Skip to main content

Phytoremediation and Bioremediation of Soils and Waters

  • Chapter
Extraction of Metals from Soils and Waters

Part of the book series: Modern Inorganic Chemistry ((MICE))

  • 368 Accesses

Abstract

Toxic metals are problematic in soils because not only are they adsorbed into the zeolite soil structure, but they are also absorbed into the humus and biomass present in soils. These humic and fulvic substances in soils contain compounds that act as chelating agents to these metals, thereby contributing to the difficulty of their removal. In addition, these substances often contain redox active agents that can convert the adsorbed metals into ones that have different oxidation states, or reduce metal ions down to the metallic state. Although the removal of metals from soils poses several challenges, the presence of good chelating agents in humic and fulvic substances is one of the obstacles that must be overcome if phytoremediation or bioremediation is to be the method of choice for metal removal. Phytoremediation is the use of green plants to remove pollutants from the environment. Two recent reviews have been written on this subject.1,2 Among the types of phytoremediation currently in use are phytoextraction and rhizofiltration. Phytoextraction is defined as the use of metal-accumulating plants that concentrate them into the harvestable parts. Rhizofiltration is the use of plant roots to absorb metals from aqueous waste streams. Phytoextraction can be carried out either with or without added chelate complexant to assist in removing the metals. In certain cases the addition of chelating agents enhances the accumulation of metals by plants, especially if the chelate has a strong affinity for the targeted metal. Nevertheless, a consideration when using this method is the requirement that the chosen chelate must be biodegradable or readily removed from the contaminated site. Alternatively, phytoremediation can rely only on the physiological processes that allow plants themselves to accumulate metals. A disadvantage of this approach is that growth rates are slow, and the selectivity for particular metals is likely to be low. In the future, however, genetic engineering could be useful in producing plants that have both higher growth rates and metal selectivities. Bioremediation involves the use of biological remedies for pollution reduction.3 For metals this detoxification process must involve processes such as the oxidation or reduction of the metal center to make it either more water soluble, so that it precipitates and can be removed in solid form, or converted to a more volatile form that can be removed in the gas phase. In choosing a bioremediation strategy for metals, the biological system must be able to tolerate the concentration of metal that is present at the site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. E. Salt, R. D. Smith, I. Raskin, Ann. Rev. Plant Physiol. Plant Mol. Biol., 1998, 49, 643.

    Article  CAS  Google Scholar 

  2. E. L. Kruger, T. A. Anderson, J. R. Coats, ACS Sympos. Ser., Vol. 664, Phytoremediation of Soil and Water Contaminants, American Chemical Society, 1997.

    Google Scholar 

  3. M. J. R. Shannon, R. Unterman, Ann. Rev. Microbiol., 1993, 47, 715.

    Article  CAS  Google Scholar 

  4. S. L. Brown, R. L Chaney, C. A. Loyd, J. S. Angle, J. A. Ryan, Environ Sci. Technol., 1996, 30, 3508.

    Article  CAS  Google Scholar 

  5. T. E. Pawlowska, R. L. Chaney, M. Chin, I Charvat, Appl. Environ. Microbiol., 2000, 66, 2526.

    Google Scholar 

  6. S. L. Brown, R. L. Chaney, J. S. Angle, A. J. M. Baker, Soil Sci. Soc. Am. J., 1995, 59, 125.

    CAS  Google Scholar 

  7. A. Leusch, Z. R. Holan, B. Volesky, J. Chem. Tech. Biotechnol., 1995, 62, 279.

    Article  CAS  Google Scholar 

  8. D. C. Herman, J. F. Artiola, R. M. Miller, Environ. Sci. Technol., 1995, 29, 2280.

    Google Scholar 

  9. M. S. Masri, R. W. Reuter, M. Friedman, J. Appl. Polym. Sci., 1974, 18, 675.

    Article  Google Scholar 

  10. J. P. Pinheiro, A. M. Mota, M. L. Simoes Goncalves, Anal. Chim. Acta, 1994, 284, 525.

    Article  Google Scholar 

  11. H. Shahandeh, L. R. Hossner, Int. J. Phytoremed., 2000, 2, 31.

    Article  CAS  Google Scholar 

  12. R. A. Sheffington, P. R. Shewry, P. Peterson, Planta, 1976, 132, 209.

    Article  Google Scholar 

  13. R. J. Bartlett, Adv. Environ. Sci. TechnoL, 1988, 20, 267.

    Google Scholar 

  14. D. E. Salt, M. Blaylock, N. P. B. A. Kumar, V. Dushenkov, B. D. Ensley, L Chet, I. Raskin, Biotechnol., 1995, 13, 468.

    Article  CAS  Google Scholar 

  15. C. M. Lytle, F. W. Lytle, N. Yang, I-H. Qian, D. Hansen, A. Zayed, N. Terry, Environ. Sci. Technol., 1998, 32, 3087.

    Article  CAS  Google Scholar 

  16. L D. Kleiman, D. H. Cogliatti, Enivron. Technol., 1998, 19, 1127.

    Article  CAS  Google Scholar 

  17. P. Chandra, S. Sinha, V. N. Rai, ACS Sympos. Ser., 1997, 664, 274.

    Article  CAS  Google Scholar 

  18. S. D. Ebbs, L. V. Kochian, Environ. Sci. Technol., 1998, 32, 802.

    Article  CAS  Google Scholar 

  19. J. Chen., J. W. Huang, T. Caspar, S. D. Cunningham, ACS Sympos. Ser., 1997, 664, 264.

    Article  Google Scholar 

  20. S. L. Brown, R. F. Chaney, S. J. Angle, A. J. M. Baker, Environ. Sci. Technol., 1995, 29, 1581.

    Article  CAS  Google Scholar 

  21. B. C. Wolverton, R. C. McDonald, EHP, Environ. Health Perspect., 1978, 27, 161.

    Article  CAS  Google Scholar 

  22. Y. L. Zhu, E. A. H. Pilon-Smits, L. Jovanin, N. Terry, Plant Physiol., 1999, 119, 73.

    Article  CAS  Google Scholar 

  23. K. G. Stanhope, S. D. Young, J. J. Hutchinson, R. Kamath, Environ. Sci. Technol., 2000, 34, 4123.

    Article  CAS  Google Scholar 

  24. J. W. Huang, J. Chen, S. D. Cunningham, ACS Sympos. Ser., 1997, 664, 283.

    Article  CAS  Google Scholar 

  25. A. Kayser, K. Wenger, A. Keller, W. Attinger, H. R. Felix, S. K. Gupta, R. Schulin, Environ. Sci. Technol., 2000, 34, 1778.

    Article  CAS  Google Scholar 

  26. J. L. Gardea-Torresdey, K. J. Tiemann, J. H. Gonzalez, J. A. Henning, M. S. Townsend, Solv. Extr. lon Exch., 1996, 14, 119.

    Article  CAS  Google Scholar 

  27. J. L. Gardea-Torresdey, K. J. Tiemann, J. H. Gonzalez, J. A. Henning, M. S. Townsend, J. Hazard. Mater., 1996, 48, 181.

    Article  CAS  Google Scholar 

  28. J. L. Gardea-Torresdey, K. J. Tiemann, J. H. Gonzalez, I. Cano-Aguilera, J. A. Henning, M. S. Townsend, J. Hazard. Mater., 1996, 49, 205.

    Article  CAS  Google Scholar 

  29. J. L. Gardea-Torresdey, K. J. Tiemann, J. H. Gonzalez, O Rodriguez, J. Hazard. Mater., 1997, 56, 169.

    Article  CAS  Google Scholar 

  30. S. D. Cunningham, J. R. Shann, D. E. Crowely, T. A. Anderson, ACS Sympos. Ser. 1997, 664, 2.

    Article  CAS  Google Scholar 

  31. J. L. Gardea-Torresdey, L. Tang, J. M. Salvador, J. Hazard Mater., 1996, 48, 191.

    Article  CAS  Google Scholar 

  32. J. L. Gardea-Torresdey, I. Cano-Aguilera, R. Webb, K. J. Tiemann, F. Gutiérrez-Corona, J. Hazard. Mater., 1996, 48, 171.

    Article  CAS  Google Scholar 

  33. J. L. Gardea-Torresdey, A. Hernandez, K. J. Tiemann, J. Bibb, O. Rodriguez, J. Hazard. Substance Res. Vol 1, 1997 Kansas State Univ. p.3–1.

    Google Scholar 

  34. J. L. Gardea-Torresdey, J. H. Gonzalez, K. J. Tiemann, O. Rodriguez, G. Games, J. Hazard Mater., 1998, 57, 29.

    Article  CAS  Google Scholar 

  35. J. L. Gardea-Torresdey, K. J. Tiemann, G. Gamez, K. Dokken, J. Hazard. Mater., 1999, B69, 41.

    Article  CAS  Google Scholar 

  36. K. J. Tiemann, J. L. Gardea-Torresdey, G. Gamez, K. Dokken, S. Sias, M. W. Renner, L. R. Furenlid, Environ Sci. Technol., 1999, 33, 150.

    Article  CAS  Google Scholar 

  37. K. J. Tiemann, J. L. Gardea-Torresdey, G. Gamez, K. Dokken, I. Cano-Aguilera, M. W. Renner, L. R. Furenlid, Environ. Sci. Technol., 2000, 34, 693.

    Article  CAS  Google Scholar 

  38. J. L. Gardea-Torresdey, K. J. Tiemann, G. Gamez, K. Dokken, N. E. Pingitore, Adv. Environ. Res., 1999, 3, 83.

    Google Scholar 

  39. K. G. Stanhope, S. D. Young, J. J. Hutchinson, R. Kamath, Environ. Sci. Technol., 2000, 34, 4123.

    Article  CAS  Google Scholar 

  40. J. A. Entry, L. S. Watrud, R. S. Manasse, N. C. Vance, ACS Sympos. Ser., 1997, 664, 299.

    Article  CAS  Google Scholar 

  41. J. M. Tobin, J. C Roux, Water Res., 1998, 32, 1407.

    Article  CAS  Google Scholar 

  42. J. M. Chen, O. J. Hao, J. Chem. Tech. Biotech., 1997, 69, 70.

    Article  CAS  Google Scholar 

  43. N. Verma, R. Rehal, J. Ind. Pollut. Control, 1996, 12, 55.

    CAS  Google Scholar 

  44. M. M. Alves, C. G. G. Beca, R. G. De Carvalho, J. M. Castanheira, M. C. S. Pereira, Water Res., 1993, 27, 1333.

    Article  CAS  Google Scholar 

  45. D. C. Sharma, C. F. Forster, Water Res., 1993, 27, 1201.

    Article  CAS  Google Scholar 

  46. S. Niyogi, T. E. Abraham, S. V. Ramakrishna, J. Sci. Ind. Res., 1998, 57, 809.

    CAS  Google Scholar 

  47. D. Kratochvil, P. Pimentel, B. Volesky, Environ. Sci. Tech., 1998, 32, 2693.

    Google Scholar 

  48. M. Zhao, J. R. Duncan, Biotech. Appl. Biochem., 1997, 26, 179.

    CAS  Google Scholar 

  49. S. Samantaroy, A. K. Mohanty, M. Misra, J. Appl. Polyp. Sci., 1997, 66, 1485.

    Article  CAS  Google Scholar 

  50. M. J. R. Shannon, R. Unterman, Ann. Rev. Microbiol., 1993, 47, 715.

    Article  CAS  Google Scholar 

  51. K. Kashefi, D. R. Lovely, Appl. Environ. Microbiol., 2000, 66, 1050.

    Article  CAS  Google Scholar 

  52. S. N. Gray, Biochem Soc. Trans., 1998, 26, 666.

    Google Scholar 

  53. G. Andrews, Biotechnol. Prog., 1990, 6, 225.

    Article  CAS  Google Scholar 

  54. J. W. Talley, P. M. Sleeper, Ann. N. Y. Acad. Sci., 1997, 829, 16.

    Article  CAS  Google Scholar 

  55. B. Fox, C. T. Walsh, J. Biol Chem., 1982, 257, 2498.

    Google Scholar 

  56. C. L. Rugh, H. D. Wilde, N. M. Stack, D. M. Thompson, A. O. Summers, R. B. Meagher, Proc. Natl. Acad. Sci., 1996, 93, 3182.

    Article  CAS  Google Scholar 

  57. 57. J. S. Chang, J. Hong, O. A. Ogunseitan, Biotechnol. Prog.,1993 9,526.

    Google Scholar 

  58. J. K.Blais, R. D. Tyagi, J. C. Auclair, C. P. Huang, Water Sci. Technol. Water Qual. Im., ‘82, Pt.1 1992, 26, 197.

    Google Scholar 

  59. H. Seidel, J. Ondruschka, P. Morgenstern, U. Stottmeister, Water Sci. Technol., 1998, 37, 387.

    Article  CAS  Google Scholar 

  60. M. D. Mullen, D. C. Wolf, F. G. Ferris, T. J. Beveridge, C. A. Flemming, G. W. Bailey, Appl. Environ Microbiol., 1989, 55, 3143.

    CAS  Google Scholar 

  61. H. Tan, J. T. Champion, J. F. Artiola, M. L. Brusseau, R. M. Miller, Environ. Sci. Technol., 1994, 28, 2402.

    Google Scholar 

  62. D. C. Hermann, J. F. Artiola, R. M. Miller, Environ Sci. Technol., 1995, 29, 2280.

    Google Scholar 

  63. C. L. Wang, P. C. Michels, S. C. Dawson, S. Kitisakkul, J. A. Baross, J. D. Keasling, D. S. Clark, Appl. Environ. Microbiol., 1997, 63, 4075.

    CAS  Google Scholar 

  64. J.-S. Chang, J.-C. Huang, BiotechnoLProg., 1998, 14, 735.

    CAS  Google Scholar 

  65. J.-S. Chang, J.-C. Huang, C.-C. Chang, T.-J. Tarn, Water Sci. Technol., 1998, 38, 171.

    CAS  Google Scholar 

  66. J. L. Gardea-Torresdey, I. Cano-Aguilera, R. Webb, F. Gutierrez-Corona, Environ. Toxicol. Chem., 1997, 16, 435.

    CAS  Google Scholar 

  67. P. K. Sharma, D. L. Bulkwill, A. Frenkel, M. A. Vairavamurthy, Appl. Environ. Microbiol., 2000, 66, 3083.

    Article  CAS  Google Scholar 

  68. P. Samuelson, H. Wernérus, M. Svedberg, S. Stahl, Appl. Environ. Microbiol., 2000, 66, 1243.

    Article  CAS  Google Scholar 

  69. L. E. Macaskie, Crit. Rev. Biotechnol., 1991, 11, 41.

    Article  Google Scholar 

  70. L. E. Macaskie, A. C. R. Dean, Adv. Biotechnol. Processes, 1989, 12, 159.

    CAS  Google Scholar 

  71. D. R. Lovley, E. J. P. Phillips, Y. A. Gorby, E. R. Landa, Nature, 1991, 350, 413.

    Article  CAS  Google Scholar 

  72. Y. A. Gorby, D. R. Lovely, Environ. Sci. Technol., 1992, 26, 205.

    Article  CAS  Google Scholar 

  73. D. R. Lovley, E. J. P. Phillips, Appl. Environ. Microbiol., 1992, 58, 850.

    CAS  Google Scholar 

  74. D. R. Lovley, E. J. P. Phillips, Environ Sci Technol., 1992, 26, 2228.

    Article  CAS  Google Scholar 

  75. L. E. Macaskie, G. Basnakova, Environ. Sci. Technol., 1998, 32, 184.

    Article  CAS  Google Scholar 

  76. D. R. Lovley, Ann. Rev. Microbiol., 1993, 47, 263.

    Article  Google Scholar 

  77. T. Suzuki, N. Miyata, H. Horitsu, K. Kawai, K. Takamizawa, Y. Tai, M. Okazaki, J. Bacteriol., 1992, 174, 5340.

    CAS  Google Scholar 

  78. C. P. Wang, T. Mori, K. Komori, Appl. Environ. Microbiol., 1989, 55, 1665.

    CAS  Google Scholar 

  79. D. R. Lovley, E. J. P. Phillips, Appl. Environ. Microbiol., 1994, 60, 726.

    CAS  Google Scholar 

  80. L. Fude, B. Harris, M. E. Urrutia, T. J. Beveridge, Appl. Environ. Microbiol., 1994, 60, 1525.

    CAS  Google Scholar 

  81. A. Trivedi, Bioremediation of Hazardous Metals,AiResearch, Los Angeles Division.

    Google Scholar 

  82. 82. The Hazard. Waste Consultant,1995 (Jan/Feb),Li.

    Google Scholar 

  83. H. Shen, Y-T. Wang, J. Environ. Eng., 1995, 121, 798.

    Article  CAS  Google Scholar 

  84. H. Shen, P. H. Pritchard, G. W. Sewell, Environ. Sci. Technol., 1996, 30, 1667.

    Article  CAS  Google Scholar 

  85. C. Solisio, A. Lodi, A. Converti, M. Del Borgi, Chem. Biochem. Eng. Quarterly, 1998, 12, 45.

    CAS  Google Scholar 

  86. O. Saltabas, G. Akcin, Toxicol. Environ Chem., 1994, 43, 163.

    Article  CAS  Google Scholar 

  87. O. Saltabas, G. Akcin, Toxicol. Environ Chem., 1994, 41, 131.

    Article  CAS  Google Scholar 

  88. K. Komori, A. Rivas, K. Toda, H. Ohtake, Biotech. Bioeng., 1990, 35, 951.

    Article  CAS  Google Scholar 

  89. Y-T. Wang, E. M. N. Chirwa, Proc. Mid-Atlantic. Ind. Hazard Waste Conf, 1997, 29, 32.

    Google Scholar 

  90. D. R. Lovley, Ann. Rev. Microbiol., 1993, 14, 158.

    Google Scholar 

  91. H. Shen, Y. T. Wang, Appl. Environ. Microbiol., 1995, 61, 2754.

    Google Scholar 

  92. M. S. Elovitz, W. Fish, Environ. Sci. Technol., 1994, 28, 2161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roundhill, D.M. (2001). Phytoremediation and Bioremediation of Soils and Waters. In: Extraction of Metals from Soils and Waters. Modern Inorganic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5204-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5204-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3378-2

  • Online ISBN: 978-1-4757-5204-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics