Skip to main content

Part of the book series: The International Cryogenics Monograph Series ((ICMS))

  • 348 Accesses

Abstract

Fracture analysis is complicated for polymers since, besides of temperature and time dependence, there are involved effects from plastification, chain orientation and adiabatic temperature rise. It is the aim of this section to describe several fracture processes which are specific of polymers. Fracture behavior is determined experimentally by the mode and time profile of loading. Stress- and strain controlled loading yields different behavior as well as loading in tension, compression or shear (torsion). Compressive strength is higher than tensile strength; shear strength is the lowest one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kinloch A. J. and R. J. Young: Fracture Behavior of Polymer; Applied Science Publishers; London-New York; (1983); p. 88.

    Google Scholar 

  2. Ref. 9.1; p.93.

    Google Scholar 

  3. Schoeck, G.; Int. J. Fracture, Vol. 44 (1990); p. 1.

    Article  Google Scholar 

  4. Kausch, H. H.: Polymer Fracture; Springer Press; Berlin-Heidelberg; (1987); p. 312.

    Google Scholar 

  5. Ref. 94; p. 365.

    Google Scholar 

  6. Döll, W. in Advances in Polymer Science 52/53; Ed. H. H. Kausch; Springer Press; Berlin-Heidelberg; (1983); p. 108.

    Google Scholar 

  7. Parrish, M. and N. Brown; Nature Phys. Sci.; Vol. 237; (1972); p. 122.

    CAS  Google Scholar 

  8. Munz, D.; R. T. Bubsey and J. E. Srawley; Int. J. Fracture, Vol. 16; (1980); p. 359.

    Article  Google Scholar 

  9. Schirrer, R. and C. Goett; J. Mat. Sci.; Vol 16; (1981); p. 2563.

    Article  CAS  Google Scholar 

  10. Kausch, H. H. (Ed.); Advances in Polymer Science 91/92; Springer Press; Berlin Heidelberg; (1989); p. 210.

    Google Scholar 

  11. Oxborough, P. B. Bowden; Phil. Mag.; Vol. 28; (1973); p. 547.

    Google Scholar 

  12. Ref. 9.1; p. 114.

    Google Scholar 

  13. Ref. 9.1; p. 158.

    Google Scholar 

  14. Ref. 9.1; p. 138

    Google Scholar 

  15. Ref. 9.1; p. 115

    Google Scholar 

  16. Weichert, R. and K. Schönert; J. Mech Appl. Math.; Vol. 31; (1978); p. 363.

    Article  Google Scholar 

  17. Engelter, A. and F. H. Müller; Kolloid Zeitschr. 157; (1958); p. 89.

    Article  CAS  Google Scholar 

  18. Saatkamp, T.; Thesis, University Karlsruhe; (1991).

    Google Scholar 

  19. Hartwig, G.; B. Kneifel and K. Pöhlmann; Advances of Cryogenic Engineering; Vol. 32; Plenum Press; (1985); p. 169.

    Google Scholar 

  20. Hartwig, G. and T. Saatkamp; Advances of Cryogenic Engineering; Vol. 40b; Plenum Press; (1994); p. 1121.

    Google Scholar 

  21. Schultz, J. M.; Treatise on Materials Science and Technology; Vol. 10, Part B; Academic Press, New York; (1977); p. 601.

    Google Scholar 

  22. Ref.9.1; pp 247 and 251.

    Google Scholar 

General Reading

  1. Kinloch, A. J. and R. J. Young: Fracture Behavior of Polymers; Applied Science Publishers LTD (1083).

    Google Scholar 

  2. Kausch, H. H.: Polymer Fracture; Springer Press; Berlin Heidelberg; (1987).

    Google Scholar 

  3. Döll, W. and L. Könezel, in Advances in Polymer Science 91/92; (Ed. H. H. Kausch ); Springer Press; Berlin Heidelberg; (1990)

    Google Scholar 

  4. Döll, W.; in: Advances in Polymer Science 52/53; (Ed. H. H. Kausch ); Springer Press; Berlin Heidelberg; (1983).

    Google Scholar 

  5. Treatise on Materials Science and Technology; Vol. 10, Part B; Academic Press; New York; (1977); ( Ed. J. M. Schultz).

    Google Scholar 

  6. Statistical Analysis of Fatigue Data; (Eds. R. E. Little and J. C. Ekvall); ASTM, STP 744; (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hartwig, G. (1994). Fracture Behavior of Polymers. In: Polymer Properties at Room and Cryogenic Temperatures. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-6213-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-6213-6_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3244-0

  • Online ISBN: 978-1-4757-6213-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics