unclear. There are many reasons for this. Perhaps the most important is the heterogeneity of type 2 diabetes due in part to a variable interplay between genetic and environmental factors. Although the diagnosis rests on documentation of hyperglycemia it is important to appreciate that other metabolic abnormalities, for example disturbances of lipid metabolism, are also present and may precede the emergence of hyperglycemia (see Chapter VI.11). As depicted in Figure 1, overt hyperglycemia and the syndrome of type 2 diabetes is due to a variable combination of insulin resistance affecting the liver and peripheral insulin target tissues and of impaired insulin secretion. Since insulin resistance and abnormalities of insulin secretion may be associated with other pathologies, for example liver disease, renal disease, glucocorticoid, growth hormone or thyroid hormone excess, diabetes may be secondary to these conditions (see Chapter V.5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Froguel P, Velho G. Genetic determinants of type 2 diabetes. Recent Prog Horm Res 56: 91–105, 2001.

    Article  PubMed  CAS  Google Scholar 

  2. Grundy SM. Metabolic complications of obesity. Endocrine 13: 155165, 2000.

    Google Scholar 

  3. Groop LC. Insulin resistance: the fundamental trigger of type 2 diabetes. Diabetes Obes Metab 1 (Suppl 1): S1 - S7, 1999.

    Article  PubMed  CAS  Google Scholar 

  4. Clark DO. Physical activity efficacy and effectiveness among older adults and minorities. Diabetes Care 20: 1176–1182, 1997.

    Article  PubMed  CAS  Google Scholar 

  5. Jung RT. Obesity and nutritional factors in the pathogenesis of noninsulin-dependent diabetes mellitus. In Pickup J, Williams G, Eds. Textbook of Diabetes, 2nd ed. Blackwell Science, Oxford, UK, pp 19.119. 23, 1997.

    Google Scholar 

  6. Yost TJ, Jensen DR, Haugen BR, Eckel RH. Effect of dietary macronutrient composition on tissue-specific lipoprotein lipase activity and insulin action in normal-weight subjects. Am J Clin Nutr 68: 296302, 1998.

    Google Scholar 

  7. Swinburn BA, Boyce VL, Bergman RN, Howard BV, Bogardus C. Deterioration in carbohydrate metabolism and lipoprotein changes induced by modern, high fat diet in Pima Indians and Caucasians. J Clin Endocrinol Metab 73: 156–165, 1991.

    Article  PubMed  CAS  Google Scholar 

  8. Cavaghan MK, Ehrmann DA, Polonsky KS. Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J Clin Invest 106: 329–333, 2000.

    Article  PubMed  CAS  Google Scholar 

  9. Stern MP. Strategies and prospects for finding insulin resistance genes. J Clin Invest 106: 323–327, 2000.

    Article  PubMed  CAS  Google Scholar 

  10. Polonsky KS, Sturis J, Bell GI. Non-insulin-dependent diabetes mellitus-a genetically programmed failure of the beta cell to compensate for insulin resistance. N Engl J Med 334: 777–783, 1996.

    Article  PubMed  CAS  Google Scholar 

  11. Ferrannini E, Groop LC. Hepatic glucose production in insulin-resistant states. Diab Metab Rev 5: 711–725, 1989.

    Article  CAS  Google Scholar 

  12. Alberti KGMM. The clinical significance of impaired glucose tolerance. Diabet Med 13: 927–937, 1996.

    Article  PubMed  CAS  Google Scholar 

  13. Gannon MC, Nuttall JA, Damberg G, Gupta V, Nuttall FQ. Effect of protein ingestion on the glucose appearance rate in people with type 2 diabetes. J Clin Endocrinol Metab 86: 1040–1047, 2001.

    Article  PubMed  CAS  Google Scholar 

  14. Fagot-Campagna A. Emergence of type 2 diabetes mellitus in children: epidemiological evidence. J Pediatr Endocrinol Metab 13 (Suppl 6): 1395–402, 2000.

    PubMed  Google Scholar 

  15. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352: 837–853, 1998.

    Article  Google Scholar 

  16. UK Prospective Diabetes Study Group. UK prospective diabetes study 16: Overview of 6 years ` therapy of type II diabetes: A progressive disease. Diabetes 44: 1249–1258, 1995.

    Article  Google Scholar 

  17. Kahn SE. The importance of the beta-cell in the pathogenesis of type 2 diabetes mellitus. Am J Med 108 (Suppl 6a): 2S - 8S, 2000.

    Article  PubMed  CAS  Google Scholar 

  18. Temple RC, Clark PM, Nagi DK, et al. Radioimmunoassay may overestimate insulin in non-insulin-dependent diabetics. Clin Endocrinol (Oxf)32: 689–693, 1990.

    Google Scholar 

  19. Porte D Jr, Kahn SE. Beta-cell dysfunction and failure in type 2 diabetes: potential mechanisms. Diabetes 50 (Suppl 1): S160–163, 2001.

    Article  PubMed  CAS  Google Scholar 

  20. Reaven GM, Chen YDI, Hollenbeck CB, et al. Plasma insulin, C-peptide, and proinsulin concentrations in obese and nonobese individuals with varying degrees of glucose tolerance. J Clin Endocrinol Metab 76: 44–48, 1993.

    Article  PubMed  CAS  Google Scholar 

  21. Bruce DG, Chisholm DJ, Storlien LH, Kraegen EW. Physiological importance of deficiency in early prandial insulin secretion in noninsulin-dependent diabetes. Diabetes 37: 736–744, 1998.

    Article  Google Scholar 

  22. Garvey WT, Olefsky JM, Griffin J, et al. The effects of insulin treatment on insulin secretion and action in type II diabetes mellitus. Diabetes 34: 222–234, 1985.

    Article  PubMed  CAS  Google Scholar 

  23. Henry RR, Wallace P, Olefsky JM. The effects of weight loss on the mechanims of hyperglycemia in obese noninsulin-dependent diabetes mellitus. Diabetes 35: 990–998, 1986.

    Article  PubMed  CAS  Google Scholar 

  24. McGarry JD, Dobbins RL. Fatty acids, lipotoxicity and insulin secretion. Diabetologia 42: 128–138, 1999.

    Article  PubMed  CAS  Google Scholar 

  25. Ferrannini E, Mari A. How to measure insulin sensitivity. J Hypertens 16: 895–906, 1998.

    Article  PubMed  CAS  Google Scholar 

  26. Cline GW, Petersen KF, Krssak M, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med 341: 240–246, 1999.

    Article  PubMed  CAS  Google Scholar 

  27. Kruszynska YT, Mulford MI, Baloga J, Yu JG, Olefsky JM. Regulation of skeletal muscle hexokinase II by insulin in nondiabetic and NIDDM subjects. Diabetes 47: 1107–1113, 1998.

    Article  PubMed  CAS  Google Scholar 

  28. Thorburn AW, Gumbiner B, Bulacan F, et al. Multiple defects in muscle glycogen synthase activity contribute to reduced glycogen synthesis in non-insulin dependent diabetes mellitus. J Clin Invest 87: 489–495, 1991.

    Article  PubMed  CAS  Google Scholar 

  29. DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM. A balanced overview. Diabetes Care 15: 318–368, 1992.

    Article  PubMed  CAS  Google Scholar 

  30. Kruszynska YT, Olefsky JM. Cellular and molecular mechanisms of non-insulin dependent diabetes mellitus. J Invest Med 44: 413–428, 1996.

    CAS  Google Scholar 

  31. Thies RS, Molina JM, Ciaraldi TP et al. Insulin receptor autophosphorylation and endogenous substrate phosphorylation in human adipocytes from control, obese and non-insulin dependent diabetic subjects. Diabetes 39: 250–259, 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Cusi K, Katsumi M, Osman A, et al. Insulin resistance

    Google Scholar 

  33. differentially affects the PI-3-kinase-and MAP kinase-mediated signaling in human muscle. J Clin Invest 105: 311–320, 2000.

    Article  Google Scholar 

  34. Kelley DE, Mintun MA, Watkins SC, et al. The effect of non-insulin dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest 97: 2705–2713, 1996.

    Article  PubMed  CAS  Google Scholar 

  35. Vaag A, Henriksen JE, Madsbad S, Holm N, Beck-Nielsen H. Insulin secretion, insulin action, and hepatic glucose production in identical twins discordant for non-insulin-dependent diabetes mellitus. J Clin Invest 95: 690–698, 1995.

    Article  PubMed  CAS  Google Scholar 

  36. Eriksson J, Franssila-Kallunki A, Ekstrand A, et al. Early metabolic defects in persons at increased risk for non-insulin dependent diabetes mellitus. N Engl J Med 321: 337–343, 1989.

    Article  PubMed  CAS  Google Scholar 

  37. Yki-Jarvinen H. Glucose toxicity. Endocr Rev 13: 415–431, 1992.

    PubMed  CAS  Google Scholar 

  38. Shulman GI. Cellular mechanisms of insulin resistance in humans. Am J Cardiol 84: 3J - 10J, 1999.

    Article  PubMed  CAS  Google Scholar 

  39. Henry RR, Gumbiner B, Ditzler T, Wallace P, Lyon R, Glauber HS. Intensive conventional insulin therapy for type II diabetes. Metabolic effects during a 6-mo outpatient trial. Diabetes Care 16: 21–31, 1993.

    Article  PubMed  CAS  Google Scholar 

  40. Hollenbeck CB, Reaven GM. Treatment of patients with non-insulindependent diabetes mellitus: Diabetic control and insulin secretion and action after different treatment modalities. Diabetic Med 4: 311–316, 1987.

    Article  PubMed  CAS  Google Scholar 

  41. Virkamaki A, Ueki K, Kahn RC. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103: 931–943, 1999.

    Article  PubMed  CAS  Google Scholar 

  42. Kadowaki T. Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 106: 459–465, 2000.

    Article  PubMed  CAS  Google Scholar 

  43. Gastaldelli A, Baldi S, Pettiti M, et al. Influence of obesity and type 2 diabetes on gluconeogenesis and glucose output in humans: a quantitative study. Diabetes 49: 1367–1373, 2000.

    Article  PubMed  CAS  Google Scholar 

  44. Wajngot A, Chandramouli V, Schumann WC, et al. Quantitative contributions of gluconeogenesis to glucose production during fasting in type 2 diabetes mellitus. Metabolism 50: 47–52, 2001.

    Article  PubMed  CAS  Google Scholar 

  45. Bergman RN. Non-esterified fatty acids and the liver: why is insulin secreted into the portal vein? Diabetologia 43: 946–952, 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kruszynska, Y.T. (2004). Type 2 Diabetes Mellitus: Etiology, Pathogenesis and Clinical Manifestations. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6260-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6260-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-6262-4

  • Online ISBN: 978-1-4757-6260-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics